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Uncertainty quantification

Uncertainty quantification has become an essential path in science and engineering

@ Comprehension and selection of models (exploration of model predictions over a
range of uncertainty)

Assess confidence in numerical predictions

Robust optimization and design

Validation of models using (noisy) data

Data assimilation and model construction
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Uncertainty quantification using functional approaches

@ Uncertainties represented by “simple” random variables £ : © — = defined on a
probability space (©, B, P).

@ Functional representation of any o(&)-measurable random variable 7(0)
n(6) = n(£(0))

@ Approximation theory for the approximation of functionals

(&) ~ Y natpall), £€=
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Uncertainty quantification using functional approaches

@ Uncertainties represented by “simple” random variables £ : © — = defined on a
probability space (©, B, P).

@ Functional representation of any o(&)-measurable random variable 7(0)
n(0) = n(£(9))

@ Approximation theory for the approximation of functionals

77(5) =~ Znawa(é-), Ee=

Stochastic/parametric models

u:£e€=—u(€) €V suchthat A(u(§):€) = f(€)
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Uncertainty quantification using functional approaches

Stochastic/parametric analyses: a unified framework
u:=—=V, A(u(€)§) =1f(§), €=
o Forward problem (propagation): P: — O(u)

o Optimization or identification: O(u) — & or {O(u),Ps} — &
@ Probabilistic inverse problem: O(u) — P or {O(u),Pe,} — Pe,
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Uncertainty quantification using functional approaches

Stochastic/parametric analyses: a unified framework

u:=—=Y, A(u(§):§ =1, €=

o Forward problem (propagation): P: — O(u)
o Optimization or identification: O(u) — & or {O(u),Pe,} — &
@ Probabilistic inverse problem: O(u) — P or {O(u),Pe,} — Pe,

Ideal approach

Compute an accurate and explicit representation of u(€) (a metamodel) that allows fast
evaluations of output quantities of interest, observables, or objective function.
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Uncertainty quantification using functional approaches

Stochastic/parametric analyses: a unified framework

u:=—=V, A(():&) ="r(§), €=

o Forward problem (propagation): P: — O(u)
o Optimization or identification: O(u) — & or {O(u),Pe,} — &
@ Probabilistic inverse problem: O(u) — P or {O(u),Pe,} — Pe,

Ideal approach
Compute an accurate and explicit representation of u(€) (a metamodel) that allows fast

evaluations of output quantities of interest, observables, or objective function.

Issue

Approximation of a high dimensional function u(¢), £ € = c R%.
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Construction of approximation spaces

LELL(EZV)=V®S

Tensorization of predefined bases

N

U Z Z Ui, apia(§) € Vv ® Sp

i=1 a€Zp
with given approximation spaces

N

Vn = span{pi}i—;

Sp = span{vpa(€) = Va, (&1) - - Y3, (€a); o € Tp}

@ Pre-defined index set Zp
{aeNd;\odooSr} D{aENd;|a|1§r}D{aeNd;|a\q§r}, 0<g<1

@ Choice of Zp based on a priori analysis
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Definition of approximate functional expansions

Direct simulation methods (L2 projection, regression, interpolation)
u€)~ D uatal€) ua € Vi
a€lp
with coefficients
Q
Uo = z:o.),f‘u/\,(yk)7 a€Zp
k=1

where {yi}_, is a collection of sample points and the u(yx) are approximate solutions of
deterministic problems

A(u(yx); yk) = f(yx)

@ Use of classical deterministic solvers (black box)

@ Numerous solutions of deterministic problems: Q = O(#Zp)
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Definition of approximate functional expansions

Weak solution

ueVeS, (A(u),v)=(f,v) YWweVvasS

Galerkin-type projections

u= Z Ua®'¢'aEVN®SP

a€Zp

where coefficients {uq }acz, are solutions of a coupled system of deterministic problems:

(AQ_ tatba), vavs) = (f,vss) Vvs € Vn, BEIp (*)

@ Nice mathematical framework: error estimates, stability, possible efficiency
@ Generally require modifications of (or strong interaction with) existing solvers.

@ Complexity of systems of equations (x)
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Complexity issue

Possibly fine deterministic models

Make inacceptable numerous evaluations of the model
and the solution of coupled systems of deterministic
problems

dim(Vy) ~ 10°,10°,10%... \ ‘

— Need model reduction i

Possibly high parametric dimensionality

Many input parameters or stochastic processes with high

spectral content .

dim(Sp) ~ 10,10',10', 10", ...

