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Uncertainty quanti�cation

Uncertainty quanti�cation has become an essential path in science and engineering

Comprehension and selection of models (exploration of model predictions over a
range of uncertainty)

Assess con�dence in numerical predictions

Robust optimization and design

Validation of models using (noisy) data

Data assimilation and model construction
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Uncertainty quanti�cation using functional approaches

Uncertainties represented by \simple" random variables� : � ! � de�ned on a
probability space (� ; B; P).

Functional representation of any� (� )-measurable random variable� (� )

� (� ) � � (� (� ))

Approximation theory for the approximation of functionals

� (� ) �
X

� �  � (� ); � 2 �
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Uncertainty quanti�cation using functional approaches

Uncertainties represented by \simple" random variables� : � ! � de�ned on a
probability space (� ; B; P).

Functional representation of any� (� )-measurable random variable� (� )

� (� ) � � (� (� ))

Approximation theory for the approximation of functionals

� (� ) �
X

� �  � (� ); � 2 �

Stochastic/parametric models

u : � 2 � 7! u(� ) 2 V such that A (u(� ); � ) = f (� )
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Uncertainty quanti�cation using functional approaches

Stochastic/parametric analyses: a uni�ed framework

u : � ! V ; A (u(� ); � ) = f (� ); � 2 �

Forward problem (propagation):P� �! O (u)

Optimization or identi�cation: O(u) �! � or fO (u); P� 1g �! � 2

Probabilistic inverse problem:O(u) �! P� or fO (u); P� 1g �! P� 2
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Uncertainty quanti�cation using functional approaches

Stochastic/parametric analyses: a uni�ed framework

u : � ! V ; A (u(� ); � ) = f (� ); � 2 �

Forward problem (propagation):P� �! O (u)

Optimization or identi�cation: O(u) �! � or fO (u); P� 1g �! � 2

Probabilistic inverse problem:O(u) �! P� or fO (u); P� 1g �! P� 2

Ideal approach

Compute an accurate and explicit representation ofu(� ) (a metamodel) that allows fast
evaluations of output quantities of interest, observables, or objective function.
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Uncertainty quanti�cation using functional approaches

Stochastic/parametric analyses: a uni�ed framework

u : � ! V ; A (u(� ); � ) = f (� ); � 2 �

Forward problem (propagation):P� �! O (u)

Optimization or identi�cation: O(u) �! � or fO (u); P� 1g �! � 2

Probabilistic inverse problem:O(u) �! P� or fO (u); P� 1g �! P� 2

Ideal approach

Compute an accurate and explicit representation ofu(� ) (a metamodel) that allows fast
evaluations of output quantities of interest, observables, or objective function.

Issue

Approximation of a high dimensional functionu(� ), � 2 � � Rd .

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References 5



Construction of approximation spaces

u 2 Lp
� (�; V) = V 
 S

Tensorization of prede�ned bases

u �
NX

i =1

X

� 2I P

ui ;� ' i  � (� ) 2 VN 
 S P

with given approximation spaces

VN = spanf ' i g
N
i=1

SP = spanf  � (� ) =  1
� 1(� 1) : : :  d

� d
(� d ); � 2 I P g

Pre-de�ned index setI P

n
� 2 Nd ; j� j1 � r

o
�

n
� 2 Nd ; j� j1 � r

o
�

n
� 2 Nd ; j� jq � r

o
; 0 < q < 1

Choice ofI P based on a priori analysis
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De�nition of approximate functional expansions

Direct simulation methods (L2 projection, regression, interpolation)

u(� ) �
X

� 2I P

u�  � (� ) u� 2 VN

with coe�cients

u� =
QX

k=1

! �
k uN (yk ); � 2 I P

wheref yk gQ
k=1 is a collection of sample points and theu(yk ) are approximate solutions of

deterministic problems
A (u(yk ); yk ) = f (yk )

Use of classical deterministic solvers (black box)

Numerous solutions of deterministic problems:Q = O(# I P )
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De�nition of approximate functional expansions

Weak solution

u 2 V 
 S ; hA(u); vi = hf ; vi 8 v 2 V 
 S

Galerkin-type projections

u �
X

� 2I P

u� 
  � 2 VN 
 S P

where coe�cients f u� g� 2I P are solutions of a coupled system of deterministic problems:



A (

X

�

u�  � ); v�  �
�

= hf ; v�  � i 8 v� 2 VN ; � 2 I P (?)

Nice mathematical framework: error estimates, stability, possible e�ciency

Generally require modi�cations of (or strong interaction with) existing solvers.

