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This course
This is a two part course.

I) Review of material on:

a) Functional ANOVA

b) quasi-regression

c) quasi-Monte Carlo sampling

II) New material on:

a) new Sobol’ index quantities

b) effective dimension of some Sobolev spaces

c) applications to missing heritability problems
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Context
• We want to understand a black box computer program, y = f(x)

• We could sample it: (xi, yi) and analyze the data.

• We may want a fast surrogate f̃(x) ≈ f(x)

• Then optimize, integrate, explore, invert f̃

Alphabet soup

ANOVA DACE FAST SAMO UCM HDMR NPUA
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Background
Work with electrical engineers using process, device, and circuit simulators

J. Schott, S. Sharifzadeh

We used Latin hypercubes McKay, Beckman, Conover (1979) and kriging as in Sacks, Ylvisaker

(numerous papers and co-authors)

Search for better designs, randomized orthogonal arrays and ultimately randomized

quasi-Monte Carlo.

Then some frequentist model fitting, mainly quasi-regression, with Koehler, An, Jiang.
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Quadrature ↔ approximation
Given a quadrature oracle, we can approximate:

f(x) =
∑

k∈Zd

βke
2πikTx, where

βk =

∫

[0,1]d
f(x)e−2πikTx dx.

Given an approximation oracle, we can integrate:

µ =

∫
f(x) dx

µ̂ =

∫
f̃(x) dx+

1

n

n∑

i=1

(
f(xi)− f̃(xi)

)

E
(
(µ̂− µ)2

)
=

1

n

∫
(f̃(x)− f(x))2 dx.
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Part I(a): ANOVA
Building on

Fisher

and

Hoeffding

and

Sobol’
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ANOVA: starting with potatoes
Fisher & MacKenzie (1923)

Studies in crop variation II: The manurial response of different potato varieties

Hypothetical potato yields

Four varieties, and 3 manure levels




Yield (kg) V1 V2 V3 V4

M1 109.0 110.9 94.2 125.9

M2 104.9 113.4 110.1 138.0

M3 151.8 160.9 111.9 145.0
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Anova

E(Yij) = µ+ αi + βj + γij

3∑

i=1

αi = 0
4∑

j=1

βj = 0

• Yij is yield

• µ is overall average

• αi is adjustment up/down for manure i

• βj is adjustment up/down for variety j

• γij is interaction (e.g. synergy)

γi• :=

4∑

j=1

γij = 0 ∀i γ•j :=

3∑

i=1

γij = 0 ∀j
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ANOVA for potatoes



109.0 110.9 94.2 125.9

104.9 113.4 110.1 138.0

151.8 160.9 111.9 145.0


 =




123 123 123 123

123 123 123 123

123 123 123 123




+




−13.0 −13.0 −13.0 −13.0

− 6.4 − 6.4 − 6.4 − 6.4

19.4 19.4 19.4 19.4


+




−1.1 5.4 −17.6 13.3

−1.1 5.4 −17.6 13.3

−1.1 5.4 −17.6 13.3




+




0.1 −4.5 1.8 2.6

−10.6 −8.6 11.1 8.1

10.5 13.1 −12.9 −10.7


 The decomposition is interpretable
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ANOVA for L2[0, 1]d
Goes back to Hoeffding (1948)

f(x) = f()() +

d∑

j=1

f(j)(xj) +
∑

j<k

f(j,k)(xj , xk) + · · ·+ f(1,2,...,d)(x1, . . . , xd)

= f() +

d∑

r=1

∑

16j1<j2<···<jr6d

f(j1,j2,...,jd)(xj1 , xj2 , . . . , xjd)

More simply

f(x) =
∑

u⊆{1,2,...,d}

fu(x)

One term for each subset of D = {1, 2, . . . , d}

generalizes easily to product domains, i.e. independent inputs
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Notation
For u ⊆ {1, . . . , d}

|u| = card(u)

−u = uc = {1, 2, . . . , d} − u

v ⊂ u strict subset i.e. (

If u = {j1, j2, . . . , j|u|} then xu = (xj1 , . . . , xj|u|
) and dxu =

∏
j∈u dxj

Frankenpoints

For x,y ∈ [0, 1]d, z = xu :y−u means

zj =




xj , j ∈ u

yj , j 6∈ u.

