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This course
This is a two part course.

I) Review of material on:

a) Functional ANOVA

b) quasi-regression

c) quasi-Monte Carlo sampling

II) New material on:

a) applications to missing heritability problems

b) effective dimension of some Sobolev spaces

c) new Sobol’ index quantities
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Part II(a): missing heritability

Based on work in progress with Or Zuk of the Broad Institute

.

Real world data · · · that resembles a computer experiment.
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Background on SNPs

SNPs are Single Nucleotide Polymorphisms

Base pairs are A, C, G or T

At most loci, everybody gets the same

At some loci, there is a minor allele, e.g. most are A but 10% are T

SNP chips, measure 100,000s to 1,000,000s of loci

Each person has 0, 1, or 2 copies of the minor allele

Typical sample sizes

1000s of people and 100,000s of SNPs

MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel



Understanding functions by sampling, part II 5

Prototypical data
Subject SNP1 SNP2 · · · SNP100,000 Height Diabetes

1 0 0 · · · 1 1.7m 0

2 2 0 · · · 0 2.1m 1

3 1 0 · · · 1 1.5m 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

1000 0 1 · · · 0 1.9m 1

We would like to predict based on SNPs.

Typically use p-value 10−8 to avoid false positives.

The few discoveries explain only a little of phenotype (eg height).

Eg: height may be ≈ 80% heritable but discovered genes explain only 5–10%.

Where is the missing heritability?
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Quasi-regression for heritability
Genotype is x = (x1, . . . , xd). Phenotype is y.

Assume ‖x‖ and |y| bounded.

Both normalized: E(y) = E(xj) = 0 and E(y2) = E(x2
j ) = 1.

Model

yi =

d∑

j=1

βjxij + εi

E(xjε) = 0

ε includes environment, environment×genes, genes×genes

Linear heritability is

σ2
L =

d∑

j=1

β2
j

We assume (unrealistically) that xj is independent of xk for j 6= k.

Holds for most pairs j, k Will require later adjustments
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Quasi-regression

β̃j =
1

n

n∑

i=1

xijyi σ̂2
L =

d∑

j=1

β̃2
j

Recall

σ̂2
L,BC =

n

n− 1

(
σ̂2
L − B̂

)
, where

B̂ =
1

n2

n∑

i=1

d∑

j=1

x2
ijy

2
i =

1

n2

n∑

i=1

‖xi‖
2y2i = Op

( d

n

)

Then

E
((
σ̂2
L,BC − σ2

L

)2)
= O

( 1

n
+

d2

n3

)
n > 2, d > 1 (1)

We need n ≫ d2/3 i.e. d ≫ n ok even if β is not sparse

∃ lower bounds for estimation of non-sparse β

Candès & Davenport (2011), Raskutti, Wainwright & Yu (2009)MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel
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Concentration of measure

‖xi‖
2 =

d∑

j=1

x2
ij ≈ d

B̂ =
1

n2

n∑

i=1

‖xi‖
2y2i

B̃ =
d

n2

n∑

i=1

y2i

We can show

E
((
B̂ − B̃

)2)
= O

( d

n2

)

So replacing ‖xi‖
2 by d makes a negligible change

Somewhat faster

O (2000) has an example with d = 1,000,000 and n = 100,000
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Additive model

zj =
x2
j − E(x3

j )xj − 1
√

E(x4
j )− E(x3

j )
2 − 1

yi =
d∑

j=1

βjxij +
d∑

j=1

γjzij + εi

Captures effects of dominant vs. recessive genes

x1, · · · , xd, z1, · · · , zd are uncorrelated
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Additive heritability

σ2
A =

d∑

j=1

β2
j +

d∑

j=1

γ2
j

γ̃j =
1

n

n∑

i=1

zijyi

σ̂2
A =

∑

j

(β̃2
j + γ̃2

j )

σ̂2
A,BC =

n

n− 1

(
σ̂2
A − B̂A

)
, where

B̂A =
1

n2

n∑

i=1

(‖xi‖
2 + ‖zi‖

2)y2i ≈
2d

n2

n∑

i=1

y2i .

Again

E
((
σ̂2
A,BC − σ2

A

)2)
= O

( 1

n
+

d2

n3

)
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Quadratic model

yi =
d∑

j=1

βjxij +
d∑

j=1

γjzij +
∑

j<k

βjkxijxikεi

The model allows interactions.

There are 2d+ d(d− 1)/2 parameters.

σ2
Q =

∑

j

β2
j +

∑

j

γ2
j +

∑

j<k

β2
jk

For this model

Squared error O
( 1

n
+

d4

n3

)
we need n of order at least d4/3 (ouch)

It no longer works to use ‖xi‖
2 ≈ d

Could be an issue for bias adjusted quasi-regression estimation of Sobol’ indices
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Part II(b):

Effective dimension of some Sobolev spaces

Weighted spaces are used in QMC, starting with

Hickernell (1996) and Sloan & Wozniakowski (1998)

They downweight high order interactions and high index variables.