Complexity of systems of equations (?)
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Complexity issue

Possibly �ne deterministic models

dim(VN ) � 106; 109; 1012:::

Make inacceptable numerous evaluations of the model
and the solution of coupled systems of deterministic
problems

! Need model reduction

Possibly high parametric dimensionality

Many input parameters or stochastic processes with high
spectral content

dim(SP ) � 10; 1010; 10100; 101000; :::

! Need adapted representations for high dimensional
functions

� (x; � ) =
mX

i =1

� i (x)� i (� )
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Optimal model reduction

Optimal approximation spaces foru 2 V 
 S

� m(u) = inf
Vm �V

dim(Vm )= m

inf
um2V m 
S

ku � umk = inf
Sm �S

dim(Sm )= m

inf
um2V
S m

ku � umk

m-dimensional approximation spacesVm and Sm are optimal w.r.t. the norm k � k.

For S = L2
� (�) and for the natural norm in L2

� (�; V), the best approximationum is
the rank-m singular value decomposition

A fact
In many applications and for reasonable precisions� ,

� m(u) � � for m small
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Optimal model reduction

Optimal approximation spaces foru 2 V 
 S

� m(u) = inf
Vm �V

dim(Vm )= m

inf
um2V m 
S

ku � umk = inf
Sm �S

dim(Sm )= m

inf
um2V
S m

ku � umk

m-dimensional approximation spacesVm and Sm are optimal w.r.t. the norm k � k.

For S = L2
� (�) and for the natural norm in L2

� (�; V), the best approximationum is
the rank-m singular value decomposition

A fact
In many applications and for reasonable precisions� ,

� m(u) � � for m small

Question
Can we compute these low dimensional approximation spaces apriori ?
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Strategies for high dimensional approximation

Optimal sparse approximation inSP = spanf  � g� 2I P

For K � I P , we de�ne SK = spanf  k gk2 K � S P . For the approximation ofu 2 S , we
want the smallest subspaceSK yielding a precision at least� :

min
K

# K subject to inf
v2S K

ku � vk � �

Computational aspects

Adaptive construction of the index set [Cohen2010, Crestaux2011,...]

Non adaptive construction by approximation of the ideal formulation [Blatman2011,
Doostan2011, Mathelin2012, Najm2012]
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Strategies for high dimensional approximation

Optimal sparse approximation inSP = spanf  � g� 2I P

For K � I P , we de�ne SK = spanf  k gk2 K � S P . For the approximation ofu 2 S , we
want the smallest subspaceSK yielding a precision at least� :

min
K

# K subject to inf
v2S K

ku � vk � �

Computational aspects

Adaptive construction of the index set [Cohen2010, Crestaux2011,...]

Non adaptive construction by approximation of the ideal formulation [Blatman2011,
Doostan2011, Mathelin2012, Najm2012]

Issues

K may be small for reasonable� (strongly depends on the chosen basis).

Strategies of exploration for adaptive constructions ?

Computability of non adaptive constructions for high dimensional spacesSP ?

Approximation of function u 2 VN 
 S P ?
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Strategies for high dimensional approximation

Nonlinear approximation in a subsetM � V N 
 S P

M should havenice approximation properties: for a class of functionsu and for a
reasonable precision� ,

inf
v2M

ku � vk � �

M is not a linear space (nor a convex set):nonlinear approximation problem

M has asmall dimension(i.e. can be parameterized with a small number of
parameters)

An approximation can be computed withsuitable algorithms(e.g. alternating
minimization on the parameters)
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Strategies for high dimensional approximation

Nonlinear approximation using tensor approximation methods

Exploit the tensor structureof function space

VN 
 S P = VN 
 S 1
P1 
 : : : 
 S d

Pd

Choose suitable tensor subsetsM , e.g.

M =

(
mX

i =1

vi 
 � 1
i 
 : : : 
 � d

i ; vi 2 VN ; � k
i 2 S k

Pk

)

;

with dim(M ) = O(d) .

Best approximation problems in tensor subsets are related to singular value
decompositions and their generalizations

[Nouy2010, Doostan2010, Khoromskij2010, Ballani2010...]
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Tensor spaces

Tensor Banach space

We consider Banach spacesVk equipped with normsk � kk . A tensor Banach space
equipped with normk � k is de�ned by

V = a 
 d
k=1 Vk

k�k
with a 
 d

k=1 Vk = spanf v1 
 : : : 
 vd : vk 2 Vk g

Examples

L2
� (�; V) = V 
 a L2

� (�)
k�k

; kvk2 =
Z

�
kv(y)k2

V d� (y)

L2
� (�) = a 
 s

k=1 L2
� k

(� k )
k�k

; kvk2 =
Z

� 1

: : :
Z

� s

v(y1; : : : ; ys)
2d� 1(y1) : : : d� s(ys)
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equipped with normk � k is de�ned by
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 : : : 
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kv(y)k2
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� (�) = a 
 s

k=1 L2
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(� k )
k�k

; kvk2 =
Z

� 1

: : :
Z

� s

v(y1; : : : ; ys)
2d� 1(y1) : : : d� s(ys)

Finite dimensional spaces

V = a 
 d
k=1 Vk . Denoting f  k

i gnk
i =1 a basis ofVk ,

V =

8
<

:
v =

n1X

i1=1

: : :
ndX

id =1

� (i1;:::; id )  
1
i1 
 : : : 
  d

id ; � (i1;:::; id ) 2 R

9
=

;
dim(V ) = n1n2 : : : nd
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Tensor subsets

