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Uncertainty quanti cation

Uncertainty quanti cation has become an essential path incnce and engineering

e Comprehension and selection of models (exploration of mdgeedictions over a
range of uncertainty)

Assess con dence in numerical predictions

Robust optimization and design

Validation of models using (noisy) data
Data assimilation and model construction
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Uncertainty quanti cation using functional approaches

e Uncertainties represented by \simple" random variables: ! denedon a
probability space ( ;B;P).
e Functional representation of any ( )-measurable random variable ( )

() ()
e Approximation theory for the approximation of functionals
X
) () 2
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Uncertainty quanti cation using functional approaches

e Uncertainties represented by \simple" random variables: ! denedon a
probability space ( ;B;P).
e Functional representation of any ( )-measurable random variable ( )

() ()
e Approximation theory for the approximation of functionals
X
) () 2

Stochastic/parametric models

u: 2 T7'u()2V suchthat A(u(); )= f()
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Uncertainty quanti cation using functional approaches

Stochastic/parametric analyses: a uni ed framework
u: Vo AQu() )=f() 2
e Forward problem (propagation):P ! O (u)

e Optimization or identi cation: O(u) ! or fO (u);P ,g !
e Probabilistic inverse problem:O(u) ! P or fO(u);P,g !
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Uncertainty quanti cation using functional approaches

Stochastic/parametric analyses: a uni ed framework
u: Vo AMC) )=Ff0) 2
e Forward problem (propagation):P ! O (u)

e Optimization or identi cation: O(u) ! or fO (u);P ,g ! 2
e Probabilistic inverse problem:O(u) ! P or fO(u);P,g ! P,

Ideal approach

Compute an accurate and explicit representation afl ) (a metamodel) that allows fast
evaluations of output quantities of interest, observablesr objective function.
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Uncertainty quanti cation using functional approaches

Stochastic/parametric analyses: a uni ed framework
u: Vo AMC) )=Ff0) 2
e Forward problem (propagation):P ! O (u)

e Optimization or identi cation: O(u) ! or fO (u);P ,g ! 2
e Probabilistic inverse problem:O(u) ! P or fO(u);P,g ! P,

Ideal approach

Compute an accurate and explicit representation afl ) (a metamodel) that allows fast
evaluations of output quantities of interest, observablesr objective function.

Issue
Approximation of a high dimensional functioru( ), 2 RY.

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References



Construction of approximation spaces

u2L’(; V)=V s
Tensorization of prede ned bases

XX

i=1 2 p

with given approximation spaces
Vn = sparf' iglt,
Se=spaf ()= '(1):: % (a); 21pg
o Pre-de ned index setl p
n 0o n o n 0
2N%j . 2N%j . 2N%jjq r ;0<qg<1

e Choice ofl p based on a priori analysis
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De nition of approximate functional expansions

Direct simulation methodsl(?> projection, regression, interpolation)
X
u( ) u () u 2Vy
2l p
with coe cients
u = I eun(Yk); 21p
k=1

Wherefykng:1 is a collection of sample points and the(yk) are approximate solutions of
deterministic problems
Au(ye); Yi) = (yx)

e Use of classical deterministic solvers (black box)
e Numerous solutions of deterministic problemsQ = O(# | p)

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References 7



De nition of approximate functional expansions

Weak solution

u2V S ; hA(u);vi=~H;vi 8v2V S

Galerkin-type projections

X
u u 2VNn S

2l p

where coe cients fu g 21 , are solutions of a coupled system of deterministic problems

X
AC u v =H;v i 8v 2Vyn; 2lp @)

o Nice mathematical framework: error estimates, stability, gssible e ciency
e Generally require modi cations of (or strong interaction Vth) existing solvers.
o Complexity of systems of equations?)
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Complexity issue

Possibly ne deterministic models -

dim(Vy)  10%10%; 10%::: \v‘

Make inacceptable numerous evaluations of the model _ ‘ ‘
and the solution of coupled systems of deterministic
problems

! Need model reduction xn
(x; )= i(x) ()
Possibly high parametric dimensionality i

Many input parameters or stochastic processes with high

spectral content .. -
dim(Sp)  10;10"; 10'%%; 10™%; :::
——— __ Aygs
I Need adapted representations for high dimensional
functions s B
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Optimal model reduction