1) xj ordinarily more important than xj+1

2) fu(x) ordinarily more important than fv(x) for |v| > |u|

QMC can integrate functions in some such spaces without any curse of dimensionality

Those spaces are dominated by low order components (as follows)
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Effective dimension
A function has effective dimension s in the truncation sense if

∑

u⊆{1,2,...,s}

σ2
u > (1− ε)σ2

A function has effective dimension s in the superposition sense if

∑

|u|6s

σ2
u > (1− ε)σ2

Commonly ε = 0.01

QMC often succeeds on functions of low effective dimension in the superposition sense

Caflisch, Morokoff & O (1997)
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Weighted spaces
Pick weights 1 > γ1 > γ2 > · · · > γd > 0. Let γu =

∏
j∈u γj .

Inner product and norm

〈f, g〉Wd,γ
=

∑

u⊆1:d

1

γu

∫
∂|u|f(x)

∂xu

∂|u|ḡ(x)

∂xu
dx

‖f‖2Wd,γ
= 〈f, f〉Wd,γ

.

Function class = ball

f ∈ B(d, γ, ρ) ≡ {f | ‖f‖Wd,γ
6 ρ}

How it works

Large |u| =⇒ small γu =⇒ large penalty factor 1/γu

=⇒ only small
∂|u|f

∂xu
are allowed

So xu not important. MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel
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Tractability over B(d, γ, ρ)
Quadrature is tractable if the worst case error is O(n−ad b)

Quadrature is strongly tractable if the worst case error is O(n−a), uniformly in d

(see monographs Novak & Woźniakowski (2008,2010))

∞∑

j=1

γj < ∞ =⇒ strong tractability, with a = 1/2

∞∑

j=1

γ
1/2
j < ∞ =⇒ strong tractability, with a = 1− ǫ

Rapid weight decay =⇒ no dimension effect

What sort of functions are in B(d, γ, ρ)?

Strong properties · · · often come from strong assumptions
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Tractability and effective dimension

When quadrature is strongly tractable,

then the functions in B(d, γ, ρ) do not have large σ2
u for large |u|.

To describe this

Find ρ∗, the smallest ρ that allows f ∈ B(d, γ, ρ) with Var(f) = 1.

Then find the largest σ2
u for f ∈ B(d, γ, ρ∗) and |u| > s.

If this σ2
u 6 0.01 then B(d, γ, ρ) has effective dimension at most s
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An inequality
Let f have continuous derivative f ′ ∈ L2[0, 1] with

∫ 1

0
f(x) dx = 0. Then

σ2 =

∫ 1

0

f(x)2 dx 6
1

π2

∫ 1

0

|f ′(x)|2 dx.

Sobol’ (1963) appeals to calculus of variations.

Fourier methods generalize nicely to higher dimensional analogues.

We can bound σ2
u by a multiple of

∫ (
∂|u|f(x)

∂xu

)2

dx.

There is no reverse inequality, bounding
∫
|f ′|2 by σ2.

Related

Lamboni, Iooss, Popelin & Gamboa (2012)

bound Sobol’ indices by integrated derivatives, for Boltzmann measures
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Fourier representation

f(x) =
∑

k∈Zd

λke
2πikT

x

λk =

∫

[0,1]d
f(x)e−2πikT

x dx

Var(f) =
∑

k 6=0

|λk|
2

After some algebra

∂|u|f(x)

∂xu
=

∑

k∈Zd

λk

(
(2πi)|u|

∏

j∈u

kj

)
e2πik

T
x, and

‖f‖2Wd,γ
=

∑

k∈Zd

|λk|
2

d∏

j=1

(
1 +

4π2k2j
γj

)
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Finding the dimension

maximize Var(f) =
∑

k 6=0

|λk|
2

subject to ‖f‖2 =
∑

k∈Zd

|λk|
2

d∏

j=1

(
1 +

4π2k2j
γj

)
6 ρ2

Maximum happens when λk = 0 except for k = (±1, 0, 0, . . . , 0).

We get ‖f‖2 = Var(f)(1 + 4π2/γ1), so ρ∗,2 = 1 + 4π2/γ1.

