Sampling to understand high dimensional functions Part II: new material

Art B. Owen

Stanford University

MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel

This course

This is a two part course.

- I) Review of material on:
 - a) Functional ANOVA
 - b) quasi-regression
 - c) quasi-Monte Carlo sampling
- II) New material on:
 - a) applications to missing heritability problems
 - b) effective dimension of some Sobolev spaces
 - c) new Sobol' index quantities

Part II(a): missing heritability

Based on work in progress with Or Zuk of the Broad Institute

Real world data \cdots that resembles a computer experiment.

Background on SNPs

SNPs are Single Nucleotide Polymorphisms

Base pairs are A, C, G or T

At most loci, everybody gets the same

At some loci, there is a minor allele, e.g. most are A but 10% are T

SNP chips, measure 100,000s to 1,000,000s of loci

Each person has 0, 1, or 2 copies of the minor allele

Typical sample sizes

1000s of people and 100,000s of SNPs

Prototypical data								
_	Subject	SNP1	SNP_2	•••	$SNP_{100,000}$	Height	Diabetes	
	1	0	0	• • •	1	1.7m	0	
	2	2	0	•••	0	2.1m	1	
	3	1	0	• • •	1	1.5m	0	
	÷	:	÷	·	:	- - -	÷	
	1000	0	1	•••	0	1.9m	1	

We would like to predict based on SNPs.

Typically use p-value 10^{-8} to avoid false positives.

The few discoveries explain only a little of phenotype (eg height).

Eg: height may be $\approx 80\%$ heritable but discovered genes explain only 5–10%.

Where is the missing heritability?

Quasi-regression for heritability

Genotype is $\boldsymbol{x} = (x_1, \dots, x_d)$. Phenotype is y. Assume $\|\boldsymbol{x}\|$ and |y| bounded.

Both normalized: $\mathbb{E}(y) = \mathbb{E}(x_j) = 0$ and $\mathbb{E}(y^2) = \mathbb{E}(x_j^2) = 1$.

Model

$$y_i = \sum_{j=1}^d \beta_j x_{ij} + \varepsilon_i$$
$$\mathbb{E}(x_j \varepsilon) = 0$$

 ε includes environment, environment $\times {\rm genes}, \, {\rm genes} \times {\rm genes}$

Linear heritability is

$$\sigma_{\rm L}^2 = \sum_{j=1}^d \beta_j^2$$

We assume (unrealistically) that x_j is independent of x_k for $j \neq k$. MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel Holds for most pairs j, k Will require later adjustments

Quasi-regression

$$\hat{\sigma}_{L,BC}^{2} = \frac{n}{n-1} (\hat{\sigma}_{L}^{2} - \hat{B}), \text{ where}$$

$$\hat{B} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{d} x_{ij}^{2} y_{i}^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} ||\boldsymbol{x}_{i}||^{2} y_{i}^{2} = O_{p} \left(\frac{d}{n}\right)$$
Then

$$\mathbb{E}\left(\left(\hat{\sigma}_{\mathrm{L,BC}}^2 - \sigma_{\mathrm{L}}^2\right)^2\right) = O\left(\frac{1}{n} + \frac{d^2}{n^3}\right) \qquad n \ge 2, \quad d \ge 1$$
(1)

We need $n \gg d^{2/3}$ i.e. $d \gg n$ ok even if β is not sparse

 \exists lower bounds for estimation of non-sparse β Candès & Davenport (2011), Raskutti, Wainwright & Yu (2009)^{SCOT-NUM 2012} Meeting, Bruyères-le-Châtel

Concentration of measure

$$\|\boldsymbol{x}_i\|^2 = \sum_{j=1}^d x_{ij}^2 \approx d$$
$$\widehat{B} = \frac{1}{n^2} \sum_{i=1}^n \|\boldsymbol{x}_i\|^2 y_i^2$$
$$\widetilde{B} = \frac{d}{n^2} \sum_{i=1}^n y_i^2$$

We can show

$$\mathbb{E}\left(\left(\widehat{B} - \widetilde{B}\right)^2\right) = O\left(\frac{d}{n^2}\right)$$

So replacing $||\boldsymbol{x}_i||^2$ by d makes a negligible change Somewhat faster