Optimal approximation spaces far2V S

m(u) = inf inf_ ku upk= inf inf  ku umk
Vm V Um2V m S SmS Um2VS m
dim(Vm)=m dim(Sm)=m

e m-dimensional approximation space¥, and Sy, are optimal w.r.t. the normk k.

e For S = L2() and for the natural norm in L?(; V), the best approximationun is
the rank-m singular value decomposition

A fact
In many applications and for reasonable precisions

m(u) for m small
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Optimal model reduction

Optimal approximation spaces far2V S

m(u) = inf inf_ ku upk= inf inf  ku umk
Vm V Um2V m S SmS Um2VS m
dim(Vm)=m dim(Sm)=m

e m-dimensional approximation space¥, and Sy, are optimal w.r.t. the normk k.

e For S = L2() and for the natural norm in L?(; V), the best approximationun is
the rank-m singular value decomposition

A fact
In many applications and for reasonable precisions

m(u) for m small

Question
Can we compute these low dimensional approximation spacepraori ?
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Strategies for high dimensional approximation

Optimal sparse approximation i8p = sparf g 2 ,

For , we de ne’ Sk = sparf «Ok2k | S p. For the approximation ofu 2 S, we
want the smallest subspac&x yielding a precision at least:

min# K subjectto inf ku vk
K v2S g

Computational aspects

e Adaptive construction of the index se‘a[Cohenzom, Crestaux2011,...]

e Non adaptive construction by approximation of the ideal formation @[Blatmanzon,
Doostan2011, Mathelin2012, Najm2012]
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Strategies for high dimensional approximation

Optimal sparse approximation i8p = sparf g 2 ,

For , we de ne’ Sk = sparf «Ok2k | S p. For the approximation ofu 2 S, we
want the smallest subspac&x yielding a precision at least:

min# K subjectto inf ku vk
K v2S g

Computational aspects

e Adaptive construction of the index se'B[CohenZOlO, Crestaux2011,...]

e Non adaptive construction by approximation of the ideal formation G[Blatmanzon,
Doostan2011, Mathelin2012, Najm2012]

Issues
e K may be small for reasonable (strongly depends on the chosen basis).
e Strategies of exploration for adaptive constructions ?
e Computability of non adaptive constructions for high dimemsnal spacesSp?
e Approximation of functionu2Vy S p ?
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Strategies for high dimensional approximation

Nonlinear approximation in a subsé V yn S p

e M should havenice approximation properties for a class of functionsu and for a
reasonable precision,

inf ku vk
v2M

e M is not a linear space (nor a convex setnonlinear approximation problem

e M has asmall dimension(i.e. can be parameterized with a small number of
parameters)

e An approximation can be computed withsuitable algorithms(e.g. alternating
minimization on the parameters)
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Strategies for high dimensional approximation

Nonlinear approximation using tensor approximation methods
e Exploit the tensor structureof function space

VW Sp=Vn Sp i S§,
e Choose suitable tensor subsetd , e.g.
( A 1 d k k )
M = Vi P iVi2Vn; § 2Sp,

with ’dim(M )= O(d) |

e Best approximation problems in tensor subsets are related singular value
decompositions and their generalizations

B[NouyZOlO, Doostan2010, Khoromskij2010, Ballani2010...]
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Tensor spaces

Tensor Banach space

We consider Banach spacegx equipped with normsk kg. A tensor Banach space
equipped with normk k is de ned by

V=a Ve with o G Vie= sparfv! s v vk 2 vig
Examples
VA
2(; V)=V o205 kK= kv(y)ked ()
A A
20)= a s L2 ( 0 5 kvk®= i v(yiinye)?d ayn)iiid s(ys)
1 s
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Tensor spaces

Tensor Banach space

We consider Banach spacegx equipped with normsk kg. A tensor Banach space
equipped with normk k is de ned by

V:mkk with o - Vi = sparfvt @0 v® vk 2 vg
Examples
Z
L2G; V)=V .20 5 kvki=  kv(y)kdd (y)
Z Z
L2() = mkk; kvk? = srovyn i ye)2d a(yn)iiid s(ys)
1 s

Finite dimensional spaces

V =, . Vk. Denotingf Fgl a basis ofVy,
8 9
< X Xd g =

V=_ v= B (i3 i) ,11 B s Gusig) 2 R dim(V) = mnz:::ng
' i1=1 ig=1 !
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Tensor subsets

Tensor subsetiM
e Rank one tensors n 0

e Rankin (canonical) tensors

( X d k k )
Rm = k= Vi Vi 2 Vi
i=1
o Tucker tensors with rankr = (rq;:::;rq)
8
< X1 Xd
T = . B (iv;: ig) E:l Vit: (i15:155 ig) 2 R;Vik 2 Vi,
T ig=1
- yov there exist subspaceblk Vi such that

dlm(Uk) = Ik andv 2 Uy e Ug

Hierarchical tensorsH
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Tensor based methods

Tensor approximation methods for solving problems of type

A(uy=f with u2VvV=Vy ::: Vy

(1) Iterative or direct solvers ?
(2) How to de ne an approximation ofu in a tensor subset without information oru ?

