Sampling to understand
 high dimensional functions

Part II: new material

Art B. Owen
Stanford University

This course

This is a two part course.
I) Review of material on:
a) Functional ANOVA
b) quasi-regression
c) quasi-Monte Carlo sampling
II) New material on:
a) applications to missing heritability problems
b) effective dimension of some Sobolev spaces
c) new Sobol' index quantities

Part II(a): missing heritability

Based on work in progress with Or Zuk of the Broad Institute

Real world data . . . that resembles a computer experiment.

Background on SNPs

SNPs are Single Nucleotide Polymorphisms
Base pairs are A, C, G or T
At most loci, everybody gets the same
At some loci, there is a minor allele, e.g. most are A but 10% are T
SNP chips, measure 100,000 s to $1,000,000$ s of loci
Each person has 0,1 , or 2 copies of the minor allele

Typical sample sizes

1000 s of people and 100,000 s of SNPs

Prototypical data

Subject	SNP $_{1}$	SNP $_{2}$	\cdots	SNP $_{100,000}$	Height	Diabetes
1	0	0	\cdots	1	1.7 m	0
2	2	0	\cdots	0	2.1 m	1
3	1	0	\cdots	1	1.5 m	0
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
1000	0	1	\cdots	0	1.9 m	1

We would like to predict based on SNPs.
Typically use p-value 10^{-8} to avoid false positives.
The few discoveries explain only a little of phenotype (eg height).
Eg: height may be $\approx 80 \%$ heritable but discovered genes explain only $5-10 \%$.
Where is the missing heritability?

Quasi-regression for heritability

Genotype is $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$. Phenotype is y.
Assume $\|\boldsymbol{x}\|$ and $|y|$ bounded.
Both normalized: $\mathbb{E}(y)=\mathbb{E}\left(x_{j}\right)=0$ and $\mathbb{E}\left(y^{2}\right)=\mathbb{E}\left(x_{j}^{2}\right)=1$.
Model

$$
\begin{aligned}
y_{i} & =\sum_{j=1}^{d} \beta_{j} x_{i j}+\varepsilon_{i} \\
\mathbb{E}\left(x_{j} \varepsilon\right) & =0
\end{aligned}
$$

ε includes environment, environment \times genes, genes \times genes
Linear heritability is

$$
\sigma_{\mathrm{L}}^{2}=\sum_{j=1}^{d} \beta_{j}^{2}
$$

We assume (unrealistically) that x_{j} is independent of x_{k} for $j \neq k$. Holds for most pairs $j, k \quad$ Will require later adjustments

Quasi-regression

$$
\widetilde{\beta}_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i j} y_{i} \quad \hat{\sigma}_{\mathrm{L}}^{2}=\sum_{j=1}^{d} \widetilde{\beta}_{j}^{2}
$$

Recall

$$
\begin{aligned}
& \hat{\sigma}_{\mathrm{L}, \mathrm{BC}}^{2}=\frac{n}{n-1}\left(\hat{\sigma}_{\mathrm{L}}^{2}-\widehat{B}\right), \text { where } \\
& \qquad \widehat{B}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{d} x_{i j}^{2} y_{i}^{2}=\frac{1}{n^{2}} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} y_{i}^{2}=O_{p}\left(\frac{d}{n}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\mathbb{E}\left(\left(\hat{\sigma}_{\mathrm{L}, \mathrm{BC}}^{2}-\sigma_{\mathrm{L}}^{2}\right)^{2}\right)=O\left(\frac{1}{n}+\frac{d^{2}}{n^{3}}\right) \quad n \geqslant 2, \quad d \geqslant 1 \tag{1}
\end{equation*}
$$

We need $n \gg d^{2 / 3}$ i.e. $d \gg n$ ok even if β is not sparse
\exists lower bounds for estimation of non-sparse β
Candès \& Davenport (2011), Raskutti, Wainwright \& Yu (200gf)SCOT-NUM 2012 Meeting, Bruyères-le-Châtel

Concentration of measure

$$
\begin{aligned}
\left\|\boldsymbol{x}_{i}\right\|^{2} & =\sum_{j=1}^{d} x_{i j}^{2} \approx d \\
\widehat{B} & =\frac{1}{n^{2}} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}\right\|^{2} y_{i}^{2} \\
\widetilde{B} & =\frac{d}{n^{2}} \sum_{i=1}^{n} y_{i}^{2}
\end{aligned}
$$