We glue together part of x and part of y to form z = xu :y−u.
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Recursive definition
For u ⊆ {1, . . . , d}, fu(x) only depends on xj for j ∈ u.

I.e. f(xu :z−u) = f(x) ∀x, z ∈ [0, 1]d

Overall mean f∅(x) =

∫
f(x) dx

Main effect j f{j}(x) =

∫ (
f(x)− f∅(x)

)
dx−{j}

Interaction u fu(x) =

∫ (
f(x)−

∑

v⊂u

fv(x)
)
dx−u

=

∫
f(x) dx−u −

∑

v⊂u

fv(x)

For example
∫ 1

0

x cos(y) dx =
1

2
cos(y) a function of y alone
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Sobol’s decomposition
Let φ0, φ1, φ2 . . . be a complete orthonormal basis of L2[0, 1] with φ0(x) ≡ 1.

∫ 1

0

φr(x) dx = 1r=0,

∫ 1

0

φr(x)φs(x) dx = 1r=s, φr(x) ≡
r∏

j=1

φrj (xj)

Tensor product basis

f(x) =
∑

r∈Nd

βrφr(x), βr =

∫
f(x)φr(x) dx

fu(x) =
∑

ru∈(N−{0})|u|

βru:0−u

∏

j∈u

φrj (xj)

“Decomposition into summands of different dimension”

Sobol’ (1967) used Haar functions.

Thanks to A. Chouldechova for translation.
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ANOVA properties

j ∈ u =⇒

∫ 1

0

fu(x) dxj = 0

u 6= v =⇒

∫
fu(x)fv(x) dx = 0

&

∫
fu(x)gv(x) dx = 0

Variances

Var(f) ≡

∫
(f(x)− f∅)

2 dx =
∑

u⊆{1,...,d}

σ2
u

σ2
u = σ2

u(f) =





∫
fu(x)

2 dx u 6= ∅

0 u = ∅.
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Variable importance
How important is xu?

Larger σ2
u means that fu(x) contributes more.

Squared contributions are additive.

Sobol’s importance measures

τ2u =
∑

v⊆u

σ2
v Sobol′s Du

τ2u =
∑

v∩u 6=∅

σ2
v Sobol′s Dtot

u

τ2u = σ2 − τ2−u

Large τ2u means joint effect of xu is important

Small τ2u means joint effect of xu is not important

We can freeze these ’unessential’ variables (Sobol’)

Normalized versions:
τ2u
σ2

and
τ2u
σ2
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Inversion
From τ2 to σ2

σ2
{1,2,3} = τ2{1,2,3}

− τ2{1,2} − τ2{1,3} − τ2{2,3}

+ τ2{1} + τ2{2} + τ2{3}

Generally

σ2
u =

∑

v⊆u

(−1)|u−v|τ2v

though this might involve lots of cancellation.
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More derived importance measures

Superset importance

Υ2
u =

∑

v⊇u

σ2
v Liu & O (2006)

Small Υ2
u means deleting fu and higher order interactions makes little difference. Relevant to

Hooker (2004)’s simplifications of black box functions.

Mean dimension

1

σ2

∑

u

|u|σ2
u

Measures ’dimensionality’ of f . Liu & O (2006)

Higher dimensionality makes for harder numerical handling.

Many quadrature problems have mean dimension near 1
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Estimation of τ2u and τ2u
Naive approach for τ2u:

1) Sample xi and get yi = f(xi) for i = 1, . . . , n

2) Somehow estimate fv(x) for all necessary v by f̂v

3) Put σ̂2
v =

∫
f̂u(x)

2 dx, u 6= ∅

4) Sum: τ2u =
∑

v⊆u σ̂
2
v

This is expensive and has many biases.