(3) Construction of a tensor decomposition with a prescribed agacy:
directly (in increasing tensor subsets) or progressivelwith successive corrections in
small tensor subsets) ?

(4) Optimal model reduction for stochastic/parametric analyse?
(5) How to de ne suitable tensor subsets for stochastic analys@s
(6) Can we build tensor approximations using samples wf(black-box approach) ?
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Iterative or direct solvers ?

Approximation of the solution of A(u) = f in a tensor subsetM

e Iterative methods and classical tensor approximation mettis (SVD) .
Construction of a sequence of tensor approximations 2 M , perturbations of ideal
iterations.

Un  B(un 1) with ku, B(un 1)k |2r’1wf kv B(un 1)k
A\
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Iterative or direct solvers ?

Approximation of the solution of A(u) = f in a tensor subsetM

e Iterative methods and classical tensor approximation mettis (SVD) .
Construction of a sequence of tensor approximations 2 M , perturbations of ideal
iterations.

Un  B(un 1) with ku, B(un 1)k |2r’1wf kv B(un 1)k
A\

e Direct (a priori) construction of a tensor approximation (P®/GSVD)
Requires new de nitions of \best approximations" and assdated algorithms.

Vlzr’},lf kA(v) fk
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Iterative or direct solvers ?

Approximation of the solution of A(u) = f in a tensor subsetM

e Iterative methods and classical tensor approximation mettis (SVD) .
Construction of a sequence of tensor approximations 2 M , perturbations of ideal
iterations.

Un  B(un 1) with ku, B(un 1)k |2r’1wf kv B(un 1)k
A\

e Direct (a priori) construction of a tensor approximation (P®/GSVD)
Requires new de nitions of \best approximations" and assdated algorithms.

Vlzr’},lf kA(v) fk

e Coupling iterative methods and PGD
A larger class of iterative methods can be used.

C(un) B(un 1) with kC(un) B(un 1)k Vizr’},lf kC(v) B(un 1)k
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Best approximation in a tensor subset M without information on

Approximation of the solution of Au = f in a tensor subsetM .

De nition of a set of \good approximations" ?

o Optimization problems if A(u) f = J %u) with J a convex functional

w (u) =arg min J (w)

Galerkin projection
m(u fwa2M :MAWw) f; wi=0 8w2Tw(M)g

Minimal residual

m (u) = arg mw\ kA(w) fk (Good residual norms)

e Minimax (Petrov-Galerkin)

hPA(w) f; zi=0 8z2T,(M)

m (U) w2M hw;A zi=hw,wi 8 w2 Tyw(M)
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Direct constructions (PGDs)

Tensor subsets

De ne a sequence of tensor subset® ngm 1 such that
o M m M m+1
o [ m 1M n is dense invV

Typical choiceSSM m = Rm, M m=Mpn 1+ MiwithR1 M 1, Mn= Tim m.

De nition (Direct PGD of u)

For a given sequence of tensor subsetd mgm 1, de ne a sequencef Ungm 1 by

Un 2w (V)

e Generalization of the concept of spectral decompositioferoper Generalized
Decomposition(to be clari ed...)

e Useful when we want aroptimal decomposition for a given precision
e Computational complexityincreases withm.
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Progressive constructions (PGDs)

Tensor subsets

De ne a (small) tensor subsetM satisfying
e M is weakly closed iV,
e spanM ) is dense inV,
e M M forall 2R

Typical choices:M = R (elementary tensors) M = T, (tucker set)orM = H,
(hierarchical tensors) with smalk.
De nition (Progressive PGD ofi)
Letup=0. For m 1,
@ Compute a correctionwn 2 M of um 1:

’sz m (U Un 1)

Q@ Set|un = uUm 1+Wm‘
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Progressive constructions with updates

De nition (Updated progressive PGD)
Letup=0. For m 1,
@ Compute a correctionwn 2M ofu  um 1:

’sz M (U Um 1)‘

@ Set|Vm = Un 1+ Wnp and’construct a linear subspac&), such thatvm 2 Up |.