We can show

$$
\mathbb{E}\left((\widehat{B}-\widetilde{B})^{2}\right)=O\left(\frac{d}{n^{2}}\right)
$$

So replacing $\left\|\boldsymbol{x}_{i}\right\|^{2}$ by d makes a negligible change
Somewhat faster
O (2000) has an example with $d=1,000,000$ and $n=100,000$

Additive model

$$
\begin{gathered}
z_{j}=\frac{x_{j}^{2}-\mathbb{E}\left(x_{j}^{3}\right) x_{j}-1}{\sqrt{\mathbb{E}\left(x_{j}^{4}\right)-\mathbb{E}\left(x_{j}^{3}\right)^{2}-1}} \\
y_{i}=\sum_{j=1}^{d} \beta_{j} x_{i j}+\sum_{j=1}^{d} \gamma_{j} z_{i j}+\varepsilon_{i}
\end{gathered}
$$

Captures effects of dominant vs. recessive genes

$$
x_{1}, \cdots, x_{d}, z_{1}, \cdots, z_{d} \text { are uncorrelated }
$$

Additive heritability

$$
\begin{gathered}
\sigma_{\mathrm{A}}^{2}=\sum_{j=1}^{d} \beta_{j}^{2}+\sum_{j=1}^{d} \gamma_{j}^{2} \\
\widetilde{\gamma}_{j}=\frac{1}{n} \sum_{i=1}^{n} z_{i j} y_{i} \\
\hat{\sigma}_{\mathrm{A}}^{2}=\sum_{j}\left(\widetilde{\beta}_{j}^{2}+\widetilde{\gamma}_{j}^{2}\right) \\
\hat{\sigma}_{\mathrm{A}, \mathrm{BC}}^{2}=\frac{n}{n-1}\left(\hat{\sigma}_{\mathrm{A}}^{2}-\widehat{B}_{\mathrm{A}}\right), \quad \text { where } \\
\widehat{B}_{\mathrm{A}}=\frac{1}{n^{2}} \sum_{i=1}^{n}\left(\left\|\boldsymbol{x}_{i}\right\|^{2}+\left\|\boldsymbol{z}_{i}\right\|^{2}\right) y_{i}^{2} \approx \frac{2 d}{n^{2}} \sum_{i=1}^{n} y_{i}^{2}
\end{gathered}
$$

Again

$$
\mathbb{E}\left(\left(\hat{\sigma}_{\mathrm{A}, \mathrm{BC}}^{2}-\sigma_{\mathrm{A}}^{2}\right)^{2}\right)=O\left(\frac{1}{n}+\frac{d^{2}}{n^{3}}\right)
$$

Quadratic model

$$
y_{i}=\sum_{j=1}^{d} \beta_{j} x_{i j}+\sum_{j=1}^{d} \gamma_{j} z_{i j}+\sum_{j<k} \beta_{j k} x_{i j} x_{i k} \varepsilon_{i}
$$

The model allows interactions.
There are $2 d+d(d-1) / 2$ parameters.

$$
\sigma_{\mathrm{Q}}^{2}=\sum_{j} \beta_{j}^{2}+\sum_{j} \gamma_{j}^{2}+\sum_{j<k} \beta_{j k}^{2}
$$

For this model
Squared error $O\left(\frac{1}{n}+\frac{d^{4}}{n^{3}}\right) \quad$ we need n of order at least $d^{4 / 3}$ (ouch)
It no longer works to use $\left\|\boldsymbol{x}_{i}\right\|^{2} \approx d$
Could be an issue for bias adjusted quasi-regression estimation of Sobol' indices

Part II(b):

Effective dimension of some Sobolev spaces

Weighted spaces are used in QMC, starting with
Hickernell (1996) and Sloan \& Wozniakowski (1998)
They downweight high order interactions and high index variables.