Tensor subsetsM
Rank one tensors

R 1 =
n


 d
k=1 vk : vk 2 Vk

o

Rank-m (canonical) tensors

R m =

(
mX

i =1


 d
k=1 vk

i : vk
i 2 Vk

)

Tucker tensors with rankr = ( r1; : : : ; rd )

Tr =

8
<

:

r1X

i1=1

: : :
rdX

id =1

� (i1;:::; id ) 
 d
k=1 vk

ik ; � (i1;:::; id ) 2 R; vk
i 2 Vk

9
=

;

=
�

v 2 V :
there exist subspacesUk � Vk such that
dim(Uk ) = rk and v 2 U1 
 : : : 
 Ud

�

Hierarchical tensorsH r

...
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Tensor based methods

Tensor approximation methods for solving problems of type

A(u) = f with u 2 V = V1 
 : : : 
 Vd

(1) Iterative or direct solvers ?

(2) How to de�ne an approximation ofu in a tensor subset without information onu ?

(3) Construction of a tensor decomposition with a prescribed accuracy:
directly (in increasing tensor subsets) or progressively (with successive corrections in
small tensor subsets) ?

(4) Optimal model reduction for stochastic/parametric analyses ?

(5) How to de�ne suitable tensor subsets for stochastic analyses?

(6) Can we build tensor approximations using samples ofu (black-box approach) ?
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Iterative or direct solvers ?

Approximation of the solution ofA(u) = f in a tensor subsetM

Iterative methods and classical tensor approximation methods (SVD) .
Construction of a sequence of tensor approximationsun 2 M , perturbations of ideal
iterations.

un � B(un� 1) with kun � B(un� 1)k � inf
v2M

kv � B(un� 1)k
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Iterative or direct solvers ?

Approximation of the solution ofA(u) = f in a tensor subsetM

Iterative methods and classical tensor approximation methods (SVD) .
Construction of a sequence of tensor approximationsun 2 M , perturbations of ideal
iterations.

un � B(un� 1) with kun � B(un� 1)k � inf
v2M

kv � B(un� 1)k

Direct (a priori) construction of a tensor approximation (PGD/GSVD)
Requires new de�nitions of \best approximations" and associated algorithms.

inf
v2M

kA(v) � f k�
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Iterative or direct solvers ?

Approximation of the solution ofA(u) = f in a tensor subsetM

Iterative methods and classical tensor approximation methods (SVD) .
Construction of a sequence of tensor approximationsun 2 M , perturbations of ideal
iterations.

un � B(un� 1) with kun � B(un� 1)k � inf
v2M

kv � B(un� 1)k

Direct (a priori) construction of a tensor approximation (PGD/GSVD)
Requires new de�nitions of \best approximations" and associated algorithms.

inf
v2M

kA(v) � f k�

Coupling iterative methods and PGD.
A larger class of iterative methods can be used.

C(un) � B(un� 1) with kC(un) � B(un� 1)k� � inf
v2M

kC(v) � B(un� 1)k�
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Best approximation in a tensor subset M without information on u

Approximation of the solution ofAu = f in a tensor subsetM .
De�nition of a set of \good approximations" � M (u) � M ?

Optimization problems: if A(u) � f = J 0(u) with J a convex functional

� M (u) = arg min
w2M

J (w)

Galerkin projection:

� M (u) � f w 2 M : hA(w) � f ; � wi = 0 8� w 2 Tw (M )g

Minimal residual:

� M (u) = arg min
w2M

kA(w) � f k� (Good residual norms)

Minimax (Petrov-Galerkin):

� M (u) �
�

w 2 M :
hA(w) � f ; � zi = 0 8� z 2 Tz(M )
h� w; A� zi = h� w; wi 8 � w 2 Tw (M )

�

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References 18



Direct constructions (PGDs)

Tensor subsets

De�ne a sequence of tensor subsetsfM mgm� 1 such that

M m � M m+1

[ m� 1M m is dense inV

Typical choices:M m = R m, M m = M m� 1 + M 1 with R 1 � M 1, M m = T(m;:::; m) .

De�nition (Direct PGD of u)

For a given sequence of tensor subsetsfM mgm� 1, de�ne a sequencef umgm� 1 by

um 2 � M m (u)

Generalization of the concept of spectral decomposition:Proper Generalized
Decomposition(to be clari�ed...)

Useful when we want anoptimal decomposition for a given precision

Computational complexityincreases withm.
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Progressive constructions (PGDs)

Tensor subsets

De�ne a (small) tensor subsetM satisfying

M is weakly closed inV ,

span(M ) is dense inV ,

� M � M for all � 2 R

Typical choices:M = R 1 (elementary tensors),M = Tr (tucker set) or M = H r

(hierarchical tensors) with smallr .