‘ \ ' i
— Need adapted representations for high dimensional
functions s B
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Optimal model reduction

Optimal approximation spaces for u € YV ® S

om(u) = _inf inf  Jlu—um|| = _inf inf |lu— unml|
VmCV  um€Vm®S SmCS  UmEVSm
dim(Vm)=m dim(Sm)=m

e m-dimensional approximation spaces Vy,, and Sy, are optimal w.r.t. the norm || - |.

e For S = L2(=) and for the natural norm in L7,(=; V), the best approximation up is
the rank-m singular value decomposition

A fact

In many applications and for reasonable precisions ¢,

’am(u) < ¢ for m small
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Optimal model reduction

Optimal approximation spaces for u € YV ® S

om(u) = _inf inf  Jlu—um|| = _inf inf |lu— unml|
VmCV  um€Vm®S SmCS  UmEVSm
dim(Vm)=m dim(Sm)=m

e m-dimensional approximation spaces Vy,, and Sy, are optimal w.r.t. the norm || - |.

e For S = L2(=) and for the natural norm in L7,(=; V), the best approximation up is
the rank-m singular value decomposition

A fact

In many applications and for reasonable precisions ¢,

’am(u) < ¢ for m small

Question

Can we compute these low dimensional approximation spaces a priori ?

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References



Strategies for high dimensional approximation

Optimal sparse approximation in Sp = span{t, }acz,

For , we define ’ Sk = span{{ }kek ‘ C Sp. For the approximation of u € S, we

want the smallest subspace Sk yielding a precision at least e:

in #K bject t inf —v|| <
me# subject to gy ||u—v] <e

Computational aspects

o Adaptive construction of the index set B[CohenZOlO, Crestaux2011,...]

o Non adaptive construction by approximation of the ideal formulation G[Blatman2011,
Doostan2011, Mathelin2012, Najm2012]
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Strategies for high dimensional approximation

Optimal sparse approximation in Sp = span{t, }acz,

For , we define ’ Sk = span{tx }kek ‘C Sp. For the approximation of u € S, we

want the smallest subspace Sk yielding a precision at least e:

in #K bject t inf —v|| <
me# subject to gy ||u—v] <e

Computational aspects

o Adaptive construction of the index set B[CohenZOlO, Crestaux2011,...]

o Non adaptive construction by approximation of the ideal formulation G[Blatman2011,
Doostan2011, Mathelin2012, Najm2012]

Issues
@ K may be small for reasonable € (strongly depends on the chosen basis).
o Strategies of exploration for adaptive constructions ?
o Computability of non adaptive constructions for high dimensional spaces Sp?

@ Approximation of function u € Vy ® Sp ?
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Strategies for high dimensional approximation

Nonlinear approximation in a subset M C Vy ® Sp
@ M should have nice approximation properties: for a class of functions u and for a
reasonable precision ¢,
inf |lu—v| <e
veEM
@ M is not a linear space (nor a convex set): nonlinear approximation problem

@ M has a small dimension (i.e. can be parameterized with a small number of
parameters)

@ An approximation can be computed with suitable algorithms (e.g. alternating
minimization on the parameters)
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Strategies for high dimensional approximation

Nonlinear approximation using tensor approximation methods

@ Exploit the tensor structure of function space
Vv ® Sp = VN®S}>1 ®...®S§d

o Choose suitable tensor subsets M, e.g.

M{Zv,-@qs}@...@q&?;v,-evm,qbfeS,ﬁk},
i=1

with | dim(M) = O(d) |

@ Best approximation problems in tensor subsets are related to singular value
decompositions and their generalizations

a[NouyZOlO, Doostan2010, Khoromskij2010, Ballani2010...]
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Tensor spaces

Tensor Banach space

We consider Banach spaces Vi equipped with norms || - ||«. A tensor Banach space
equipped with norm || - || is defined by
— I . d 1 d X
V=.®{_, Vk with , ®j—; Vk =span{v ® ...®@ v’ : v € Vi}

Examples

2EV) =V 2@ ", V= / VOB duly)

= s 72 =l
Li(:) =.®5 L2, (Zk) vi]> = /_ . /_ vy, ..., ys) dui(n) ... dus(ys)
= =5
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Tensor spaces

Tensor Banach space

We consider Banach spaces Vi equipped with norms || - ||«. A tensor Banach space
equipped with norm || - || is defined by
— I . d 1 d p
V=.®{_, Vk with , ®j—; Vk =span{v ® ...®@ v’ : v € Vi}

Examples

2EV) =V 2@ ", V= / VOB duly)

= s 72 =l
Li(:) =.®5 L2, (Zk) vi]> = /_ . /_ vy, ..., ys) dui(n) ... dus(ys)
= =5

Finite dimensional spaces

V =, ®{_; V. Denoting {¢F}7, a basis of Vi,

n ng
V = v:Z...Za(;h“,,-d)zp,-ll®...®wg;a(;l,w,»d) eR ’dim(V):nlng...nd

=1 iy=1
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Tensor subsets

Tensor subsets M

@ Rank one tensors
Ri1 = {®Z:1vk : Vk € Vk}

o Rank-m (canonical) tensors
m
Z d .k k
Rm = ®k:1V,' TV € Vk
i=1

@ Tucker tensors with rank r = (r1,..., rq)

n ry
d K K
T = Z e Za(il,n.,id) k=1 Vi Uin,....iy) € R, vi € Vi

=1 iy=1

. cv- there exist subspaces Ux C Vi such that
- dm(U ) =rcandve Ui ®...® Uy

@ Hierarchical tensors H,
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Tensor based methods

Tensor approximation methods for solving problems of type

Alw)=f with veV=V®...0V

(1) Iterative or direct solvers ?
(2) How to define an approximation of u in a tensor subset without information on u ?