Then, de ne uy as the best approximation oiu in Up,

Un 2 up(U)
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Progressive constructions with updates

De nition (Updated progressive PGD)

Letup=0. For m 1,
@ Compute a correctionwn 2M ofu  um 1:

’sz M (U Um 1)‘

@ Set|Vm = Un 1+ Wnp and’construct a linear subspac&), such thatvm 2 Up |.
Then, de ne uy as the best approximation oiu in Up,

Un 2 up(U)

Link to model reduction
Progressive construction of a low dimensional approximati spaceUn,, which de nes a
reduced order model.

e Nonlinear approximation for the construction olUn

o Linear approximation inUp,.
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Strategies of updates: construction of linear spaces
with G. Bonithon, L. Giraldi, G. Legrain

For v given, strategies for constructing a linear spadén such that v 2 Un:
e Supposevm = 1w, with w; 2M .

(o )

Un = sparfwigl, = W i 2R dim(Up) = m

i=1

P
o Supposevm = 1, fawf2Rn.

8 9
3y o 3
Un = wi W w2V dim(Um) = m dim(Vk)‘
.3 i=1 k0=1 ,g
k% k

o SUPPOSeVm = Um 1+ U, wX, with M = R1. Dene

Un UM o U with UP = UM Y+ sparfwig Vi |dim(Un) m°
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Convergence results for convex optimization problems

Best approximations for the optimization of a functiondl with minimizeru

w (U)=arg min J(w); (U v)=arg min J(v+w)

Theorem (Convex optimization in tensor Banach spaces)

LetJ :V ! R be a Fechet di erentiable functional such that
e J iselliptic: ha%v) J %w);v wi ku wk®, withs> 1
e (H1) J ° weakly continuous or (H2)J ° Lipschitz continuous on bounded sets

Then, the (updated) progressive PGD ungm 1 converges towards the solution u if (H1).
If (H2), it converges

e for s > 1 if there exists a subsequence of updates
o for1< s 2 otherwise

@ Falco & Nouy, Numerische Mathematik (2012).
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A simple illustration on a di usion equation

{ r (ru=Ip(x) on =(0 ;1) (0;1)
u=0 on @
1 if x 2 0
(x; )= 1401 i o R ] oo
1y ifx2 4;i=1::8

with ;2 U( 1;1)

Z Z
J(v) = rvrv 2 Ipv=kv uki k uki
Approximation spaces
u2Vn Sp; Sp= P]_o( 1; 1) A PlO( 1; 1)

Underlying approximation space with dimension: 0**
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Progressive PGD

Progressive Galerkin PGD

u

m .
k=1 Wk;

Wk = Vg

L2R1

min kKU Un 1 Wnka

Wm2R 1

Convergence (in_2 norm)

rank
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Optimal model reduction for stochastic parametric problems

xn
Un( ) = vi i()2V; vi2V; i2S

i=1
Best approximation o2V S byun2Rn(V S)

ku umnk,= min min min  ku umk,
: VmV Sm S Un2V mS m :
dim(Vm)=mdim(Sm)=m

min
Um2R m(V'S )
e m-dimensional approximation space¥m and Sy are optimal w.r.t. the normk k-
e De ne kk, that makesun computable without information onu.

e More than a simple best approximation problemgeneralized spectral decomposition
(Karhunen-Loeve)
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Optimal model reduction for stochastic parametric problems

xn
Un( ) = vi i()2V; vi2V; i2S

i=1
Best approximation o2V S byun2Rn(V S)

ku umnk,= min min min  ku umk,
: VmV Sm S Un2V mS m :
dim(Vm)=mdim(Sm)=m

min
Um2R m(V'S )
e m-dimensional approximation space¥m and Sy are optimal w.r.t. the normk k-
e De ne kk, that makesun computable without information onu.

e More than a simple best approximation problemgeneralized spectral decomposition
(Karhunen-Loeve)

Di erent (computational) approaches

@ construct (an approximation of) Vi, = sparfvy;:::;vmg and project onVy, S

@ construct (an approximation of) Sy, = sparf 1;:::; mg and projectonV S n

© construct directly (an approximation of)Vy, and Sy and the representation ofu in
Vm S m
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Optimal model reduction for stochastic parametric problems

Case of inner product normisk.,

ku unk?®= min  ku Py, uk?= kuk? max  (Vm;u)?
! Vm V ! ! VmV
dim(Vm)=m dim(Vm)=m

with Py, the k k--orthogonal projector ontoV, S and (Vm;u) = kPy,uk,.