De�nition (Progressive PGD ofu)

Let u0 = 0. For m � 1,
1 Compute a correctionwm 2 M of um� 1:

wm 2 � M (u � um� 1)

2 Set um = um� 1 + wm
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Progressive constructions with updates

De�nition (Updated progressive PGD)

Let u0 = 0. For m � 1,
1 Compute a correctionwm 2 M of u � um� 1:

wm 2 � M (u � um� 1)

2 Set vm = um� 1 + wm and construct a linear subspaceUm such that vm 2 Um .
Then, de�ne um as the best approximation ofu in Um

um 2 � Um (u)

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References 21



Progressive constructions with updates

De�nition (Updated progressive PGD)

Let u0 = 0. For m � 1,
1 Compute a correctionwm 2 M of u � um� 1:

wm 2 � M (u � um� 1)

2 Set vm = um� 1 + wm and construct a linear subspaceUm such that vm 2 Um .
Then, de�ne um as the best approximation ofu in Um

um 2 � Um (u)

Link to model reduction
Progressive construction of a low dimensional approximation spaceUm which de�nes a
reduced order model.

Nonlinear approximation for the construction ofUm

Linear approximation inUm.
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Strategies of updates: construction of linear spaces
with G. Bonithon, L. Giraldi, G. Legrain

For vm given, strategies for constructing a linear spaceUm such that vm 2 Um:

Supposevm =
P m

i=1 wi , with wi 2 M .

Um = spanf wi g
m
i=1 =

(
mX

i =1

� i wi : � i 2 R

)

dim(Um) = m

Supposevm =
P m

i=1 
 d
k=1 wk

i 2 R m.

Um =

8
>><

>>:

mX

i =1

� wk
i 


� dO

k0=1
k06= k

wk0

i

�
: � wk

i 2 Vk

9
>>=

>>;
dim(Um) = m � dim(Vk )

Supposevm = um� 1 + 
 d
k=1 wk

m, with M = R 1. De�ne

Um � Um
1 
 : : : 
 Um

d with Um
k = Um� 1

k + spanf wk
mg � Vk dim(Um) � md
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Convergence results for convex optimization problems

Best approximations for the optimization of a functionalJ with minimizeru

� M (u) = arg min
w2M

J (w); � M (u � v) = arg min
w2M

J (v + w)

Theorem (Convex optimization in tensor Banach spaces)

Let J : V ! R be a Fr�echet di�erentiable functional such that

J is elliptic: hJ 0(v) � J 0(w); v � wi � � ku � wks, with s > 1

(H1) J 0 weakly continuous or (H2)J 0 Lipschitz continuous on bounded sets

Then, the (updated) progressive PGDf umgm� 1 converges towards the solution u if (H1).
If (H2), it converges

for s > 1 if there exists a subsequence of updates

for 1 < s � 2 otherwise

Falco & Nouy, Numerische Mathematik (2012).
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A simple illustration on a di�usion equation

(
� r � (� r u) = ID (x) on 
 = (0 ; 1) � (0; 1)

u = 0 on @


� (x; � ) =

(
1 if x 2 
 0

1 + 0 :1� i if x 2 
 i ; i = 1 :::8

with � i 2 U(� 1; 1)

J (v) =
Z



� r v � r v � 2

Z



ID v = kv � uk2

A � k uk2
A

Approximation spaces

u 2 VN 
 S P ; SP = P10(� 1; 1) 
 : : : 
 P10(� 1; 1)

Underlying approximation space with dimension 5:1011
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Progressive PGD

Progressive Galerkin PGD u � um =
P m

k=1 wk ; wk = vk 
 � 1
k 
 : : : 
 � s

k 2 R 1

min
wm2R 1

ku � um� 1 � wmk2
A + updates of functions f � 1

k ; : : : ; � s
k gm

k=1

Convergence (inL2 norm) Spatial modeswk
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Optimal model reduction for stochastic parametric problems

um(� ) =
mX

i =1

vi � i (� ) 2 V ; vi 2 V ; � i 2 S

Best approximation ofu 2 V 
 S by um 2 R m(V 
 S )

min
um2R m (V
S )

ku � umk? = min
Vm �V

dim(Vm )= m

min
Sm �S

dim(Sm )= m

min
um2V m 
S m

ku � umk?

m-dimensional approximation spacesVm and Sm are optimal w.r.t. the norm k � k?

De�ne k�k? that makesum computable without information onu.

More than a simple best approximation problem:generalized spectral decomposition
(Karhunen-Loeve)
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Optimal model reduction for stochastic parametric problems

um(� ) =
mX

i =1

vi � i (� ) 2 V ; vi 2 V ; � i 2 S

Best approximation ofu 2 V 
 S by um 2 R m(V 
 S )

min
um2R m (V
S )

ku � umk? = min
Vm �V

dim(Vm )= m

min
Sm �S

dim(Sm )= m

min
um2V m 
S m

ku � umk?

m-dimensional approximation spacesVm and Sm are optimal w.r.t. the norm k � k?