(3) Construction of a tensor decomposition with a prescribed accuracy:
directly (in increasing tensor subsets) or progressively (with successive corrections in
small tensor subsets) ?

(4) Optimal model reduction for stochastic/parametric analyses ?
(5) How to define suitable tensor subsets for stochastic analyses ?

(6) Can we build tensor approximations using samples of u (black-box approach) ?
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Iterative or direct solvers ?

Approximation of the solution of A(u) = f in a tensor subset M

@ Iterative methods and classical tensor approximation methods (SVD) .

Construction of a sequence of tensor approximations u, € M, perturbations of ideal
iterations.

~

up & B(up—1) with ||us — B(un—1)|| = vlen/t/l [lv — B(un—1)||

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References

17



Iterative or direct solvers ?

Approximation of the solution of A(u) = f in a tensor subset M

@ Iterative methods and classical tensor approximation methods (SVD) .

Construction of a sequence of tensor approximations u, € M, perturbations of ideal

iterations.
up & B(up—1) with ||us — B(un—1)|| = vlen/t/l |lv — B(un—1)]]

@ Direct (a priori) construction of a tensor approximation (PGD/GSVD)
Requires new definitions of “best approximations” and associated algorithms.

inf I1A() ~ 1,
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Iterative or direct solvers ?

Approximation of the solution of A(u) = f in a tensor subset M

@ Iterative methods and classical tensor approximation methods (SVD) .

Construction of a sequence of tensor approximations u, € M, perturbations of ideal
iterations.

up & B(up—1) with ||us — B(un—1)|| = vlen/t/l |lv — B(un—1)]]

@ Direct (a priori) construction of a tensor approximation (PGD/GSVD)
Requires new definitions of “best approximations” and associated algorithms.

inf I1A() ~ 1,

@ Coupling iterative methods and PGD.
A larger class of iterative methods can be used.

*

Clun) = Blun-1) with || C(un) = Bun-1)]|. = inf 1C(v) = Blun-1),

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References 17



Best approximation in a tensor subset M without information on u

Approximation of the solution of Au = f in a tensor subset M.
Definition of a set of “good approximations” | Ma(u) C M |7

@ Optimization problems: if A(u) — f = J’'(u) with J a convex functional
MNam(u) = arg min, J(w)
o Galerkin projection:
Mu(u) C{weM : (A(w)—f,éw)=0 Véw e T,(M)}

Minimal residual:

Ma(u) = arg mijcl |A(w) — ||, (Good residual norms)
we
@ Minimax (Petrov-Galerkin):

M (u) C {WGM . (A(w) = f,02) =0 ¥z € T,(M) }

(0w, A*z) = (0w, w) Vow € Ty(M)
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Direct constructions (PGDs)

Tensor subsets

Define a sequence of tensor subsets {Mm}m>1 such that
] Mm C Mm+1

® Up>1Mp, is dense in V

Typical choices: My = R, Mm = Mm_1 + My with R1 C My, My =T

(m,...,m)-

Definition (Direct PGD of u)

For a given sequence of tensor subsets { My} m>1, define a sequence {um}m>1 by

Um € Maq,, (u)

@ Generalization of the concept of spectral decomposition: Proper Generalized
Decomposition (to be clarified...)

@ Useful when we want an optimal decomposition for a given precision

o Computational complexity increases with m.
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Progressive constructions (PGDs)

Tensor subsets

Define a (small) tensor subset M satisfying
o M is weakly closed in V/,
@ span(M) is dense in V,
o MM C Mforall xeR

Typical choices: M = R1 (elementary tensors), M = 7, (tucker set) or M = H,
(hierarchical tensors) with small r.

Definition (Progressive PGD of u)

Let up =0. For m>1,

© Compute a correction wy, € M of upm_i1:

’Wm € Mam(u— umfl)‘

Q Set|um = Un—1 +Wm‘

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References

20



Progressive constructions with updates

Definition (Updated progressive PGD)
Let ugp = 0. For m > 1,

©@ Compute a correction wy, € M of u— upm—1:

’wm € NMam(u— Um—l)‘

@ Set|vy, =un_1+ wn|and ’construct a linear subspace U, such that v, € Uy |.
Then, define up, as the best approximation of v in Un
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Progressive constructions with updates

Definition (Updated progressive PGD)

Let ugp = 0. For m > 1,
©@ Compute a correction wy, € M of u— upm—1:

’wm € NMam(u— Um—l)‘

@ Set|vy, =un_1+ wn|and ’construct a linear subspace U, such that v, € Uy |.
Then, define uy, as the best approximation of v in Up,

Link to model reduction
Progressive construction of a low dimensional approximation space U, which defines a
reduced order model.