1) x_{j} ordinarily more important than x_{j+1}
2) $f_{u}(\boldsymbol{x})$ ordinarily more important than $f_{v}(\boldsymbol{x})$ for $|v|>|u|$

QMC can integrate functions in some such spaces without any curse of dimensionality
Those spaces are dominated by low order components (as follows)

Effective dimension

A function has effective dimension s in the truncation sense if

$$
\sum_{u \subseteq\{1,2, \ldots, s\}} \sigma_{u}^{2} \geqslant(1-\varepsilon) \sigma^{2}
$$

A function has effective dimension s in the superposition sense if

$$
\sum_{|u| \leqslant s} \sigma_{u}^{2} \geqslant(1-\varepsilon) \sigma^{2}
$$

Commonly $\varepsilon=0.01$
QMC often succeeds on functions of low effective dimension in the superposition sense
Caflisch, Morokoff \& O (1997)

Weighted spaces

Pick weights $1 \geqslant \gamma_{1}>\gamma_{2}>\cdots>\gamma_{d}>0$. Let $\gamma_{u}=\prod_{j \in u} \gamma_{j}$.
Inner product and norm

$$
\begin{aligned}
\langle f, g\rangle_{W_{d, \gamma}} & =\sum_{u \subseteq 1: d} \frac{1}{\gamma_{u}} \int \frac{\partial^{|u|} f(\boldsymbol{x})}{\partial \boldsymbol{x}_{u}} \frac{\partial^{|u|} \bar{g}(\boldsymbol{x})}{\partial \boldsymbol{x}_{u}} \mathrm{~d} \boldsymbol{x} \\
\|f\|_{W_{d, \gamma}}^{2} & =\langle f, f\rangle_{W_{d, \gamma}} .
\end{aligned}
$$

Function class $=$ ball

$$
f \in \mathcal{B}(d, \gamma, \rho) \equiv\left\{f \mid\|f\|_{W_{d, \gamma}} \leqslant \rho\right\}
$$

How it works
Large $|u| \Longrightarrow$ small $\gamma_{u} \Longrightarrow$ large penalty factor $1 / \gamma_{u}$
\Longrightarrow only small $\frac{\partial^{|u|} f}{\partial \boldsymbol{x}_{u}}$ are allowed
So \boldsymbol{x}_{u} not important.

Tractability over $\mathcal{B}(d, \gamma, \rho)$

Quadrature is tractable if the worst case error is $O\left(n^{-a} d^{b}\right)$
Quadrature is strongly tractable if the worst case error is $O\left(n^{-a}\right)$, uniformly in d (see monographs Novak \& Woźniakowski $(2008,2010)$)

$$
\begin{gathered}
\sum_{j=1}^{\infty} \gamma_{j}<\infty \Longrightarrow \text { strong tractability, with } a=1 / 2 \\
\sum_{j=1}^{\infty} \gamma_{j}^{1 / 2}<\infty \Longrightarrow \text { strong tractability, with } a=1-\epsilon
\end{gathered}
$$

Rapid weight decay \Longrightarrow no dimension effect
What sort of functions are in $\mathcal{B}(d, \gamma, \rho)$?
Strong properties . . . often come from strong assumptions

Tractability and effective dimension

When quadrature is strongly tractable, then the functions in $\mathcal{B}(d, \gamma, \rho)$ do not have large σ_{u}^{2} for large $|u|$.

To describe this

Find ρ^{*}, the smallest ρ that allows $f \in \mathcal{B}(d, \gamma, \rho)$ with $\operatorname{Var}(f)=1$.
Then find the largest σ_{u}^{2} for $f \in \mathcal{B}\left(d, \gamma, \rho^{*}\right)$ and $|u| \geqslant s$.
If this $\sigma_{u}^{2} \leqslant 0.01$ then $\mathcal{B}(d, \gamma, \rho)$ has effective dimension at most s

An inequality

Let f have continuous derivative $f^{\prime} \in L^{2}[0,1]$ with $\int_{0}^{1} f(x) \mathrm{d} x=0$. Then

$$
\sigma^{2}=\int_{0}^{1} f(x)^{2} \mathrm{~d} x \leqslant \frac{1}{\pi^{2}} \int_{0}^{1}\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x
$$

Sobol' (1963) appeals to calculus of variations.
Fourier methods generalize nicely to higher dimensional analogues.
We can bound σ_{u}^{2} by a multiple of

$$
\int\left(\frac{\partial^{|u|} f(\boldsymbol{x})}{\partial \boldsymbol{x}_{u}}\right)^{2} \mathrm{~d} \boldsymbol{x}
$$