Sobol’ has a much better way.
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Better estimates
∫∫

f(x)f(xu :z−u) dx dz

=

∫∫ (∑

v

fv(x)
)(∑

w

fw(xu :z−u)
)
dx dz (anova)

=
∑

v

∑

w

∫∫
fv(x)fw(xu :z−u) dx dz (linearity)

=
∑

v

∫∫
fv(x)fv(xu :z−u) dx dz (orthogonality)

=
∑

v⊆u

∫∫
fv(x)fv(xu :z−u) dx dz (line integrals)

= f2
∅
+

∑

v⊆u

σ2
u ≡ f2

∅
+ τ2u.

τ̂2u =
1

n

n∑

i=1

f(xi)f(xi,u :zi,−u)−
( 1

n

n∑

i=1

f(xi)
)2
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Even better

τ2u =

∫∫
f(x)

(
f(xu :z−u)− f(z)

)
dx dz

τ̂2u =
1

n

n∑

i=1

f(xi)
(
f(xi,u :zi,−u)− f(zi)

)

This avoids subtracting f̂2
∅

. It is unbiased: E
(
τ̂2u) = τ2u

Kucherenko, Feil, Shah, Mauntz (2011)

Improved statistical efficiency

τ̂2u =
1

n

n∑

i=1

f(xi)f(xi,u :zi,−u)−

(
1

n

n∑

i=1

f(xi) + f(xi,u :zi,−u)

2

)2

Janon, Klein, Lagnoux, Nodet & Prieur (2012)
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For τ2u
1

2

∫∫ (
f(x)− f(x−u :zu)

)2
dx dz

=
1

2

(
σ2 + f2

∅
− 2

(
τ2−u + f2

∅

)
+ σ2 + f2

∅

)

= σ2 − τ2−u

= τ2u.

Sobol’s estimates are like tomography: integrals reveal internal structure.
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For mean dimension

d∑

j=1

τ2j =
d∑

j=1

∑

v∩{j}6=∅

σ2
v

=
∑

v

σ2
v

d∑

j=1

1v∩{j}6=∅

=
∑

v

|v|σ2
v

From Liu & O (2006)

Generalizes to
∑

v

|v|kσ2
v for k > 1.
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For superset importance

Υ2
u =

1

2|u|

∫∫ (∑

v⊆u

(−1)|u−v|f(xv :z−v)
)2

dx dz

Mean of a square of differences · · · better than differences of means of squares.

Includes 2|u| terms.

Reasonable for estimating σ2
{1,2,...,d} when d is not too large.

(2d terms per integrand versus 2d integrands.)

From Liu & O (2006)

Generalizes τ2u formula from 2 terms to 2|u| terms.
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ANOVA grand challenge
What if x ∼ w but w is not a product measure? Very hard. See:

• Stone (1984)

Retains
∫
fu(x)fv(x)w(x) dx = 0 for u ⊂ v

• Hooker (1987)

Applies to machine learning functions

• Chastaing, Gamboa & Prieur (2012)

New estimation methods for generalized indices

• Kucherenko, Tarantola & Annoni (2012)

Use Gaussian copula

Sampling designs

• Stein (1987) LHS for dependent data

• Petelet, Iooss, Asserin & Loredo (2010) Linearly constrained LHS
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Part I(b): quasi-regression

• Like regression but faster

• Can use for estimation of fu(x)
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Quasi-regression
Suppose that f(x) is inexpensive:

1) f may be the surrogate function

2) f may be a prediction rule in statistical machine learning

Then we may be able to take millions of points xi ∈ [0, 1]d . . .

and get an interpretable approximation.

Basis functions

For k ∈ {0, 1, 2, . . . }d, let φk(x) ∈ L2 : [0, 1]d satisfy

φ0(x) = 1
∫

φk(x)φj(x) dx = 1j=k

Examples

Fourier, Wavelets, Walsh, polynomials
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Truncated model

f(x) =
∑

k∈K

βkφk(x) + η(x), x ∼ U[0, 1]d

≡ Φ(x)Tβ + η(x)

Φ(x) = (φ(0,...,0), φ(1,0,...,0), . . . )
T ∈ R|K|

Choosing K

Keep k with small ‖k‖1 and/or ‖k‖0 and/or ‖k‖∞.