@ Nonlinear approximation for the construction of Up,

@ Linear approximation in Up,.
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Strategies of updates: construction of linear spaces
with G. Bonithon, L. Giraldi, G. Legrain

For v, given, strategies for constructing a linear space Uy, such that v, € Un:

@ Suppose v = Y1, Wi, with w; € M.
Un = span{w;}i2; = {Za,—w,- Tai € ]R} dim(Up) =m
i—1

@ Suppose vp = >, R4_wk e R

m d
Un = Zdw,»k ® (® W,-kl) : §w,»k € Vi ’dim(Um) =mx dim(Vk)‘
i=1 k'=1
k' #k

@ Suppose Vi = Um—1 + ®f:1w,‘,§, with M = R1. Define

UnCU®...@ U] with U = U +span{ws} C Vi |dim(Un,) < m®
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Convergence results for convex optimization problems

Best approximations for the optimization of a functional J with minimizer u

Ma(u) = argM?;iJ{]AJ(W), Ma(u—v) =argmt1gi/&j(v+ w)

Theorem (Convex optimization in tensor Banach spaces)

Let J : V — R be a Fréchet differentiable functional such that
o J is elliptic: {(T'(v) — T'(w),v—w) > allu—w|®, withs >1
e (H1) J' weakly continuous or (H2) J' Lipschitz continuous on bounded sets

Then, the (updated) progressive PGD {um}m>1 converges towards the solution u if (H1).
If (H2), it converges

o for s > 1 if there exists a subsequence of updates
@ for1 < s < 2 otherwise

@ Falco & Nouy, Numerische Mathematik (2012).
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A simple illustration on a diffusion equation

— V- (kVu)=Ip(x) on Q=(0,1)x (0,1)
u=0 on 02

14018 ifxeQ;, i=1.8
with & € U(-1,1)

K(X7§):{1 if x € Qo

Ty = [ wvv-9v=2 [ fov=Iv - ulfs ~
Q Q

Approximation spaces

ueVyv®Sp, Sp :]P’m(—l,l)@...@ﬂplo(—l,l)

Underlying approximation space with dimension 5.10!!
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Progressive PGD

Progressive Galerkin PGD UR Un =Yg Wk, Wk=V%Rp®...0¢; €R1

min ||u —Um_1—wal2 4+ updates of functions {¢j, ..., o ey
wmE€R

Convergence (in L* norm) foitlal e g

e

rank
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Optimal model reduction for stochastic parametric problems

m

un(§) =Y _vidi(§) €V, viEV, ¢ €S

i=1
Best approximation of u € V® S by up € Rin(V @ S)

min lu— tm||, = _min min Huf Uml|,
UmERm(VOS) VgtV SiCS  umebm®s
dim(Vm)=m dim(Sm)=m
o m-dimensional approximation spaces Vp, and Sp, are optimal w.r.t. the norm || - ||,
@ Define ||-||, that makes u, computable without information on wu.

@ More than a simple best approximation problem: generalized spectral decomposition
(Karhunen-Loeve)
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Optimal model reduction for stochastic parametric problems

m

un(§) =Y _vidi(§) €V, viEV, ¢ €S

i=1
Best approximation of u € V® S by uy, € Rp(V ® S)

min s lu— uml||, = lenv Sml . min Hu — Uml|,
Rom(V C CS  ume
SR dim(Vm)=m d/m(Sm)—mu

o m-dimensional approximation spaces Vn, and S, are optimal w.r.t. the norm || - ||«

@ Define ||-||, that makes u, computable without information on wu.

@ More than a simple best approximation problem: generalized spectral decomposition

(Karhunen-Loeve)

Different (computational) approaches

@ construct (an approximation of) V,, = span{vi, ..., Vm} and project on V, ® S

@ construct (an approximation of) Sy, = span{¢1,...,¢m} and project on ¥V ® Sp,

@ construct directly (an approximation of) V,, and Sy, and the representation of u in
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Optimal model reduction for stochastic parametric problems

Case of inner product norms |||,

2 _ . . 2 _ 2 N2
o= unl? = in o= Poyul? = Ul ~ max o(Vaiu)
dim(Vm)=m dim(Vm)=m

with Py, the || - ||«-orthogonal projector onto Vi, ® S and o(Vm; u) = || Py, ull,.

Nonlinear eigenproblem

max o(Vmi u) = || Py, ull,
dim(Vm)=m
with o(Vm; u) interpreted as a Rayleigh quotient

o Dedicated algorithms for the construction of optimal reduced bases (subspace
iterations) or approximations of optimal reduced bases (Arnoldi algorithm, updated

progressive construction) B[Nouy 2008, Nouy & Le Maitre 2009, Chevreuil 2011]

e For [v® ¢, = ||v||v|\¢>||Li, classical Karhunen-Loeve decomposition. The
maximum of o(Vpm; u) is reached for the dominant left singular subspace of wu.
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Dedicated algorithms

Direct PGD (Subspace iterations)

For a given m, alternate minimization on V,, and Sy,.

min min _ |ju— um||*© min min _ |lu— um||,
VnCV  um€EVmQSm SmCS  um€EVmQSm
dim(Vym)=m dim(S,)=m