O (2000) has an example with $d=1,\!000,\!000$ and $n=100,\!000$

Additive model

$$z_j = \frac{x_j^2 - \mathbb{E}(x_j^3)x_j - 1}{\sqrt{\mathbb{E}(x_j^4) - \mathbb{E}(x_j^3)^2 - 1}}$$
$$y_i = \sum_{j=1}^d \beta_j x_{ij} + \sum_{j=1}^d \gamma_j z_{ij} + \varepsilon_i$$

Captures effects of dominant vs. recessive genes

 $x_1, \cdots, x_d, \ z_1, \cdots, z_d$ are uncorrelated

Additive heritability

$$\sigma_{\mathbf{A}}^2 = \sum_{j=1}^d \beta_j^2 + \sum_{j=1}^d \gamma_j^2$$

$$\widetilde{\gamma}_{j} = \frac{1}{n} \sum_{i=1}^{n} z_{ij} y_{i}$$
$$\widehat{\sigma}_{A}^{2} = \sum_{j} (\widetilde{\beta}_{j}^{2} + \widetilde{\gamma}_{j}^{2})$$

$$\hat{\sigma}_{A,BC}^{2} = \frac{n}{n-1} (\hat{\sigma}_{A}^{2} - \hat{B}_{A}), \text{ where}$$
$$\hat{B}_{A} = \frac{1}{n^{2}} \sum_{i=1}^{n} (\|\boldsymbol{x}_{i}\|^{2} + \|\boldsymbol{z}_{i}\|^{2}) y_{i}^{2} \approx \frac{2d}{n^{2}} \sum_{i=1}^{n} y_{i}^{2}.$$

Again

$$\mathbb{E}\left(\left(\hat{\sigma}_{\mathrm{A,BC}}^2 - \sigma_{\mathrm{A}}^2\right)^2\right) = O\left(\frac{1}{n} + \frac{d^2}{n^3}\right)$$

Quadratic model

$$y_i = \sum_{j=1}^d \beta_j x_{ij} + \sum_{j=1}^d \gamma_j z_{ij} + \sum_{j$$

The model allows interactions.

lt

There are 2d + d(d-1)/2 parameters.

Could be an issue for bias adjusted quasi-regression estimation of Sobol' indices

MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel

Part II(b):

Effective dimension of some Sobolev spaces

Weighted spaces are used in QMC, starting with

Hickernell (1996) and Sloan & Wozniakowski (1998)

They downweight high order interactions and high index variables.

1) x_j ordinarily more important than x_{j+1}

2) $f_u(\boldsymbol{x})$ ordinarily more important than $f_v(\boldsymbol{x})$ for |v| > |u|

QMC can integrate functions in some such spaces without any curse of dimensionality

Those spaces are dominated by low order components (as follows)

Effective dimension

A function has effective dimension s in the **truncation** sense if

$$\sum_{u \subseteq \{1,2,\ldots,s\}} \sigma_u^2 \geqslant (1-\varepsilon)\sigma^2$$

A function has effective dimension s in the **superposition** sense if

$$\sum_{|u|\leqslant s} \sigma_u^2 \geqslant (1-\varepsilon)\sigma^2$$

Commonly $\varepsilon=0.01$

QMC often succeeds on functions of low effective dimension in the superposition sense

Caflisch, Morokoff & O (1997)

Weighted spaces

Pick weights $1 \ge \gamma_1 > \gamma_2 > \cdots > \gamma_d > 0$. Let $\gamma_u = \prod_{j \in u} \gamma_j$.

Inner product and norm

$$\langle f,g \rangle_{W_{d,\gamma}} = \sum_{u \subseteq 1:d} \frac{1}{\gamma_u} \int \frac{\partial^{|u|} f(\boldsymbol{x})}{\partial \boldsymbol{x}_u} \frac{\partial^{|u|} \bar{g}(\boldsymbol{x})}{\partial \boldsymbol{x}_u} \, \mathrm{d}\boldsymbol{x} \\ \|f\|_{W_{d,\gamma}}^2 = \langle f,f \rangle_{W_{d,\gamma}}.$$

Function class = ball

 $f \in \mathcal{B}(d,\gamma,\rho) \equiv \{f \mid \|f\|_{W_{d,\gamma}} \leqslant \rho\}$

How it works

Large
$$|u| \implies \text{small } \gamma_u \implies \text{large penalty factor } 1/\gamma_u$$

 $\implies \text{only small } \frac{\partial^{|u|} f}{\partial x_u} \text{ are allowed}$
So x_u not important.