Nonlinear eigenproblem

max  (Vm;u) = kPy,uk,
Vm V L
dim(Vm)=m
with  (Vm;u) interpreted as a Rayleigh quotient

o Dedicated algorithmsfor the construction of optimal reduced bases (subspace
iterations) or approximations of optimal reduced bases (Aoldi algorithm, updated

progressive constructionﬁ[Nouy 2008, Nouy & Le Maitre 2009, Chevreuil 2011]

e For kv k, = kvkvk k2, classical Karhunen-Loeve decomposition. The
maximum of (Vm;u) is reached for the dominant left singular subspace af
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Dedicated algorithms

Direct PGD (Subspace iterations)

For a givenm, alternate minimization onVp, and Sy.

min min  ku umk, min min _ ku umk,
Vm V Um2VmS m ! SmS Um2V'm Sm !
dim(Vm)=m dim(Sm)=m

Updated progressive PGD (Power method with de ation)
Letup=0. For m 1,
@ Compute a rank-one correction

Wm = Vm m2arg mn Kku un wk,
w2R (VS ) ‘

Q Set
Vi = Vi 1+ sparfvmg= sparfvigZ; and Un= Vm S

© Compute
Un 2 u,(u) =arg 2r\1/1inS ku vk, (i.e. uy = Py,u)
\ m :
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Application to an advection-di usion-reaction equation

@u a u+ac ru+ au=al, on ©0;T)
u=0 on f Og -
u=0 on @ 0;T) W,

Uncertain parameters
a()= &(+0:20); 2U( L1y

Three samples of the solutionu(x;t; )

v

4
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Application to an advection-di usion-reaction equation

Separated representation of the solution

]
u(x;t; ) 1wi(x;t) i()

Wi 2V = L20;T;H()) ; i2S=L% ;dP)

Discretization
e Space : nite element (4640 nodes)
e Time : discontinuous Galerkin of degree 0 (80 time intervals
e Stochastic : polynomial chaos of degree =5 in 4 dimension

dim(Vy) = 371200 dim(Sp) = 125
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Computation of Generalized Spectral Decomposition

Arnoldi algorithm

@ Initialize andfork=1:::M,wc= ¢ (Fi( ))and = F; (W)
% ]
wy = Fa( ) w2 = 2 (Fu( ) ws= 3 (Fui( )
) ") ~)
7 “ o 7 ‘o 7 ‘o
= Fy (W) = Fp(w2)

v

V.

v
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Computation of Generalized Spectral Decomposition
Arnoldi algorithm

o
@ Compute associated 1;:::; mg=F (fwg;:::;wmQ) J
w1 = Fa( ) wo = 1 (Fa( ) ws= 3 (Fi ) ws= §(Fu( )
) ) v)
1 2 3 4

v v v
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Generalized Spectral Decomposition
Deterministic modes

8 rst modes of the decompositionf wi(X;t):::ws(X;t)g

J\

o—
-

— -

To compute these modeg ’ only 8 deterministic problems
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Convergence of quantities of interest
Probability density function

Quantity of interest Probability density function of Qu( )

A

Q()= u(x;t; )dxdt
0 2 § 8
. 2 2
Ql 1 1
- v
QZ 2 — unda-Carln.
& & _,.n’M' —Crior $
: A
2,2 i 1/ 0\
Qm( )= um (x;t; ) dxdt ] 1 N
0 2 / a El s‘\h
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Convergence of quantities of interest

Quantiles

Quantity of interest

Z
Q(t; )= u(x;t; )dx
O
Ql
.Qz
Z
Qu(t; )= um(x;t; )dx

99% Quantiles ofQu (t;

xi0”
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Tensor formats for stochastic parametric problems
with M. Chevreuil, L. Giraldi, O. Zahm

Hierarchical structure

S (Orus (u=t
UZYL\/{Z\/_¥VtS|1 :{S:Z:S}Slg :{:z:sf
|—z—1} | (z S°

v S

Idea
Exploit the speci ¢ tensor product structure of SPDEs in ordeto
e avoid the deterioration of convergence when dimension ipases
e recover optimal model reduction obtained by Karhunen-Loewype decomposition