De�ne k�k? that makesum computable without information onu.

More than a simple best approximation problem:generalized spectral decomposition
(Karhunen-Loeve)

Di�erent (computational) approaches
1 construct (an approximation of)Vm = spanf v1; : : : ; vmg and project onVm 
 S
2 construct (an approximation of)Sm = spanf � 1; : : : ; � mg and project onV 
 S m

3 construct directly (an approximation of)Vm and Sm and the representation ofu in
Vm 
 S m
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Optimal model reduction for stochastic parametric problems

Case of inner product normsk�k?

ku � umk2
? = min

Vm �V
dim(Vm )= m

ku � PVm uk2
? = kuk2

? � max
Vm �V

dim(Vm )= m

� (Vm; u)2

with PVm the k � k? -orthogonal projector ontoVm 
 S and � (Vm; u) = kPVm uk? .

Nonlinear eigenproblem

max
Vm �V

dim(Vm )= m

� (Vm; u) = kPVm uk?

with � (Vm; u) interpreted as a Rayleigh quotient

Dedicated algorithmsfor the construction of optimal reduced bases (subspace
iterations) or approximations of optimal reduced bases (Arnoldi algorithm, updated

progressive construction) [Nouy 2008, Nouy & Le Maitre 2009, Chevreuil 2011]

For kv 
 � k? = kvkV k� kL2
�

, classical Karhunen-Loeve decomposition. The
maximum of � (Vm; u) is reached for the dominant left singular subspace ofu.
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Dedicated algorithms

Direct PGD (Subspace iterations)

For a givenm, alternate minimization onVm and Sm.

min
Vm �V

dim(Vm )= m

min
um2 Vm 
S m

ku � umk? 	 min
Sm �S

dim(Sm )= m

min
um2V m 
 Sm

ku � umk?

Updated progressive PGD (Power method with de
ation)

Let u0 = 0. For m � 1,
1 Compute a rank-one correction

wm = vm 
 � m 2 arg min
w2R 1(V
S )

ku � um � wk?

2 Set
Vm = Vm� 1 + spanf vmg = spanf vi g

m
i=1 and Um = Vm 
 S

3 Compute
um 2 � Um (u) = arg min

v2V m 
S
ku � vk? (i.e. um = PVm u)
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Application to an advection-di�usion-reaction equation

� @t u � a1� u + a2c � r u + a3u = a4I
 1 on 
 � (0; T )

� u = 0 on 
 � f 0g

� u = 0 on @
 � (0; T )

Uncertain parameters

ai (� ) = � ai (1 + 0 :2� i ); � i 2 U(� 1; 1); � = ( � 1; 1)4

W1

Three samples of the solutionu(x; t ; � )
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Application to an advection-di�usion-reaction equation

Separated representation of the solution

u(x; t ; � ) �
MP

i =1
wi (x; t )� i (� )

wi 2 V = L2(0; T ; H1
0 (
)) ; � i 2 S = L2(� ; dP� )

Discretization

Space : �nite element (4640 nodes)

Time : discontinuous Galerkin of degree 0 (80 time intervals)

Stochastic : polynomial chaos of degreep = 5 in 4 dimension

dim(VN ) = 371200 dim(SP ) = 125
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Computation of Generalized Spectral Decomposition
Arnoldi algorithm

1 Initialize � and for k = 1 : : : M , wk = � ?
k� 1(F1(� )) and � = F �

1 (wk )
2 Compute associatedf � 1; : : : ; � M g = F � (f w1; : : : ; wM g)

w1 = F1(� ) w2 = � ?
1 (F1(� )) w3 = � ?

2 (F1(� )) w4 = � ?
3 (F1(� ))

# % # % # % #

� = F �
1 (w1) � = F �

1 (w2) � = F �
1 (w3) � = F �

1 (w4)
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Computation of Generalized Spectral Decomposition
Arnoldi algorithm

1 Initialize � and for k = 1 : : : M , wk = � ?
k� 1(F1(� )) and � = F �

1 (wk )
2 Compute associatedf � 1; : : : ; � M g = F � (f w1; : : : ; wM g)

w1 = F1(� ) w2 = � ?
1 (F1(� )) w3 = � ?

2 (F1(� )) w4 = � ?
3 (F1(� ))

� 1 � 2 � 3 � 4
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Generalized Spectral Decomposition
Deterministic modes

8 �rst modes of the decompositionf w1(x; t ):::w8(x; t )g

To compute these modes) only 8 deterministic problems
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Convergence of quantities of interest
Probability density function

Quantity of interest

Q(� ) =
Z T

0

Z


 2

u(x; t ; � ) dxdt

1

2

QM (� ) =
Z T

0

Z


 2

uM (x; t ; � ) dxdt

Probability density function ofQM (� )

M = 1 M = 2

M = 4 M = 8
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Convergence of quantities of interest
Quantiles