σ2
u =

∑

ku∈(Z−{0})|u|

|λku :0−u
|2

Similarly maxf∈B(d,γ,ρ∗) σ
2
u =

1 + 4π2/γ1∏
j∈u(1 + 4π2/γj)

If |u| is large and γj decay rapidly · · · then σ2
u must be small
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Effective dimensions

For γj = j−1.01

Just barely strongly tractable

Truncation dimension is 97

Superposition dimension is 2

For γj = j−2

Almost O(n−1+ǫ) uniformly in d

Truncation dimension is 10

Superposition dimension is 1

These use ε = 0.01

At ε = 0.0001 superposition dimensions rise to 3 and 2
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Part II(c): new Sobol’ indices

Recall

τ2u =
∑

v⊆u

σ2
v

τ2u =
∑

v∩u 6=∅

σ2
v

τ2u =

∫∫
f(x)

(
f(xu :z−u)− f(z)

)
dx dz
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What other quantities can we get?
In principal we can get any σ2

u from

σ2
u =

∑

v⊆u

(−1)|u−v|τ2v

we prefer

1) unbiased estimates

2) low variance

3) averages of squared differences to differences of squares

4) to avoid O(2d) integrals, or even O(d2) integrals
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The set of possibilities

∑

u⊆D

∑

v⊆D

λu,v

∫∫
f(xu :z−u)f(xv :z−v) dx dz

where

y = xu :z−u =⇒ yj =




xj , j ∈ u

zj , j 6∈ u

and

λu,v ∈ R

A 22d dimensional space of Sobol’ quantities (overparameterized)

We only want
∑

u δuσ
2
u for δ ∈ R

2d
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Special subsets
1) Squares

∫∫ (∑

u

λuf(xu :z−u)
)2

dx dz Nonnegative

2) Bilinear
∫∫ (∑

u

λuf(xu :z−u)
)(∑

u

γuf(xu :z−u)
)
dx dz Fast

3) All for one
∫∫ (∑

u

λuf(xu :z−u)
)
f(z) dx dz Simple

4) Contrast ∑

u

∑

v

λu,v = 0 Free of f2
∅
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The basis
∫∫

f(xu :z−u)f(xv :z−v) dx dz = f2
∅
+ τ2NXOR(u,v)

Not exclusive or

j ∈ u j ∈ v XOR(u, v) NXOR(u, v)

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

j ∈ NXOR(u, v) ⇐⇒ j ∈ u ∩ v or j ∈ uc ∩ vc
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Proof

∫∫
f(xu :z−u)f(xv :z−v) dx dz

=
∑

w⊆D

∑

w′⊆D

∫∫
fw(xu :z−u)fw′(xv :z−v) dx dz

=
∑

w⊆D

∫∫
fw(xu :z−u)fw(xv :z−v) dx dz

=
∑

w

1w⊆(u∩v)∪(uc∩vc)

∫
fw(x)

2 dx

=
∑

w⊆NXOR(u,v)

∫
fw(x)

2 dx

= f2
∅
+ τ2NXOR(u,v).
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All for one
∑

v

λv

∫∫
f(x)f(xv :z−v) dx dz

=
∑

v

λv

(
f2
∅
+ τ2NXOR(D,v)

)

= f2
∅

∑

v

λv +
∑

v

λvτ
2
v

Combinations with
∑

v⊆D λv = 0 are free of f2
∅

For τ 2u take

λv =




(−1)|u−v| u ⊆ v

0 else.

(Lots of alternation)
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Mean squares
If
∑

v λv = 0 then the following is a nonnegative estimate of a linear combination of σ2
u

∫∫ (∑

v

λvf(xv :z−v)
)2

dx dz

=
∑

v

∑

w

λvλw

∫∫
f(xv :z−v)f(xw :z−w) dx dz

=
∑

v

∑

w

λvλwτ
2
NXOR(w,v)

Combinations with
∑

v⊆D λv = 0 are free of f2
∅

Q: What can we get as a square?

A: τ2u and Υ2
u (but what else?)
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Cannot get τ2u as a square
∫∫ (

λ0f(z) + λ1f(xu :z−u) + λdf(x)
)2

dx dz

with λ0 = A, λd = B, λ1 = −A−B, WLOG f∅ = 0




XOR ∅ u D

∅ ∅ u D

u u ∅ −u

D D −u ∅


 →




NXOR ∅ u D

∅ D −u ∅

u −u D u

D ∅ u D




→




τ2

NXOR
∅ u D

∅ σ2 τ2−u 0

u τ2−u σ2 τ2u

D 0 τ2u σ2


 →

σ2(A2 +B2 + (A+B)2)

−τ2uB(A+B)− τ2−uA(A+B)
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τ2u as a square
We get

∫∫ (
Af(z)− (A+B)f(xu :z−u) +Bλdf(z)

)2

dx dz

= σ2(A2 +B2 + (A+B)2)− τ2uB(A+B)− τ2−uA(A+B)

To eliminate σ2 and τ2−u we need A = B = 0.

Substitution τ2−u = σ2 − τ2u does not help.