X
uGyits s 9= vieayit) GG 9

i=1
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lllustration : stationary advection-di usion-reaction equation

r (ru+cru+ u=1,x) on J
O
Q
Random eld
°p
(x; )=+ Tix) i i2U( L)
i=1
Spatial modes i(x) Amplitudes
B W'
A -
v LA Al '-' [ AT ARLAL '-;: — H*H
‘M - '.! ;: OB .
e o
'z x' :of:] = 10 %****
[ =
[0l ===
oOiaEE : 5
n:::: Bhs w0 Crn D SRS 1 107, 10 20
y I
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Stochastic approximation

=( 10 a0); =( LYY=
Sp = Ps( 1) i Pa( 40)

dim(Sp)=5%°  10%

40

Finite element mesh

-

dim(Vn) = 4435

Solution u( ; ) for mean parameters

Functional approaches Complexity reduction Tensor method Model reduction Hierarchical Non intrusive References
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A basic hierarchical format

Deterministic/stochastic separation Random variables separation

X . X v
u() um( )= wi i) ( )=( Dz z( )= K

=1 k=1 j=1
; ‘V'V' = sparfwigit; ‘ ! Sz = Sparfszzl Jk( 1)95:1

For a precisionku  uw:zk.2 6 10 2

o [dm(Vi) 15| 4435 = dim(vh)
o[dm(s:) 10] 10 = aim(s,)

e 15 classical deterministic problemi order to buildVy V n
e about 1 minute computation on a laptop with matlab

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Convergence properties of quantities of interest

Probability of events

Quantity of interest
z

Q()=

u(x; )dx

2

P(Q>q); g2 (3:554)
10° H 7 I T E
107" s o ]
10, — b |
—— Monte-Carlo b \\5
! —&— QOrder 1 =N ]
107 L —¢— Order 2 \ .
3 —=— Order 4 N
I QOrder & \ ]
10 Order 15 \ -
I —+— Order 20 v
1 0'5 o o ' L
3.4 36 3.8 4 4.2 4.4 4.6
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Convergence properties of quantities of interest
Sensitivity analysis

Q() Qm()

X
Quiz( )= Ok

k=1

k()

First order Sobol sensitivity index with respect to paramet |

S = Var(Q)

Var(E(Qj 1))

x
E(Qj )= k K

First order Sobol sensivity indiceS;

k=1

()

Yo
k()= k(1)
i=1
, Yo )
k= ECk(1)
=1
j6i

07 07 07
056 0.6 06
05 « 05 05
3 3 3
2 2 2
S04 €04 So4
H s H
% 03] %03 303
2 2 2
& & &
02 0.2 0.2
01 0.1 0.1
o L 0 0 N |
(] 10 20 30 40 50 ] 10 20 30 40 50 (] 10 20 30 40 50

Random variable x;

Random variable x;

Random variable x;
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More hierarchical formats

Hierarchical canonical representation

With V = V1 ::: Vq, de ne a hierarchical treeT onf1;:::;dg. Fort 2 T, denote
by S(t) the set of successors aof.

V= Vi (evel 0 f1:::;dg
= Vi, (Level 1) ﬂ\
tli)s(to) o fl 29 f3g 2 f4
= Vi,  (Level 2)
t12 S(tg) 22 S(tq)
= flg f2g
Let f migio 7t be a set of decomposition ranks.
n Lo O 0
HT(V)= v= o R2HTMW(v)
i1=1 t12 S(tp)
n R0 O X1 0O o
= V= }f;iz ; :f;iz 2H T(tZ)(Vtz) =

i1=1 12 S(to) 1251 12 S(ty)
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Example: stochastic groundwater ow equation (Couplex)

Groundwater ow equation (hydraulic headu)

r (X )uy=0 x2 ,; 2

+ boundary conditions

Geological layers with uncertain properties
's probability laws

Layer Law

Dogger LU(5;125)

Clay LU(3:10 7;3:10 ®)
s Limestone LU(1:2;30)

Marl LU(10 %10 %)

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References

Uncertain BCs

U,

Uyl 500+ U 400

Us

Neumann homogeneous

Dirichlet

Law
up  U(288;290)
u; U(305; 315)
us  U(330;350)
us  U(170;190)
us U(195; 205)
us U(285;287)