Tractability over
$$\mathcal{B}(d,\gamma,
ho)$$

Quadrature is **tractable** if the worst case error is $O(n^{-a}d^{b})$

Quadrature is **strongly tractable** if the worst case error is $O(n^{-a})$, uniformly in d (see monographs Novak & Woźniakowski (2008,2010))

$$\sum_{j=1}^{\infty} \gamma_j < \infty \implies \text{strong tractability, with } a = 1/2$$
$$\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty \implies \text{strong tractability, with } a = 1 - \epsilon$$

Rapid weight decay \implies no dimension effect

What sort of functions are in $\mathcal{B}(d,\gamma,\rho)$?

Strong properties · · · often come from strong assumptions

Tractability and effective dimension

When quadrature is strongly tractable,

then the functions in $\mathcal{B}(d,\gamma,\rho)$ do not have large σ_u^2 for large |u|.

To describe this

Find ρ^* , the smallest ρ that allows $f \in \mathcal{B}(d, \gamma, \rho)$ with $\operatorname{Var}(f) = 1$.

Then find the largest σ_u^2 for $f \in \mathcal{B}(d, \gamma, \rho^*)$ and $|u| \ge s$.

If this $\sigma_u^2 \leqslant 0.01$ then $\mathcal{B}(d,\gamma,\rho)$ has effective dimension at most s

An inequality

Let f have continuous derivative $f' \in L^2[0,1]$ with $\int_0^1 f(x) \, dx = 0$. Then

$$\sigma^{2} = \int_{0}^{1} f(x)^{2} \, \mathrm{d}x \leqslant \frac{1}{\pi^{2}} \int_{0}^{1} |f'(x)|^{2} \, \mathrm{d}x.$$

Sobol' (1963) appeals to calculus of variations.

Fourier methods generalize nicely to higher dimensional analogues.

We can bound σ_u^2 by a multiple of

$$\int \left(\frac{\partial^{|u|} f(\boldsymbol{x})}{\partial \boldsymbol{x}_u}\right)^2 \mathrm{d}\boldsymbol{x}.$$

There is no reverse inequality, bounding $\int |f'|^2$ by σ^2 .

Related

Lamboni, Iooss, Popelin & Gamboa (2012)

bound Sobol' indices by integrated derivatives, for Boltzmann measures

Fourier representation

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} \lambda_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k}^{\mathsf{T}} \boldsymbol{x}}$$
$$\lambda_{\boldsymbol{k}} = \int_{[0,1]^d} f(\boldsymbol{x}) e^{-2\pi i \boldsymbol{k}^{\mathsf{T}} \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x}$$
$$\operatorname{Var}(f) = \sum_{\boldsymbol{k} \neq \boldsymbol{0}} |\lambda_{\boldsymbol{k}}|^2$$

After some algebra

$$\frac{\partial^{|u|} f(\boldsymbol{x})}{\partial \boldsymbol{x}_{u}} = \sum_{\boldsymbol{k} \in \mathbb{Z}^{d}} \lambda_{\boldsymbol{k}} \Big((2\pi i)^{|u|} \prod_{j \in u} k_{j} \Big) e^{2\pi i \boldsymbol{k}^{\mathsf{T}} \boldsymbol{x}}, \quad \text{and}$$
$$\|f\|_{W_{d,\gamma}}^{2} = \sum_{\boldsymbol{k} \in \mathbb{Z}^{d}} |\lambda_{\boldsymbol{k}}|^{2} \prod_{j=1}^{d} \Big(1 + \frac{4\pi^{2} k_{j}^{2}}{\gamma_{j}} \Big)$$

Finding the dimension

maximize
$$\operatorname{Var}(f) = \sum_{k \neq 0} |\lambda_k|^2$$

subject to $||f||^2 = \sum_{k \in \mathbb{Z}^d} |\lambda_k|^2 \prod_{j=1}^d \left(1 + \frac{4\pi^2 k_j^2}{\gamma_j}\right) \leqslant \rho^2$