Quantity of interest

Q(t ; � ) =
Z


 2

u(x; t ; � ) dx

1

2

QM (t ; � ) =
Z


 2

uM (x; t ; � ) dx

99% Quantiles ofQM (t ; � )

M = 1 M = 2

M = 4 M = 8
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Tensor formats for stochastic parametric problems
with M. Chevreuil, L. Giraldi, O. Zahm

Hierarchical structure

@u
@t

� r � (� (� )r u) + 
 (� 0)u = f

u 2 Vx 
 V y
| {z }

Vx;y


 V t

| {z }
V


 S � 1 
 : : : 
 S � r| {z }
S�


 S � 0
1


 : : : 
 S � 0
s| {z }

S� 0

| {z }
S

Idea
Exploit the speci�c tensor product structure of SPDEs in order to

avoid the deterioration of convergence when dimension increases

recover optimal model reduction obtained by Karhunen-Loeve type decomposition

u(x; y; t ; �; � 0) =
mX

i =1

vi (x; y; t )� i (�; � 0)
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Illustration : stationary advection-di�usion-reaction equation

�r � (� r u) + c � r u + 
 u = � I
 1(x) on 


Random �eld

� (x; � ) = � � +
40X

i =1

p
� i � i (x)� i ; � i 2 U(� 1; 1)

1

Spatial modes� i (x) Amplitudes � i

0 10 20 30 40
10

-3

10
-2

10
-1

(s
i)1/

2

i
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Stochastic approximation

� = ( � 1; : : : ; � 40); � = ( � 1; 1)40 = � 1 � ::: � � 40

SP = P4(� 1) 
 ::: 
 P4(� 40)

dim(SP ) = 5 40 � 1028

Finite element mesh

dim(VN ) = 4435

Solution u(�; � � ) for mean parameters
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A basic hierarchical format

Deterministic/stochastic separation

u(� ) � uM (� ) =
MX

i =1

wi � i (� )

,! VM = spanf wi gM
i=1

Random variables separation

�( � ) := ( � i )
M
i=1 � � Z (� ) =

ZX

k=1

� 0
k

sY

j =1

� j
k (� j )

,! SZ = spanf
Q s

j =1 � j
k (� j )gZ

k=1

For a precisionku � uM ;Z kL2 6 10� 2

dim(VM ) � 15 � 4435 = dim(VN )

dim(SZ ) � 10 � 1028 = dim(SP )

15 classical deterministic problemsin order to build VM � V N

about 1 minute computation on a laptop with matlab

Results
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Convergence properties of quantities of interest
Probability of events

Quantity of interest

Q(� ) =
Z


 2

u(x; � ) dx

1

2

QM (� ) =
Z


 2

uM (x; � ) dx

P(Q > q); q 2 (3:5; 5:4)
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Convergence properties of quantities of interest
Sensitivity analysis

Q(� ) � QM (� ) � QM ;Z (� ) =
ZX

k=1

qk 	 k (� ); 	 k (� ) =
40Y

i =1

� i
k (� i )

First order Sobol sensitivity index with respect to parameter � i

Si =
Var(E(Qj� i ))

Var(Q)
E(Qj� i ) =

ZX

k=1

� i
k � i

k (� i ); � i
k = qk

40Y

j =1
j 6= i

E(� i
k (� i ))

First order Sobol sensivity indicesSi

M=1
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More hierarchical formats

Hierarchical canonical representation

With V = V1 
 : : : 
 Vd , de�ne a hierarchical treeT on f 1; : : : ; dg. For t 2 T , denote
by S(t ) the set of successors oft .

V = Vt0 (Level 0)

=
O

t12 S(t0)

Vt1 (Level 1)

=
O

t12 S(t0)

� O

t22 S(t1)

Vt2

�
(Level 2)

= : : :

f 1; : : : ; dg

f 4; : : : ; dg

f dg: : :f 4g

f 3gf 1; 2g

f 2gf 1g

Let f mt gt 2 T be a set of decomposition ranks.

H T (V ) =
n

v =

mt0X

i1=1

O

t12 S(t0)

� t1
i1

; � t1
i1

2 H T (t1) (Vt1)
o

=
n

v =

mt0X

i1=1

O

t12 S(t0)

� mt1X

i2=1

O

t22 S(t1)

� t2
i1; i2

�
; � t2

i1; i2
2 H T (t2) (Vt2)

o
= : : :
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Example: stochastic groundwater 
ow equation (Couplex)

Groundwater 
ow equation (hydraulic headu)

�r � (� (x; � )r u) = 0 x 2 
 ; � 2 �

+ boundary conditions

Geological layers with uncertain properties

 

 
Dogger
Clay
Limestone
Marl

� 's probability laws
Layer Law
Dogger LU(5; 125)
Clay LU(3:10� 7; 3:10� 5)
Limestone LU(1:2; 30)
Marl LU(10� 5; 10� 4)

Uncertain BCs

 

 

u5

u6

u4 u3

u2

u1

u4u3
j

4
(x)j

3
(x) +

Neumann homogeneous
Dirichlet

Law
u1 U(288; 290)
u2 U(305; 315)
u3 U(330; 350)
u4 U(170; 190)
u5 U(195; 205)
u6 U(285; 287)

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References 42





Outline

1 Uncertainty quanti�cation with functional approaches

2 Strategies for complexity reduction

3 Tensor-based methods

4 Optimal model order reduction

5 Tensor formats for stochastic problems

6 Non intrusive tensor methods

7 References

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References 44



Non intrusive sparse approximations

Aim

Compute an approximation ofu 2 SP using a few samplesf u(yk )gQ
k=1 .