U
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Trees 1 to 4

10 basic uniform random variables &,
= =(—1,1)" uniform probability measure g

w

V= VoV, a8, ®%.. %S,&8;»...aS
N ————

]
o
=0

[
Vp (Space}  Vk (Diffusion) Vi (BCs)

Progressive construction of level 1 decomposition:
error versus rank at level 1

)
E —clazzique
b —e—tEal
_&' —E—lead
o trees 3
PO tree 4 4
Ié o \\ £ kY
w E ¥ty | Lo} | i

Ny / ~.
i

3] &
Fank {Lewel 1)

a 2 4

Funcrional appraackes Cemplex’sy reduction  lensor methods Model reduccian | lierarchical Mer incrusive  Hererencss
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Non intrusive sparse approximations
Aim
Compute an approximation ofu 2 Sp using a few sample$ u(yk)ng:I.

Regression irSp = sparf g7,

P
Approximationv( )= 7, vi i( ) de ned by

x
vrysir;ku vky | with ku vky = ju( ) v(9j?
k=1

or equivalently by

minku v k3| withv=(w)i: =( i( i
v2 RP

Regularized regression

minku vk4+ R(v)| Choice ofR ?
v2S p

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Non intrusive sparse approximations

Ideal sparse regression
For a given precision, ideal sparse regression problem:

min kvko subjectto ku v K3 with kvko = # fi;vi 6 0g
V2 R

Approximate sparse regression (Basis Pursuit Denoising)

min kvk; subjectto ku v k3
v2 RP

which for some () is equivalent to

minku v k3+ kvkg
v2 RP

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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lllustration: di usion problem with multiple inclusions

{ r (ru=Ip(x) on =(0 ;1) (0;1)
u=0 on @
with
( .
1 if x2 o
(x: )= 1+0:1; i i i=1:
1 ifx2 4;i=1::8

with ;2 U( 1;1). =( 1;1)8

4

Approximation of a Quantity of Interestl(u) in Sp L?()
VA

I(u)( )= u(x; )dx; D =(0:4;0:6) (0:4;0:6)

1Sp = Pa() ; dim(Sp) = 1286 |
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() I ( ): coe cients fl g obtained by regression

Least-square *1-regularization

coaflichn vaue
=
coeflicient vshie

20 o B0 0o 1200 20 400 B00  BOA doo0 120

_ 2 400 B
Q —_— 50 function indes: funclicn index
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Non intrusive sparse approximations

Issues
Algorithms limited to approximation spaces with low dimensn P
Selection of good bases ?

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Non intrusive sparse tensor approximations
with P. Rai, M. Chevreuil, J. Sen Gupta

Adaptive sparse tensor approximation

Greedy construlgtion of a basiwi g, selected in a tensor subse¥l

Computeun = %, iw; using regularized regression

Algorithm
Letup=0. For m 1,
Compute a correctionwy, 2 M de ned by

Wm2arg mnku U 1 wkd
w2M

Computed using alternating minimization on the parametersf M .
Set Uy = sparfwig, (reduced approximation space)
Computeun = [, ciw; 2 Un using sparse regularization

X 2
min ku Ciwikg + kcks

c2 RM X
i=1

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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lllustration: di usion problem with multiple inclusions

Error with *; and ", regularized
update forQ = 56 (top) and

Q = 1000 (bottom) , ) o
Error estimated using cross validation

Error with ";-regularized update for
di erent sample sizes.
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lllustration: advection-di usion equation with random eld

Stationary advection di usion reaction

stochastic equation
______________________________________________________________|

r ((x;)ru+cru+ u=1,

+ homogeneous BCs

random di usion eld
)= o+ P

approximation space

VN |°p( 1)

Problem and Qol

z
I()= u(x; )dx

2

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Error computed by cross-validation

Error of *; and " ,-regularized Error with ";-regularized update for
updates for sample siz® = 100 di erent sample sizes
[ 1

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Some conclusions and challenges

Tensor based and sparse approximation methods
A route to circumvent the curse of dimensionality
m A non linear approximation world!

Some challenges
E cient algorithms for the construction of optimal approximations
Robust non intrusive constructions of tensor approximatis
m Adaptive search of optimal tensor formats
m Suitable change of variablefor obtaining low rank decompositions

Goal-oriented decompositions take into account probabilistic quantities of interest
(probability of events, moments, ...)