Best β ∈ R|K|

β∗ = E
(
Φ(x)Φ(x)T

)−1
E
(
Φ(x)f(x)

)

= E
(
Φ(x)f(x)

)
(by orthogonality)
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Regression and quasi-regression

β̂ =

( n∑

i=1

Φ(xi)Φ(xi)
T

)−1 n∑

i=1

Φ(xi)f(xi) (regression)

β̃ =
(
nI|K|

)−1 n∑

i=1

Φ(xi)f(xi)

=
1

n

n∑

i=1

Φ(xi)f(xi) (quasi-regression)

Comparison for p = |K| basis functions

Method Time Space

Regression O(np2) O(p2)

Quasi-regression O(np) O(p)

Use n obs for regression or n′ = O(np) obs for quasi-regression

Quasi-regression can have p ≫ n MASCOT 2012 Meeting, Bruyères-le-Châtel
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Regression vs. quasi-regression

If p ≫ n, then (statistically) regression is better than quasi-regression at estimating β given xi,

and yi = f(xi) for i = 1, . . . , n

Computationally, quasi-regression allows much larger bases

Both are faster than kriging when n is large
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Black box approximation
1) Select large basis Φk for k ∈ K ⊂ Zd

2) Set all β̃k = 0

3) Get stream of xi for i > 1

4) Form unbiased estimates β̃k from the stream

5) Shrink: f̃n(x) =
∑

k γk,nβ̃kφk(x), for 0 6 γk,n 6 1

6) Estimate error by averaging (f(xn)− f̃n−1(xn))
2

The (xi, yi) flow through the algorithm. No point is looked at twice.
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Example
Neural net on d = 6 inputs Jiang & O (2001)

φj Legendre polynomial of degree j

φk =
∏d

j=1 φrj (xj)

K =

{
k |

d∑

j=1

rj 6 8,

d∑

j=1

1rj 6=0 6 3, max
16j6d

rj 6 4

}

p = |K| = 1145, n = 500,000 318 seconds in java circa 2000

Results

σ2
{1}

.
= 0.520σ2

d∑

j=1

σ2
{j}

.
= 0.797σ2

∑

|u|62

σ2
u

.
= 0.982σ2 σ2

1,4
.
= σ2

3,4
.
= 0.055σ2

One also gets plottable estimates of fu(x). f{1} was nearly linear.
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Estimating linearity

f(x) = β0 +
d∑

j=1

βjφj(xj) + η(x)

∫ 1

0

φj(x) dx = 0

∫ 1

0

φj(x)
2 dx = 1

∫ 1

0

φj(x)
4 dx < ∞

R2 ≡
σ2
L

σ2
L +

∫
η2(x) dx

σ2
L ≡

d∑

j=1

β2
j

R2 ≈ 1 makes f easier to integrate, approximately maximize, or visualize
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Estimating linearity ctd.

β̃j =
1

n

n∑

i=1

φj(xij)f(xi), E
(
β̃j

)
= βj

σ̂2
L =

d∑

j=1

β̃2
j (severe but correctable bias)

E
(
σ̂2
L

)
=

n− 1

n
σ2
L +

1

n
E
(
f(x)2

∑

j

φj(xj)
2
)

B̂L =
1

n2

n∑

i=1

f(xi)
2

(∑

j

φj(xj)
2

)
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Bias corrected quasi-regression

σ̂2
L,BC =

n

n− 1

(
σ̂2
L − B̂L

)

We get

E
(
σ̂2
L,BC

)
= σ2

L

E
((

σ̂2
L,BC − σ2

L

)2)
= O

( 1

n
+

d2

n3

)

even when β is not sparse if n ≫ d2/3 O (2000)

also work in progress with Zuk

Workable for d = 1,000,000 and n = 100,000.
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Part I(c): quasi-Monte Carlo
• Monte Carlo