Updated progressive PGD (Power method with deflation)
Let ugo = 0. For m > 1,

@ Compute a rank-one correction

Wm = Vm @ ¢m € arg  min

u—um—w
weRL(V®S) || m ||*

Q Set
Vi = Vm—1 + span{vm} = span{vi}i=1 and Un=Vn®S

© Compute
um € My, (u) = arg vermr):gas ||u— v

. (.e. um = Py,u)
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Application to an advection-diffusion-reaction equation

o Jiu— a1Au+ arc-Vu+ asu=asly, on Qx(0,T)
e u=0 on Qx{0}
e u=0 on 00Qx(0,T)

Uncertain parameters
af(&) = l"‘ai(]‘ + 0251)7 51' S U(_17 1)7 == (_17 1)4

Three samples of the solution u(x, t, &)

v

i

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References

29



Application to an advection-diffusion-reaction equation

Separated representation of the solution

M

u(x, t, &) = 3 wi(x, t)Ai(§)

i=1

wi €V ="L%0,T;Hy(Q), X\ieS=IL*E, dPe)

Discretization
@ Space : finite element (4640 nodes)
@ Time : discontinuous Galerkin of degree 0 (80 time intervals)

@ Stochastic : polynomial chaos of degree p =5 in 4 dimension

dim(Vy) = 371200  dim(Sp) = 125
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Computation of Generalized Spectral Decomposition
Arnoldi algorithm

@ Initialize A and for k =1... M, wy, = M (F1()\)) and X = F(wy)
X ]
we = M (F1(N)) ws = My (F1(\)) ws = M3 (Fi(N))
» v)
T s T ‘o T “
A= F(w) A= F(w)

y V. v
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Computation of Generalized Spectral Decomposition

Arnoldi algorithm

(*)

@ Compute associated {Aq, ..

-,)\M} = FO({W17 oo

©9 WM})

wp = Fl(A)

)

wo = i (FL(N))

.

ws = Mz (F(N))

d\

wa = N3 (FL(X))

.‘

v

A2

v

v
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Generalized Spectral Decomposition
Deterministic modes

8 first modes of the decomposition {wi(x,t)...ws(x, t)}

To compute these modes = ’ only 8 deterministic problems
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Convergence of quantities of interest
Probability density function

Probability density function of Qum(&)

,
oe) = [ [ wergydar

Quantity of interest

T -
QM(&):/O /Q um(x, t, &) dxdt ]
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Convergence of quantities of interest
Quantiles

99% Quantiles of Qu(t, &)
Quantity of interest

Q(t,§) :/Q u(x, t, &) dx :_- ) . ::- i ) _-

Q 1] | o =

%0 aoes ao o5 002 G0 03 W ams oo 0015 Qg 0025 043

M
-

Q ast0

2
3 o 3t —
i | 75! -
2
2
151 - '
: 15}
Qum(t,€) =/ um(x,t,€)dx . . '
Q) al 4 | os
o5 3 : | ol . : |
0 0005 001 005 0 0025 003 a 0035 001 M5 042 0025 003
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Tensor formats for stochastic parametric problems
with M. Chevreuil, L. Giraldi, O. Zahm

Hierarchical structure

ou
YV (W(&)Vu) + (€)= F
uEVx@Vy(X)V:@Sgl®...®$§,®$§i®...®S§£
——— —_— ,
Vx,y Sg 85/
|
4 S

Idea
Exploit the specific tensor product structure of SPDEs in order to
@ avoid the deterioration of convergence when dimension increases

@ recover optimal model reduction obtained by Karhunen-Loeve type decomposition

u(Xayvthaf ZVIXya ¢I‘£§)
i=1
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lllustration : stationary advection-diffusion-reaction equation

-V - (kVu)+c-

Vu+~yu=idlg(x) on Q J

Random field

40
K(x,€) = px + Y Voiri(x)&, & € U(=1,1)

i=1

Spatial modes «i(x)

=i

.- 'l.‘
!.l .-l ‘-. B\ L]

VS = T T
B3 o 28 IR |
(A S R T e
o S N 0 SN

I

Functional approaches Complexity reduction

Amplitudes o
107"
Fk
*%b%
Fok
%@K*H
Wﬂ
o
— 10-2 *H%@%
= H;He
k.
¥
*%Hé
Fk
L
3
’
%% 10 20 30 40
I
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Stochastic approximation

£:(£1,...,£4o), EZ(—1,1)40251 X oo X =40
Sp =P4(Z1) ® ... ® Pa(Za0)
dim(Sp) = 5% ~ 107
Finite element mesh Solution u(-, p) for mean parameters

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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A basic hierarchical format

Deterministic/stochastic separation

u(§) = um(§) =

5 WII

‘ Vi = span{w;}M, ‘

For a precision ||u — um,z||;2 < 10

o |dim(Vi) ~ 15 | < 4435 = dim(Vy)
o | dim(S7) =~ 10 | < 10% = dim(Sp)

@ 15 classical deterministic problems in order to build Vi C Vn

@ about 1 minute computation on a laptop with matlab

Random variables separation

AE©) = O ~ Az(€) = Y o ]