Introducing more terms inside the square means more terms that need to cancel (e.g. τ2v for

v 6= u)
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Weighted sums of squares

R∑

r=1

αr

∫∫ ( ∑

u⊆D

λr,uf(xu :z−u)

)2

dx dz

The coefficient of σ2
D is:

R∑

r=1

αr

∑

u⊆D

λ2
r,u

We cannot make this 0 without αr < 0 (or trivially λr,u = 0 or all αr = 0)

So · · · no unbiased nonnegative estimate of τ2u. (checkmate)
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Bilinear, with O(d) evaluations
Suppose λu = 0 for |u| 6∈ {0, 1, d− 1, d}. Same for γv = 0.

Then the rule ∑

u

∑

v

λuγv

∫∫
f(xu :z−u)f(xv :z−v) dx dz

takes O(d) computation · · · not O(d2).

For j 6= k, let j represent {j} and −j represent −{j} etc.
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O(d) pairs, with k 6= j




XOR ∅ j k −j −k D

∅ ∅ j k −j −k D

j j ∅ {j, k} D −{j, k} −j

−j −j D −{j, k} ∅ {j, k} j

D D −j −k j k ∅







NXOR ∅ j k −j −k D

∅ D −j −k j k ∅

j −j D −{j, k} ∅ {j, k} j

−j j ∅ {j, k} D −{j, k} −j

D ∅ j k −j −k D
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τ2
NXOR(u,v)

Assuming f∅ = 0 (WLOG if
∑

u λu = 0)




τ2

NXOR
∅ j k −j −k D

∅ σ2 τ2−j τ2−k τ2j τ2k 0

j τ2−j σ2 τ2−{j,k} 0 τ2{j,k} τ2j

−j τ2j 0 τ2{j,k} σ2 τ2−{j,k} τ2−j

D 0 τ2j τ2k τ2−j τ2−k σ2




∑

j

τ2j =
∑

j

σ2
j

∑

j

∑

k 6=j

τ2−{j,k} = d(d− 1)σ2 −
∑

u

(2(d− 1)− |u|)|u|σ2
u

∑

j

τ2−j = dσ2 −
∑

u

|u|σ2
u

∑

j

∑

k 6=j

τ2{j,k} =
∑

u:|u|=2

σ2
u + 2

∑

j

σ2
j

Liu & O (2006) Theorem 2
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Using O(d) terms
We can estimate

∑

u

σ2
u1|u|=1

∑

u

σ2
u1|u|=2 !

∑

u

|u|σ2
u

∑

u

|u|2σ2
u
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Another O(d) quantity
Largest element in u:

⌈u⌉ =




max{j | j ∈ u}, u 6= ∅

0, u = ∅.

Then

d−1∑

j=1

τ2{1,2,...,j}c =
∑

u

σ2
u

d−1∑

j=1

1u∩{1,...,j}c 6=∅

=
∑

u

σ2
u

d−1∑

j=1

1u∩{j+1,...,d}6=∅

=
∑

u

σ2
u(⌈u⌉ − 1).

A mean dimension in the truncation sense.

Easier to compute than effective dimension.
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Optimal estimates
Sobol’s estimates have been improved (!!) recently:

Kucherenko, Feil, Shah, Mauntz (2011), and

Janon, Klein, Lagnoux, Nodet & Prieur (2012) (Grenoble)

Let η2 =
∑

u δuσ
2
u.

We would like

E
(
η̂2) = η2 and, Var

(
η̂2
)
= minimum.

Using variance components theory

Unfortunately Var(η̂2) depends on 4’th moments

Fortunately There is a theory of MINimum Quadratic Norm UNbiased Estimates (MINQUE)∗

Unfortunately They do not appear to be available for crossed random effects

Fortunately We can choose where to sample and our estimator.

∗C. R. Rao (1970s) MASCOT-NUM 2012 Meeting, Bruyères-le-Châtel
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Speculation
For all for one

∑
u λuτ

2
v

minimize
∑

u

λ2
u

subject to
∑

u

λuτ
2
u =

∑

u

δuσ
2
u

and
∑

u

λu = 0.

This ignores # of function evaluations. So instead

minimize

(∑

u

λ2
u

)
×
(∑

u

1λ 6=0

)
= ‖λ‖22 × ‖λ‖0
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Merci, la deuxieme fois

• GDR Coordinators: Clémentine Prieur, Bertrand Iooss, Fabien Mangeant

• Scientific and organizing committee

• Françoise Poggi

• National Science Foundation of the U.S. DMS-0906056

MCQMC 2014

Please come to Leuven for MCQMC 2014.
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Sensitivity for extremes
Gary Tang asked about sensitivity measures that are more attuned to extreme values of f(x).

Some joint work with Josef Dick:

1) Transform f(x) (don’t like)

2) Analysis of skewness
∫
f(x)3 dx (don’t like either)

3) Analysis of fourth moment
∫
f(x)4 dx (don’t like either)

4) Estimate
∫
fu(x)

4 dx (like much more, still testing!)
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