Regression inSP = spanf  i gP
i=1

Approximation v(� ) =
P P

i=1 vi  i (� ) de�ned by

min
v2S P

ku � vk2
Q with ku � vk2

Q =
QX

k=1

ju(� k ) � v(� k )j2

or equivalently by

min
v2 RP

ku � �v k2
2 with v = ( vi ) i ; � = (  i (�

k )) k; i

Regularized regression

min
v2S P

ku � vk2
Q + � R (v) Choice ofR ?
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Non intrusive sparse approximations

Ideal sparse regression

For a given precision� , ideal sparse regression problem:

min
v2 RP

kvk0 subject to ku � �v k2
2 � � with kvk0 = # f i ; vi 6= 0 g

Approximate sparse regression (Basis Pursuit Denoising)

min
v2 RP

kvk1 subject to ku � �v k2
2 � �

which for some� (� ) is equivalent to

min
v2 RP

ku � �v k2
2 + � kvk1
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Illustration: di�usion problem with multiple inclusions

(
� r � (� r u) = ID (x) on 
 = (0 ; 1) � (0; 1)

u = 0 on @


with

� (x; � ) =

(
1 if x 2 
 0

1 + 0 :1� i if x 2 
 i ; i = 1 :::8

with � i 2 U(� 1; 1). � = ( � 1; 1)8.

Approximation of a Quantity of InterestI (u) in SP � L2
� (�)

I (u)( � ) =
Z

D
u(x; � )dx; D = (0 :4; 0:6) � (0:4; 0:6)

SP = P4(�) ; dim(SP ) = 1286
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I (� ) �
P

� I�  � (� ): coe�cients f I� g obtained by regression

Least-square `1-regularization

Q = 2000

Q = 50
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Non intrusive sparse approximations

Issues
Algorithms limited to approximation spaces with low dimension P

Selection of good bases ?
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Non intrusive sparse tensor approximations
with P. Rai, M. Chevreuil, J. Sen Gupta

Adaptive sparse tensor approximation

Greedy construction of a basisf wi gm
i=1 selected in a tensor subsetM

Compute um =
P m

i=1 � i wi using regularized regression

Algorithm

Let u0 = 0. For m � 1,

Compute a correctionwm 2 M de�ned by

wm 2 arg min
w2M

ku � um� 1 � wk2
Q

Computed using alternating minimization on the parametersof M .

Set Um = spanf wi gm
i=1 (reduced approximation space)

Compute um =
P m

i=1 ci wi 2 Um using sparse regularization

min
c2 Rm

ku �
mX

i =1

ci wi k
2
Q + � kcks
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Illustration: di�usion problem with multiple inclusions

Error with `1 and `2 regularized
update forQ = 56 (top) and
Q = 1000 (bottom)

Error estimated using cross validation

Error with `1-regularized update for
di�erent sample sizes.
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Illustration: advection-di�usion equation with random �eld

Stationary advection di�usion reaction
stochastic equation

�r � (� (x; � )r u) + c � r u + � u = I
 1

+ homogeneous BCs

random di�usion �eld

� (x; � ) = � 0 +
100X

i =1

p
� i � i (x)� i

approximation space

VN 
 Pp(� 1) 
 : : : 
 Pp(� 100)
| {z }

SP

Problem and QoI

1

2

I (� ) =
Z


 2

u(x; � )dx
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Error computed by cross-validation

Error of `1 and `2-regularized
updates for sample sizeQ = 100

Error with `1-regularized update for
di�erent sample sizes
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Some conclusions and challenges

Tensor based and sparse approximation methods

A route to circumvent the curse of dimensionality

A non linear approximation world!

Some challenges

E�cient algorithms for the construction of optimal approximations

Robust non intrusive constructions of tensor approximations

Adaptive search of optimal tensor formats

Suitable change of variablesfor obtaining low rank decompositions

Goal-oriented decompositions: take into account probabilistic quantities of interest
(probability of events, moments, ...)