Maximum happens when $\lambda_{k} = 0$ except for $k = (\pm 1, 0, 0, ..., 0)$. We get $||f||^{2} = Var(f)(1 + 4\pi^{2}/\gamma_{1})$, so $\rho^{*,2} = 1 + 4\pi^{2}/\gamma_{1}$.

$$\sigma_u^2 = \sum_{\boldsymbol{k}_u \in (\mathbb{Z} - \{0\})^{|u|}} |\lambda_{\boldsymbol{k}_u : \boldsymbol{0}_{-u}}|^2$$

Similarly $\max_{f \in \mathcal{B}(d,\gamma,\rho^*)} \sigma_u^2 = \frac{1 + 4\pi^2/\gamma_1}{\prod_{j \in u} (1 + 4\pi^2/\gamma_j)}$

If |u| is large and γ_j decay rapidly \cdots then σ_u^2 must be small

MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel

Effective dimensions

For $\gamma_j = j^{-1.01}$

Just barely strongly tractable

Truncation dimension is 97

Superposition dimension is 2

For
$$\gamma_j=j^{-2}$$

Almost $O(n^{-1+\epsilon})$ uniformly in d

Truncation dimension is 10

Superposition dimension is 1

These use $\varepsilon = 0.01$

At $\varepsilon=0.0001$ superposition dimensions rise to 3 and 2

Part II(c): new Sobol' indices

Recall

$$\underline{\tau}_{u}^{2} = \iint f(\boldsymbol{x}) (f(\boldsymbol{x}_{u} : \boldsymbol{z}_{-u}) - f(\boldsymbol{z})) \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}\boldsymbol{z}$$

MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel

What other quantities can we get?

In principal we can get any σ_u^2 from

$$\sigma_u^2 = \sum_{v \subseteq u} (-1)^{|u-v|} \underline{\tau}_v^2$$

we prefer

- 1) unbiased estimates
- 2) low variance
- 3) averages of squared differences to differences of squares
- 4) to avoid $O(2^d)$ integrals, or even $O(d^2)$ integrals

The set of possibilities

$$\sum_{u \subseteq \mathcal{D}} \sum_{v \subseteq \mathcal{D}} \lambda_{u,v} \iint f(\boldsymbol{x}_u : \boldsymbol{z}_{-u}) f(\boldsymbol{x}_v : \boldsymbol{z}_{-v}) \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}\boldsymbol{z}$$

where

$$oldsymbol{y} = oldsymbol{x}_u : oldsymbol{z}_{-u} \implies y_j = egin{cases} x_j, & j \in u \ z_j, & j
otin u \end{cases}$$

and

$$\lambda_{u,v} \in \mathbb{R}$$

A 2^{2d} dimensional space of Sobol' quantities We only want $\sum_u \delta_u \sigma_u^2$ for $\delta \in \mathbb{R}^{2^d}$

(overparameterized)

Special subsets

1) Squares

$$\iint \left(\sum_{u} \lambda_{u} f(\boldsymbol{x}_{u} : \boldsymbol{z}_{-u})\right)^{2} \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{z} \qquad \text{Nonnegative}$$

2) Bilinear

$$\iint \left(\sum_{u} \lambda_{u} f(\boldsymbol{x}_{u} : \boldsymbol{z}_{-u}) \right) \left(\sum_{u} \gamma_{u} f(\boldsymbol{x}_{u} : \boldsymbol{z}_{-u}) \right) d\boldsymbol{x} d\boldsymbol{z}$$
 Fast

3) All for one

$$\iint \left(\sum_{u} \lambda_{u} f(\boldsymbol{x}_{u} : \boldsymbol{z}_{-u}) \right) f(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}\boldsymbol{z} \qquad \text{Simple}$$

4) Contrast

$$\sum_{u} \sum_{v} \lambda_{u,v} = 0 \qquad \text{Free of } f_{\varnothing}^2$$

The basis

$$\iint f(\boldsymbol{x}_u:\boldsymbol{z}_{-u})f(\boldsymbol{x}_v:\boldsymbol{z}_{-v})\,\mathrm{d}\boldsymbol{x}\,\mathrm{d}\boldsymbol{z} = f_{\varnothing}^2 + \underline{\tau}_{\mathrm{NXOR}(u,v)}^2$$

Not exclusive or

$j \in u$	$j \in v$	$\operatorname{XOR}(u, v)$	NXOR(u, v)
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