= |8z = span{[T2_, (&) }ur

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Convergence properties of quantities of interest
Probability of events

Quantity of interest P(@>aq), q€(3554)

10° ; . . . .
Qe) = [ u(x. ) ox :
Q0 ! 1
10" s |
B

. o,
: —— Monte-Carlo \\ \\5 E
! —&— QOrder 1 =N
107 —#— Order 2 \ .
: —&— Order 4 T ]
[ Order 8 \ e ]
10 Order 15 \ .
I —+— Order 20 v

— -5
QM(&) /;;2 UM(X7 £) dx 103.4 36 3.8 4 4.2 4.4 4.6

x10*
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Convergence properties of quantities of interest
Sensitivity analysis

Q&) ~ Qm(&) ~ Qm,z(&)

zZ
= aW(8),
k=1

First order Sobol sensitivity index with respect to parameter &;

_ Var(E(Q[§))
Si= T(Q) Zak¢k 51

40
):H@@

40
ajo = qc [ [ E(6k(&))
=

E(QI&) =

First order Sobol sensivity indices S;

07, 07 07

056 06 06
L 05 L 05 L 05
3 3 3
2 E E
o4 Sos Sos
s s s
203 203 503
[ g [
3 3 3

02 02 02

0.1 01 0.1

0 % 0 1 0 N |
0 10 20 30 40 50 0 10 20 30 [ 50 0 10 2 40 50

0 30
Random variable &, Random variable &, Random variable &,
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More hierarchical formats

Hierarchical canonical representation

With V = V1 ® ... ® V4, define a hierarchical tree T on {1,...,d}. For t € T, denote
by S(t) the set of successors of t.

V=V, (Level 0) {1,...,d}
= ® Vi (Level 1) ﬂ\
t1€5(to) {1 2} 3

0 ( R vtz) (Level 2) /\ /’\
t1€S(ty) tES(t1)

=... {1} {2} {4}

Let {mt}ter be a set of decomposition ranks.

mi,

={v=2 @ e en (V)]
=1 t; €5(to)

me, my

_{"—Z X (Z Q 2) s 82, €HT (V) =

i1=1t€S5(tg) R=1tHeS(t)
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Example: stochastic groundwater flow equation (Couplex)

Uncertain BCs

u, U9, + Uy @00 u,
Groundwater flow equation (hydraulic head u)
u Y,
‘— Vu)=0 xeQ, 56_‘ ’
[
+ boundary conditions —
u, u,

Geological layers with uncertain properties

Neumann homogeneous
K's probability laws Dirichlet
el | Layer Law
= Dogger LU(5,125) La(W )
Clay LU(3.1077,3.107°) u U(288,290
B estone LU(1.2,30) w  U(305,315)
Marl LU(107%,107%) us  U(330,350)

/ us  U(170,190)
us  U(195,205)
u  U(285,287)
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Trees 1 to 4

10 basic uniform random variables &,
= =(—1,1)" uniform probability measure g

w

V= VoV, a8, ®%.. %S,&8;»...aS
N ————

]
o
=0

[
Vp (Space}  Vk (Diffusion) Vi (BCs)

Progressive construction of level 1 decomposition:
error versus rank at level 1

)
E —clazzique
b —e—tEal
_&' —E—lead
o trees 3
PO tree 4 4
Ié o \\ £ kY
w E ¥ty | Lo} | i

Ny / ~.
i

3] &
Fank {Lewel 1)

a 2 4

Funcrional appraackes Cemplex’sy reduction  lensor methods Model reduccian | lierarchical Mer incrusive  Hererencss

43



© Uncertainty quantification with functional approaches
© Strategies for complexity reduction

© Tensor-based methods

© Optimal model order reduction

© Tensor formats for stochastic problems

@ Non intrusive tensor methods

@ References



Non intrusive sparse approximations

Aim

Compute an approximation of u € Sp using a few samples {u(yk)},?zl.

Regression in Sp = span{t;}F,

Approximation v(£) = S0 | vithi(€) defined by

Q
o 2 . 2 k ky |2
min [lu— vl | with [lu—vig= " u(c") ~ v(c")]
k=1

or equivalently by

min [ju—®v|3| with v=(v));, ® = (i(€"))x.i
vERP

Regularized regression

min ||u — v|[5 + AR(v)| Choice of R ?
vESp

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Non intrusive sparse approximations

Ideal sparse regression

For a given precision ¢, ideal sparse regression problem:

min llvllo subject to [lu—®v3 <e| with |[v]o=#{i;vi # 0}
veR

Approximate sparse regression (Basis Pursuit Denoising)

min [[v]: subject to |ju— ®v|3 < ¢
veRP

which for some A(e) is equivalent to

min |ju — ¢v||§ + Av]l1
veRP
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lllustration: diffusion problem with multiple inclusions

— V- (kVu)=Ip(x) on Q=(0,1)x (0,1)
u=0 on 02

with
1 if x € Q
K(x,€) = mxe
1+0.1¢& ifxeQ;, i=1.8
with & € U(—1,1). = = (-1,1)%.