There is no reverse inequality, bounding $\int\left|f^{\prime}\right|^{2}$ by σ^{2}.
Related
Lamboni, looss, Popelin \& Gamboa (2012)
bound Sobol' indices by integrated derivatives, for Boltzmann measures

Fourier representation

$$
\begin{aligned}
f(\boldsymbol{x}) & =\sum_{\boldsymbol{k} \in \mathbb{Z}^{d}} \lambda_{\boldsymbol{k}} e^{2 \pi i \boldsymbol{k}^{\top} \boldsymbol{x}} \\
\lambda_{\boldsymbol{k}} & =\int_{[0,1]^{d}} f(\boldsymbol{x}) e^{-2 \pi i \boldsymbol{k}^{\top} \boldsymbol{x}} \mathrm{d} \boldsymbol{x} \\
\operatorname{Var}(f) & =\sum_{\boldsymbol{k} \neq \mathbf{0}}\left|\lambda_{\boldsymbol{k}}\right|^{2}
\end{aligned}
$$

After some algebra

$$
\begin{aligned}
\frac{\partial^{|u|} f(\boldsymbol{x})}{\partial \boldsymbol{x}_{u}} & =\sum_{\boldsymbol{k} \in \mathbb{Z}^{d}} \lambda_{\boldsymbol{k}}\left((2 \pi i)^{|u|} \prod_{j \in u} k_{j}\right) e^{2 \pi i \boldsymbol{k}^{\top} \boldsymbol{x}}, \quad \text { and } \\
\|f\|_{W_{d, \gamma}}^{2} & =\sum_{\boldsymbol{k} \in \mathbb{Z}^{d}}\left|\lambda_{\boldsymbol{k}}\right|^{2} \prod_{j=1}^{d}\left(1+\frac{4 \pi^{2} k_{j}^{2}}{\gamma_{j}}\right)
\end{aligned}
$$

Finding the dimension

$$
\begin{aligned}
& \text { maximize } \operatorname{Var}(f)=\sum_{\boldsymbol{k} \neq \mathbf{0}}\left|\lambda_{\boldsymbol{k}}\right|^{2} \\
& \text { subject to }\|f\|^{2}=\sum_{\boldsymbol{k} \in \mathbb{Z}^{d}}\left|\lambda_{\boldsymbol{k}}\right|^{2} \prod_{j=1}^{d}\left(1+\frac{4 \pi^{2} k_{j}^{2}}{\gamma_{j}}\right) \leqslant \rho^{2}
\end{aligned}
$$

Maximum happens when $\lambda_{\boldsymbol{k}}=0$ except for $\boldsymbol{k}=(\pm 1,0,0, \ldots, 0)$.
We get $\|f\|^{2}=\operatorname{Var}(f)\left(1+4 \pi^{2} / \gamma_{1}\right)$, so $\rho^{*, 2}=1+4 \pi^{2} / \gamma_{1}$.

$$
\sigma_{u}^{2}=\sum_{\boldsymbol{k}_{u} \in(\mathbb{Z}-\{0\})^{|u|}}\left|\lambda_{\boldsymbol{k}_{u}: \mathbf{0}_{-u}}\right|^{2}
$$

Similarly $\max _{f \in \mathcal{B}\left(d, \gamma, \rho^{*}\right)} \sigma_{u}^{2}=\frac{1+4 \pi^{2} / \gamma_{1}}{\prod_{j \in u}\left(1+4 \pi^{2} / \gamma_{j}\right)}$
If $|u|$ is large and γ_{j} decay rapidly \cdots then σ_{u}^{2} must be small

Effective dimensions

$$
\text { For } \gamma_{j}=j^{-1.01}
$$

Just barely strongly tractable
Truncation dimension is 97
Superposition dimension is 2

$$
\text { For } \gamma_{j}=j^{-2}
$$

Almost $O\left(n^{-1+\epsilon}\right)$ uniformly in d
Truncation dimension is 10
Superposition dimension is 1

These use $\varepsilon=0.01$

At $\varepsilon=0.0001$ superposition dimensions rise to 3 and 2

Part II(c): new Sobol' indices

Recall

$$
\begin{aligned}
\underline{\tau}_{u}^{2} & =\sum_{v \subseteq u} \sigma_{v}^{2} \\
\bar{\tau}_{u}^{2} & =\sum_{v \cap u \neq \varnothing} \sigma_{v}^{2}
\end{aligned}
$$

$$
\underline{\tau}_{u}^{2}=\iint f(\boldsymbol{x})\left(f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)-f(\boldsymbol{z})\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z}
$$

What other quantities can we get?