 $j \in \mathrm{NXOR}(u, v) \iff j \in u \cap v \text{ or } j \in u^c \cap v^c$

Proof

$$\begin{split} &\iint f(\boldsymbol{x}_{u}:\boldsymbol{z}_{-u})f(\boldsymbol{x}_{v}:\boldsymbol{z}_{-v}) \,\mathrm{d}\boldsymbol{x} \,\mathrm{d}\boldsymbol{z} \\ &= \sum_{w \subseteq \mathcal{D}} \sum_{w' \subseteq \mathcal{D}} \iint f_{w}(\boldsymbol{x}_{u}:\boldsymbol{z}_{-u})f_{w'}(\boldsymbol{x}_{v}:\boldsymbol{z}_{-v}) \,\mathrm{d}\boldsymbol{x} \,\mathrm{d}\boldsymbol{z} \\ &= \sum_{w \subseteq \mathcal{D}} \iint f_{w}(\boldsymbol{x}_{u}:\boldsymbol{z}_{-u})f_{w}(\boldsymbol{x}_{v}:\boldsymbol{z}_{-v}) \,\mathrm{d}\boldsymbol{x} \,\mathrm{d}\boldsymbol{z} \\ &= \sum_{w} 1_{w \subseteq (u \cap v) \cup (u^{c} \cap v^{c})} \int f_{w}(\boldsymbol{x})^{2} \,\mathrm{d}\boldsymbol{x} \\ &= \sum_{w \subseteq \mathrm{NXOR}(u,v)} \int f_{w}(\boldsymbol{x})^{2} \,\mathrm{d}\boldsymbol{x} \\ &= f_{\varnothing}^{2} + \underline{\tau}_{\mathrm{NXOR}(u,v)}^{2}. \end{split}$$

$\begin{aligned} & \text{All for one} \\ & \sum_{v} \lambda_{v} \iint f(\boldsymbol{x}) f(\boldsymbol{x}_{v} : \boldsymbol{z}_{-v}) \, \mathrm{d} \boldsymbol{x} \, \mathrm{d} \boldsymbol{z} \\ & = \sum_{v} \lambda_{v} \left(f_{\varnothing}^{2} + \underline{\tau}_{\mathrm{NXOR}(\mathcal{D}, v)}^{2} \right) \\ & = f_{\varnothing}^{2} \sum_{v} \lambda_{v} + \sum_{v} \lambda_{v} \underline{\tau}_{v}^{2} \end{aligned}$

Combinations with $\sum_{v \subseteq \mathcal{D}} \lambda_v = 0$ are free of f^2_{\varnothing}

$$\begin{aligned} & \operatorname{For}\,\underline{\tau}_u^2 \text{ take} \\ & \lambda_v = \begin{cases} (-1)^{|u-v|} & u \subseteq v \\ 0 & \text{ else.} \end{cases} \end{aligned}$$

(Lots of alternation)

Mean squares

If $\sum_v \lambda_v = 0$ then the following is a nonnegative estimate of a linear combination of σ_u^2

$$\iint \left(\sum_{v} \lambda_{v} f(\boldsymbol{x}_{v} : \boldsymbol{z}_{-v}) \right)^{2} d\boldsymbol{x} d\boldsymbol{z}$$
$$= \sum_{v} \sum_{w} \lambda_{v} \lambda_{w} \iint f(\boldsymbol{x}_{v} : \boldsymbol{z}_{-v}) f(\boldsymbol{x}_{w} : \boldsymbol{z}_{-w}) d\boldsymbol{x} d\boldsymbol{z}$$
$$= \sum_{v} \sum_{w} \lambda_{v} \lambda_{w} \underline{\tau}_{\mathrm{NXOR}(w,v)}^{2}$$

Combinations with $\sum_{v\subseteq \mathcal{D}}\lambda_v=0$ are free of f^2_{\varnothing}

Q: What can we get as a square?

A:
$$\overline{ au}_u^2$$
 and Υ_u^2 (but what else?)