4

Approximation of a Quantity of Interest /(u) in Sp C L2(Z)

1(u)(€) = /D u(x,&)dx, D =(0.4,0.6) x (0.4,0.6)

|Sp=Pu(3), dim(Sp) = 1286 |
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1(€) = >, laa(§): coefficients {/,} obtained by regression

Least-square {1-regularization

. nnz =29
L L : 2 i Prall : u
[ B
i i
£y E g
!
10 10
T w0 6o B0 00 200 TSm0 w0 G0 B0 je0 100
Q 2000 functicn Indux tunctict Indme:
X - ez =17
) R ) : i )
o i
¥ 2
H 5+
£ E g
! E
g g7
x 10
12
= 20 800 500 foo0 1200 ks 20 400 B00  BOA doo0 120
Q 50 tuncticn Indux tunctict Indme:
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Non intrusive sparse approximations

Issues
@ Algorithms limited to approximation spaces with low dimension P

@ Selection of good bases ?

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Non intrusive sparse tensor approximations
with P. Rai, M. Chevreuil, J. Sen Gupta

Adaptive sparse tensor approximation
@ Greedy construction of a basis {w;}[_; selected in a tensor subset M

o Compute un = Y1, oyw; using regularized regression

Algorithm
Let ugp = 0. For m > 1,

o Compute a correction w, € M defined by
. 2
Wm € arg min ||u — upm—1 — w
m € arg min | m-1— wllg

Computed using alternating minimization on the parameters of M.
@ Set Un = span{w;}", (reduced approximation space)

o Compute um = >, ciw; € Up, using sparse regularization

m
min [lu— > ciwillg + Alle]ls

ceR™ -
=l

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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lllustration: diffusion problem with multiple inclusions

Error with ¢; and /¢, regularized
update for Q = 56 (top) and
Q@ = 1000 (bottom)

u

Error estimated using cross validation

Error with ¢;1-regularized update for
different sample sizes.

H

Erme’

logiCV

logiCV,,

1 203 - B9 -0
Rasis
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lllustration: advection-diffusion equation with random field

Stationary advection diffusion reaction Problem and Qol
stochastic equation

—V - ((x,6)Vu) + ¢ - Vu+ ku = g, %

+ homogeneous BCs

@ random diffusion field Q,
100
(. €) = po + Y Vaipi(x)é
=i 1(€) = / u(x, &)dx
973

@ approximation space

VN RPy(Z1) R ... R Pp(Z100)

Sp

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Error computed by cross-validation

Error of /1 and /¢p-regularized Error with /;-regularized update for
updates for sample size @ = 100 different sample sizes

N 3.
= [ 4 L] T T i T =
2 T 5]
L =
g 2
—zz- -
-24 21
25

Functional approaches Complexity reduction

10 2&0 AL
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Some conclusions and challenges

Tensor based and sparse approximation methods
@ A route to circumvent the curse of dimensionality

@ A non linear approximation world !

Some challenges

o Efficient algorithms for the construction of optimal approximations
Robust non intrusive constructions of tensor approximations
Adaptive search of optimal tensor formats

Suitable change of variables for obtaining low rank decompositions

Goal-oriented decompositions : take into account probabilistic quantities of interest
(probability of events, moments, ...)

@ Multiscale decompositions: one-scale decomposition has too much information to
capture

Functional approaches Complexity reduction Tensor methods Model reduction Hierarchical Non intrusive References
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Thank you for your attention
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Example: lllustration of the decomposition ug = 35 | w;(x));(£)

Spatial modes W = {w1(x)...ws(x)}

O™

—N '\

-~ \'\JR

2
i

To compute these modes
= only 8 deterministic problems

v

Random variables A = {\1(&

WUEY U A
A ald]

Xs(€)}

m
ey

=V - (kiVwW)) +c-Vw +yw; = f;

Separated representation of random
variables

z
~ Y dkd(6r)- 0k (€ao) € Sp
k=1
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Convergence of multidimensional separated representations

Stochastic algebraic equation: problem defined on the reduced space Vy @ S ~RM @ S
Ee(A(€)"TA(§AE)) = Ee(M€) "b(§)) VA" eR"® S J

V4
NE) ~ Az(&) =D #hWi(€), ¢h €RY, Wi(€) = ¢i(£1)- 6% (o) € Sp
k=1

Convergence with Z for different M
IA = Azl

z

um(€) = - (W 62) wi(g)

k=1

For a precision of 1072
to be compared with

0 5 10 15
Order Z
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Convergence of generalized spectral decomposition

Mean square convergence

N.
1 . n n
llum — UHiZ(E;B(Q)) = E¢(|Jum — UHiZ(Q)) ~ N E lum(€") — u(€ )Hﬁ(n)
s
n=1

llum — ull?