Multiscale decompositions: one-scale decomposition has too much information to
capture
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Thank you for your attention
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Example: Illustration of the decomposition u8 =
P 8

i=1 wi (x)� i (� )

Spatial modesW = f w1(x):::w8(x)g

To compute these modes
) only 8 deterministic problems

�r � (� i r wi ) + c � r wi + 
 wi = fi

Random variables � = f � 1(� ):::� 8(� )g

Separated representation of random
variables

�( � ) �
ZX

k=1

� 0
k � 1

k (� 1):::� 40
k (� 40) 2 SP
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Convergence of multidimensional separated representations

Stochastic algebraic equation: problem de�ned on the reduced spaceVM 
 S ' RM 
 S

E� (�( � ) � T A(� )�( � )) = E� (�( � ) � T b(� )) 8� � 2 RM 
 S

�( � ) � � Z (� ) =
ZX

k=1

� 0
k 	 k (� ); � 0

k 2 RM ; 	 k (� ) = � 1
k (� 1):::� 40

k (� 40) 2 SP

Convergence withZ for di�erent M
k� � � Z k2

L2

0 5 10 15
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Order Z

L2  e
rr

or

 

 

M = 1
M = 2
M = 3
M = 5
M = 10
M = 15

uM (� ) �
ZX

k=1

�
W � � 0

k

�
	 k (� )

For a precision of 10� 2: Z � 10

to be compared with P = 10 28
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Convergence of generalized spectral decomposition
Mean square convergence

kuM � uk2
L2(� ;L2(
)) = E� (kuM � uk2

L2(
) ) �
1

Ns

NsX

n=1

kuM (� n) � u(� n)k2
L2(
)

kuM � uk2
L2 (Ns = 500)
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Convergence properties of generalized spectral decomposition
Samples

Sample of� (x; � )

uref (x; � ) � u(x; � � ) u15(x; � ) � u(x; � � )
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Convergence properties of generalized spectral decomposition
Samples

Sample of� (x; � )

uref (x; � ) � u(x; � � ) u15(x; � ) � u(x; � � )
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Convergence properties of generalized spectral decomposition
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Convergence properties of generalized spectral decomposition
Samples

Sample of� (x; � )

uref (x; � ) � u(x; � � ) u15(x; � ) � u(x; � � )

59



Convergence properties of generalized spectral decomposition
Uniform convergence

kuM � ukL1 (� ;L2(
)) = sup
� 2 �

kuM (� ) � u(� )kL2(
) � sup
n2f 1::: Nsg

kuM (� n) � u(� n)kL2(
)

kuM � uk2
L1 (Ns = 500)
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Convergence properties of quantities of interest
Probability density function

Quantity of interest

Q(� ) =
Z


 2

u(x; � ) dx

1

2

QM (� ) =
Z


 2

uM (x; � ) dx

Probability density function ofQ(� )

M=1 M=4

M=8 M=15
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Convergence properties of quantities of interest
Probability of events

Quantity of interest

Q(� ) =
Z


 2

u(x; � ) dx

1

2

QM (� ) =
Z


 2

uM (x; � ) dx

P(Q > q); q 2 (3:5; 5:4)
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Convergence properties of quantities of interest
Sensitivity analysis

Q(� ) � QM (� ) � QM ;Z (� ) =
ZX

k=1

qk 	 k (� ); 	 k (� ) =
40Y

i =1

� i
k (� i )

First order Sobol sensitivity index with respect to parameter � i

Si =
Var(E(Qj� i ))

Var(Q)
E(Qj� i ) =

ZX

k=1

� i
k � i

k (� i ); � i
k = qk

40Y

j =1
j 6= i

E(� i
k (� i ))

First order Sobol sensivity indicesSi
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Results... in brief

Deterministic/stochastic separation

u(� ) � uM (� ) =
MX

i =1

wi � i (� )

,! VM = spanf wi gM
i=1

Random variables separation

�( � ) := ( � i )
M
i=1 � � Z (� ) =

ZX

k=1

� 0
k

sY

j =1

� j
k (� j )

,! SZ = spanf
Q s

j =1 � j
k (� j )gZ

k=1

For a precisionku � uM ;Z kL2 6 10� 2

dim(VM ) � 15 � 4435 = dim(VN )

kuM � uk2
L2

Return
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k (� j )
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k (� j )gZ
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For a precisionku � uM ;Z kL2 6 10� 2

dim(VM ) � 15 � 4435 = dim(VN )

dim(SZ ) � 10 � 1028 = dim(SP )

15 classical deterministic problemsin
order to build VM � V N

First spatial modesf w1(x):::w8(x)g

Return
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Results... in brief

Deterministic/stochastic separation

u(� ) � uM (� ) =
MX

i =1

wi � i (� )

,! VM = spanf wi gM
i=1

Random variables separation

�( � ) := ( � i )
M
i=1 � � Z (� ) =

ZX

k=1

� 0
k

sY

j =1

� j
k (� j )

,! SZ = spanf
Q s

j =1 � j
k (� j )gZ

k=1

For a precisionku � uM ;Z kL2 6 10� 2

dim(VM ) � 15 � 4435 = dim(VN )

dim(SZ ) � 10 � 1028 = dim(SP )

15 classical deterministic problemsin
order to build VM � V N

about 1 minute computation on a
laptop with matlab

First spatial modesf w1(x):::w8(x)g

Return

64
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