Cannot get $\underline{\tau}_u^2$ as a square

$$\iint \left(\lambda_0 f(\boldsymbol{z}) + \lambda_1 f(\boldsymbol{x}_u : \boldsymbol{z}_{-u}) + \lambda_d f(\boldsymbol{x})\right)^2 d\boldsymbol{x} d\boldsymbol{z}$$

$$\text{the } \lambda_0 = A - \lambda_1 = B - \lambda_1 = -A - B \quad \text{WI OG} \quad f_u = 0$$

with $\lambda_0 = A$, $\lambda_d = B$, $\lambda_1 = -A - B$, WLOG $f_{\varnothing} = 0$

XOR
$$\varnothing$$
 u D NXOR \varnothing u D \varnothing $\begin{bmatrix} \varnothing$ u D \varnothing $\begin{bmatrix} D & -u & \varnothing \\ -u & \emptyset & u \\ D & -u & \emptyset \end{bmatrix}$ \rightarrow u $\begin{bmatrix} -u & D & u \\ -u & D & u \\ \emptyset & u & D \end{bmatrix}$

$$\sigma^{2}(A^{2} + B^{2} + (A + B)^{2})$$
$$-\underline{\tau}_{u}^{2}B(A + B) - \underline{\tau}_{-u}^{2}A(A + B)$$

MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel

 $\underline{\tau}_{u}^{2}$ as a square

We get

$$\iint \left(Af(\boldsymbol{z}) - (A+B)f(\boldsymbol{x}_u:\boldsymbol{z}_{-u}) + B\lambda_d f(\boldsymbol{z}) \right)^2 d\boldsymbol{x} d\boldsymbol{z}$$
$$= \sigma^2 (A^2 + B^2 + (A+B)^2) - \underline{\tau}_u^2 B(A+B) - \underline{\tau}_{-u}^2 A(A+B)$$

To eliminate σ^2 and $\underline{\tau}^2_{-u}$ we need A = B = 0. Substitution $\underline{\tau}^2_{-u} = \sigma^2 - \overline{\tau}^2_u$ does not help.

Introducing more terms inside the square means more terms that need to cancel (e.g. $\underline{\tau}_v^2$ for $v \neq u$)

Weighted sums of squares

$$\sum_{r=1}^{R} \alpha_r \iint \left(\sum_{u \subseteq \mathcal{D}} \lambda_{r,u} f(\boldsymbol{x}_u : \boldsymbol{z}_{-u}) \right)^2 \mathrm{d}\boldsymbol{x} \, \mathrm{d}\boldsymbol{z}$$

The coefficient of $\sigma_{\mathcal{D}}^2$ is:

$$\sum_{r=1}^{R} \alpha_r \sum_{u \subseteq \mathcal{D}} \lambda_{r,u}^2$$

We cannot make this 0 without $\alpha_r < 0$ (or trivially $\lambda_{r,u} = 0$ or all $\alpha_r = 0$)

So \cdots no unbiased nonnegative estimate of $\underline{\tau}_u^2$. (checkmate)

Bilinear, with O(d) evaluations

Suppose $\lambda_u = 0$ for $|u| \notin \{0, 1, d-1, d\}$. Same for $\gamma_v = 0$.

Then the rule

$$\sum_{u} \sum_{v} \lambda_{u} \gamma_{v} \iint f(\boldsymbol{x}_{u} : \boldsymbol{z}_{-u}) f(\boldsymbol{x}_{v} : \boldsymbol{z}_{-v}) \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}\boldsymbol{z}$$

takes O(d) computation \cdots not $O(d^2)$.

For $j \neq k$, let j represent $\{j\}$ and -j represent $-\{j\}$ etc.

O(d) pairs, with $k \neq j$

NXOR
$$\varnothing$$
 j k $-j$ $-k$ \mathcal{D}
 \emptyset
 $\begin{bmatrix} \mathcal{D} & -j & -k & j & k & \varnothing \\ -j & \mathcal{D} & -\{j,k\} & \varnothing & \{j,k\} & j \\ j & \varnothing & \{j,k\} & \mathcal{D} & -\{j,k\} & -j \\ \varnothing & j & k & -j & -k & \mathcal{D} \end{bmatrix}$

 $\frac{\tau^2}{NXOR(u,v)}$

Assuming $f_{\varnothing} = 0$ (WLOG if $\sum_u \lambda_u = 0$)