-1

(N5 = 500)

10

L2 error
=)

Order
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Convergence properties of generalized spectral decomposition

Samples

Sample of x(x, &)

UFEf(Xa €) - U(X, F"g)

U15(X, 6) - U(X, l"g)
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Convergence properties of generalized spectral decomposition

Samples

- !If
Sample of x(x, &) . ‘ 'i'r-'

Uref(Xag) - U(Xal"'.f)

U15(X,€) - U(Xaug)
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Convergence properties of generalized spectral decomposition

Samples

Sample of x(x, &) “‘ iu

UFEf(Xa €) - U(X, F"g)

U15(X, 6) - U(X, l"g)

L
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Convergence properties of generalized spectral decomposition
Samples

= i B
Sample of x(x, &) “ i“
N )

u’9f(Xa €) - U(Xa F"g) U15(X, 6) - U(X, ""5)

(9] (9]
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Convergence properties of generalized spectral decomposition
Uniform convergence

lum — ull oo z12(0)) = ZlelgHUM(E) —u(@)l2@ = sup }||UM(€") — u(€")l 2

ne{l...Ng
g — ulffs (N = 500)
10°
210"
w
10.2 i
9] 5 10 15
Order




Convergence properties of quantities of interest

Probability density function

Quantity of interest

Q) = / u(x, ) dx

Que) = | () b

Probability density function of Q(&)

000

—— Moila-Caro
—— Ordar 1

14060
—Nonta-Caro

12000+ Py Orchar B
000 !
8000+ |
BO00 ¥
4000 _.".
000 /

" as 3 35 a a5

120001

— Monta-Cailo.
—— Orar 4

aa’

— Monta-Calo.
Ordar 15,

aa’
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Convergence properties of quantities of interest
Probability of events

Quantity of interest P(@>aq), q€(3554)

]

107 -
Qe) = [ u(x. ) ox
Q 1
o
102, ROy
t —— Monte-Carlo ‘\, \\A
! —#— Order 1 s
107 L —#— Order 2 \\
: —&— Order 4 ™
! Order 8 5\\ 1
10%: Order 15 \
i —+— Order 20 9
— 5
QM(ﬁ) /;;2 UM(X7 £) dx 103.4 36 3.8 4 4.2 4.4 4.6




Convergence properties of quantities of interest

Sensitivity analysis

Q&) ~

Qm(€) =

Qm,z(&)

= aVk(€)
k=1

40
ka:H@@

First order Sobol sensitivity index with respect to parameter &;

S =

Var(E(QI&))
Var(Q)

E(QI&) =

First order Sobol sensivity indices S;

Z ak¢k 51

40
ajo = qc [ [ E(6k(&))
=

07, 07 07
056 06 06
509 505
2 E
< 04 So4
s s
§ 03 503
[ [
3 3
02 02
0.1 01 0.1
0 % 0 1 0 N |
0 10 40 50 0 10 [ 50 0 10 20 30 40

20 3
Random variable &,

20 3
Random variable &,

Random variable &,

50
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Results... in brief

Random variables separation

s

Z¢Hdm

Deterministic/stochastic separation

u(€) ~ um(€) = Zmua

i1

— Sz =span{[];_, Bl (&)}

< Vu = span{w;}},

For a precision ||u — upm z||;2 < 1072 lum — ul|?
o | dim(Vu) ~ 15 | < 4435 = dim(Vy) '
E
E 10
~ ‘oso 5 0 5
Order
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Results... in brief

Deterministic/stochastic separation

u(€) ~ um(€) =D wiki(€)

i=1

< Vu = span{w;}},

For a precision ||u — upm,z||;2 < 1072

o | dim(Vm) ~ 15| < 4435 = dim(Vy) 107

o | dim(Sz) ~ 10 | < 10?® = dim(Sp)

Random variables separation

s

N(§) = ()\i)if = Zd) quk &)
— Sz= 5P3’7{Hjs'z1 d)Jk(fJ)}f:l

A = Az|[2. for different M

L% error

0 5 10 15
Order Z
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Results... in brief

Deterministic/stochastic separation

u(€) ~ um(€) = Z wiAi(€)

< Vu = span{w;}},

Random variables separation

s

V4
=> o
k=1

— Sz =span{[];_, Bl (&)}

Jj=1

[14.)

For a precision ||u — um,z||;2 < 1072

o | dim(Vy) ~ 15| <« 4435 = dim(Vy)
o | dim(Sz) =~ 10 | < 10%® = dim(Sp)

@ 15 classical deterministic problems in
order to build Vy C Vy

First spatial modes {w1(x)...wg(x)}

EO‘ @

’i\ Q

64



Results... in brief

Deterministic/stochastic separation

u(€) ~ um(€) = Zm,

< Vu = span{w;}},

Random variables separation

s
i1

— Sz =span{[];_, Bl (&)}

= Z o [ [ #(&)

For a precision ||u — um,z||;2 < 1072

o | dim(Vu) ~ 15 | < 4435 = dim(Vy)
o | dim(Sz) =~ 10 | < 10%® = dim(Sp)

@ 15 classical deterministic problems in
order to build Vy C Vy

@ about 1 minute computation on a
laptop with matlab

a

First spatial modes {w1(x)...ws(x)}

EO 2
5 &

»

\# A

nr )

y
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