Multiscale decompositions one-scale decomposition has too much information to
capture
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Thank you for your attention
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P
Example: lllustration of the decomposition ug = i8:1 wi (x) i( )

Spatial modesW = fw;(x)::wg(x)g

Random variables =f 1( ):: s( )g

To compute these modes
) only 8 deterministic problems

r (irw)+crw+ w=f

Separated representation of random
variables

xZ
() k(1) O a0) 2Sp
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Convergence of multidimensional separated representations

Stochastic algebraic equation: problem de ned on the redad spaceVy S' RM S
E(C)"ACO)( D=E(()'b() 8 2R" S
XZ
() =z20)= k() R2RY™ k()= k()m a0 2Se

k=1

Convergence withZ for di erent M
k 2k%,

XZ
um () Wk ()

For a precision of 102 [Z 10

to be compared with

0 5 10 15
Order Z
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Convergence of generalized spectral decomposition
Mean square convergence

1 X
kuw kP gz = E (ki ukzg ) 5o kum( ")
S

n=1

kuw  uk? (Ns = 500)

u( rI)kEZ()
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Convergence properties of generalized spectral decomposition
Samples

Sample of (x; )

Uef (X; ) u(x; ) uis(x; ) u(x;
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Convergence properties of generalized spectral decomposition
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Convergence properties of generalized spectral decomposition
Samples

Sample of (x; )

Uef (X; ) u(x; ) uis(x; ) u(x;
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Convergence properties of generalized spectral decomposition
Uniform convergence

kum  ukps 2y = supkum( ) u( )kpz sup kum( ") u( Mkiz
2 n2f 1:: Nsg

kuy  uk?: (Ns = 500)
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Convergence properties of quantities of interest
Probability density function

Probability density function of Q( )

Quantity of interest

Z
Q()= u(x; )dx

2
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Convergence properties of quantities of interest

Probability of events

Quantity of interest
z

Q()= u(x; )dx

P(Q > q);

g2 (3:5;5:4)
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Convergence properties of quantities of interest

Sensitivity analysis

X YO :
Q() Qm() Qmaz()= a «( ) «()= k(1)
k=1 i=1
First order Sobol sensitivity index with respect to paramet |
Var(E(Qj i . x o i Yo i
5= YAEQID | ggiy=" L) k=a ECLW
Var(Q) ~ S
k=1 =1
j6i
First order Sobol sensivity indiceS;
DO .10 20 30 40 50 00 10I 20 30 40 50 00 J10‘ 20 30 40 50

Random variable x;

Random variable x;

Random variable x;
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Results... in brief

Deterministic/stochastic separation Random variables separation

N " X OYS )
u() uw( )= wi () ()=( )i z()= ko k()
i=1 k=1 j=1
I Vy = rf wi g I = Qs i e
! m = sparf wigis; P Sz=sparf UL ()%=
For a precisionku  uw:zk,2 6 10 2 kuw  uk?,

‘dim(VM) 15| 4435 = dim(Vy)
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Results... in brief

Deterministic/stochastic separation Random variables separation

N " X A
u() um()= w () ()=( D z()= k(D)
i=1 k=1 j=1
I Vy = rf wi g I = Qs i e
! m = sparfwigis, P Sz=sparf UL ()%=
For a precisionku  um:zk,2 6 10 2 k 2k, for dierent M

L2 error

0 5 10 15
Order Z
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Results... in brief

Deterministic/stochastic separation

X
uC) um()=

i=1

wi i)

) Vu = sparfwigh,

For a precisionku  uy:zk.2 6 10 2

‘dim(VM) 15| 4435 = dim(Vy)
107~ dns:)

15 classical deterministic problemm
order to buildVy V n

Random variables separation

)=( )it z()= K

LCi)

Q :
! Sz=sparf U5 4 )Gk=

First spatial modesf w1 (Xx):::ws(X)g
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Results... in brief

Deterministic/stochastic separation Random variables separation

xu " X o j
u( ) uw()= wi i) ( )=0 D= z( )= K k(i)
i=1 k=1 j=1
| = oM = Qs I N2
r Vv = Sparf WiGi=1 ] Sz = Sparf j=1 k( J)gk:1
For a precisionku  uw:zk,2 6 10 2 First spatial modesf w1 (x):::wg(X)g

‘dim(VM) 15| 4435 = dim(Vy)
107~ dns:)

15 classical deterministic problemm
order to buildVy V n

about 1 minute computation on a
laptop with matlab
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