 $\sum_{j} \underline{\tau}_{j}^{2} = \sum_{j} \sigma_{j}^{2} \qquad \sum_{j} \sum_{k \neq j} \underline{\tau}_{-\{j,k\}}^{2} = d(d-1)\sigma^{2} - \sum_{u} (2(d-1) - |u|)|u|\sigma_{u}^{2}$ $\sum_{j} \underline{\tau}_{-j}^{2} = d\sigma^{2} - \sum_{u} |u|\sigma_{u}^{2} \qquad \sum_{j} \sum_{k \neq j} \underline{\tau}_{\{j,k\}}^{2} = \sum_{u:|u|=2} \sigma_{u}^{2} + 2\sum_{j} \sigma_{j}^{2}$

Liu & O (2006) Theorem 2

MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel

Using O(d) terms

We can estimate

$$\sum_{u} \sigma_{u}^{2} 1_{|u|=1}$$
$$\sum_{u} \sigma_{u}^{2} 1_{|u|=2}$$
$$\sum_{u} |u| \sigma_{u}^{2}$$
$$\sum_{u} |u|^{2} \sigma_{u}^{2}$$

!

Another O(d) quantity

Largest element in u:

$$\lceil u \rceil = \begin{cases} \max\{j \mid j \in u\}, & u \neq \emptyset \\ 0, & u = \emptyset. \end{cases}$$

Then

$$\begin{split} \sum_{j=1}^{d-1} \overline{\tau}_{\{1,2,...,j\}^c}^2 &= \sum_u \sigma_u^2 \sum_{j=1}^{d-1} 1_{u \cap \{1,...,j\}^c \neq \emptyset} \\ &= \sum_u \sigma_u^2 \sum_{j=1}^{d-1} 1_{u \cap \{j+1,...,d\} \neq \emptyset} \\ &= \sum_u \sigma_u^2 (\lceil u \rceil - 1). \end{split}$$

A mean dimension in the truncation sense.

Easier to compute than effective dimension.

Optimal estimates

Sobol's estimates have been improved (!!) recently: Kucherenko, Feil, Shah, Mauntz (2011), and Janon, Klein, Lagnoux, Nodet & Prieur (2012) (Grenoble)

Let $\eta^2 = \sum_u \delta_u \sigma_u^2$.

We would like

$$\mathbb{E}(\hat{\eta}^2) = \eta^2$$
 and, $\operatorname{Var}(\hat{\eta}^2) = \operatorname{minimum}.$

Using variance components theory

Unfortunately $Var(\hat{\eta}^2)$ depends on 4'th moments

Fortunately There is a theory of **MIN**imum **Q**uadratic **N**orm **UN**biased **E**stimates (MINQUE)*

Unfortunately They do not appear to be available for crossed random effects

Fortunately We can choose where to sample and our estimator.

*C. R. Rao (1970s)

Speculation

For all for one $\sum_u \lambda_u \underline{\tau}_v^2$

minimize
$$\sum_{u} \lambda_{u}^{2}$$

subject to $\sum_{u} \lambda_{u} \underline{\tau}_{u}^{2} = \sum_{u} \delta_{u} \sigma_{u}^{2}$
and $\sum_{u} \lambda_{u} = 0.$

This ignores # of function evaluations. So instead

minimize
$$\left(\sum_{u} \lambda_{u}^{2}\right) \times \left(\sum_{u} 1_{\lambda \neq 0}\right) = \|\lambda\|_{2}^{2} \times \|\lambda\|_{0}$$

Merci, la deuxieme fois

- GDR Coordinators: Clémentine Prieur, Bertrand looss, Fabien Mangeant
- Scientific and organizing committee
- Françoise Poggi
- National Science Foundation of the U.S. DMS-0906056

MCQMC 2014

Please come to Leuven for MCQMC 2014.

Sensitivity for extremes

Gary Tang asked about sensitivity measures that are more attuned to extreme values of f(x). Some joint work with Josef Dick:

- 1) Transform $f({m x})$ (don't like)
- 2) Analysis of skewness $\int f(m{x})^3\,\mathrm{d}m{x}$ (don't like either)
- 3) Analysis of fourth moment $\int f({m x})^4\,{
 m d}{m x}$ (don't like either)
- 4) Estimate $\int f_u(\boldsymbol{x})^4 \, \mathrm{d} \boldsymbol{x}$ (like much more, still testing!)