• Latin hypercube sampling

• Quasi-Monte Carlo

• Randomized quasi-Monte Carlo

MASCOT 2012 Meeting, Bruyères-le-Châtel



Understanding functions by sampling, part I 36

Sampling to estimate integrals

µ =

∫
f(x) dx

µ̂ = µ̂n =
1

n

n∑

i=1

f(xi), xi ∈ [0, 1]d

Law of large numbers

If xi
iid
∼ U[0, 1]d and

∫
|f(x)| dx < ∞ then Pr

(
µ̂n → µ

)
= 1.

Improvements

Choose xi more strategically
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MC, LHS, QMC
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QMC goal
QMC makes U{x1,x2, . . . ,xn} ≈ U[0, 1]d. Then

µ̂ =

∫
f(x) dU{x1,x2, . . . ,xn}

µ =

∫
f(x) dU[0, 1]d

will be close.

Koksma-Hlawka

|µ̂− µ| 6 D∗
n(x1, . . . ,xn)‖f‖HK

D∗
n, a discrepancy, that is

D∗
n = ‖U{x1,x2, . . . ,xn} −U[0, 1]d‖

‖ · ‖HK total variation (Hardy-Krause)

We can make D∗
n = O((log n)d/n)
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QMC rates
O((log n)d/n) is really large for large d and feasible n.

n (log n)10/n n−1/2

102 4.3× 104 10−1

104 4.4× 105 10−1

106 2.5× 105 10−2

108 4.5× 104 10−3

1010 4.2× 103 10−4

1012 2.6× 102 10−5

d = 10 (logN)10

N ≈ N−1/2 some 1039 < N < 1040

d = 20 (logN)20

N ≈ N−1/2 some 1093 < N < 1094

Taking account of the constants will change the numbers, but not the implication.
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Surprise!

A famous 360 dimensional integrand (from finance) was successfully integrated by QMC

Paskov & Traub (1995)
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QMC and ANOVA

f(x)− µ =
∑

|u|>0

fu(x)

|µ̂− µ| 6
∑

|u|>0

∣∣∣∣
1

n

n∑

i=1

fu(xi)

∣∣∣∣

6 B
∑

|u|>0

(log n)|u|

n
‖fu‖HK

Small error if each large |u| has small ‖fu‖HK.

I.e., if f is dominated by its low order interactions.

no surprise

The 360 dimensional integrand (version in Caflisch, Morokoff & O)

was nearly additive f(x) ≈ f∅ +
∑

j f{j}(xj)
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Effective dimension
A function f has effective dimension s in the truncation sense if

∑

u⊆{1,2,...,s}

σ2
u > 0.99σ2

A function f has effective dimension s in the superposition sense if

∑

|u|6s

σ2
u > 0.99σ2

Superposition is a better description of QMC success than truncation.
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Randomized QMC
QMC is deterministic. No practical error estimate.

Under randomized QMC (RQMC)

1) Each xi ∼ U[0, 1]d

2) D∗
n(x1, . . . ,xn) = O(n−1+ǫ) (with prob. 1)

As a result E(µ̂) = µ.

Given independent replicates: µ̂1, . . . , µ̂R

µ̂ =
1

R

R∑

r=1

µ̂r

V̂ar(µ̂) =
1

R(R− 1)

R∑

r=1

(µ̂r − µ̂)2.
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Error cancellation
Random errors cancel (deterministic ones need not). Some RQMC methods attain

E((µ̂− µ)2) = O(n−3+ǫ), any ǫ > 0

µ̂− µ = Op(n
−3/2+ǫ), any ǫ > 0

Still requires low effective dimension.

Var(µ̂) =
∑

|u|>0

Var
( 1

n

n∑

i=1

fu(xi)
)
.

Scrambled nets: O (1997)
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Part II
Builds on and extends these topics in new directions
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