In principal we can get any σ_{u}^{2} from

$$
\sigma_{u}^{2}=\sum_{v \subseteq u}(-1)^{|u-v|} \underline{\tau}_{v}^{2}
$$

we prefer

1) unbiased estimates
2) low variance
3) averages of squared differences to differences of squares
4) to avoid $O\left(2^{d}\right)$ integrals, or even $O\left(d^{2}\right)$ integrals

The set of possibilities

$$
\sum_{u \subseteq \mathcal{D}} \sum_{v \subseteq \mathcal{D}} \lambda_{u, v} \iint f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right) f\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z}
$$

where

$$
\boldsymbol{y}=\boldsymbol{x}_{u}: \boldsymbol{z}_{-u} \Longrightarrow y_{j}= \begin{cases}x_{j}, & j \in u \\ z_{j}, & j \notin u\end{cases}
$$

and

$$
\lambda_{u, v} \in \mathbb{R}
$$

A $2^{2 d}$ dimensional space of Sobol' quantities (overparameterized)
We only want $\sum_{u} \delta_{u} \sigma_{u}^{2}$ for $\delta \in \mathbb{R}^{2^{d}}$

Special subsets

1) Squares

$$
\iint\left(\sum_{u} \lambda_{u} f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)\right)^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \quad \text { Nonnegative }
$$

2) Bilinear

$$
\iint\left(\sum_{u} \lambda_{u} f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)\right)\left(\sum_{u} \gamma_{u} f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \quad \text { Fast }
$$

3) All for one

$$
\iint\left(\sum_{u} \lambda_{u} f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)\right) f(\boldsymbol{z}) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \quad \text { Simple }
$$

4) Contrast

$$
\sum_{u} \sum_{v} \lambda_{u, v}=0 \quad \text { Free of } f_{\varnothing}^{2}
$$

The basis

$$
\iint f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right) f\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z}=f_{\varnothing}^{2}+\underline{\tau}_{\mathrm{NXOR}(u, v)}^{2}
$$

Not exclusive or

$j \in u$	$j \in v$	$\mathrm{XOR}(u, v)$	$\mathrm{NXOR}(u, v)$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

$$
j \in \operatorname{NXOR}(u, v) \Longleftrightarrow j \in u \cap v \text { or } j \in u^{c} \cap v^{c}
$$

Proof

$$
\begin{aligned}
& \iint f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right) f\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& =\sum_{w \subseteq \mathcal{D}} \sum_{w^{\prime} \subseteq \mathcal{D}} \iint f_{w}\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right) f_{w^{\prime}}\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& =\sum_{w \subseteq \mathcal{D}} \iint f_{w}\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right) f_{w}\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& =\sum_{w} 1_{w \subseteq(u \cap v) \cup\left(u^{c} \cap v^{c}\right)} \int f_{w}(\boldsymbol{x})^{2} \mathrm{~d} \boldsymbol{x} \\
& =\sum_{w \subseteq \operatorname{NXOR}(u, v)} \int f_{w}(\boldsymbol{x})^{2} \mathrm{~d} \boldsymbol{x} \\
& =f_{\varnothing}^{2}+\underline{\tau}_{\operatorname{NXOR}(u, v)}^{2}
\end{aligned}
$$

All for one

$$
\begin{aligned}
& \sum_{v} \lambda_{v} \iint f(\boldsymbol{x}) f\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& =\sum_{v} \lambda_{v}\left(f_{\varnothing}^{2}+\underline{\tau}_{\mathrm{NXOR}(\mathcal{D}, v)}^{2}\right) \\
& =f_{\varnothing}^{2} \sum_{v} \lambda_{v}+\sum_{v} \lambda_{v} \underline{\tau}_{v}^{2}
\end{aligned}
$$

Combinations with $\sum_{v \subseteq \mathcal{D}} \lambda_{v}=0$ are free of f_{\varnothing}^{2}

$$
\begin{gathered}
\text { For } \underline{\tau}_{u}^{2} \text { take } \\
\lambda_{v}= \begin{cases}(-1)^{|u-v|} & u \subseteq v \\
0 & \text { else }\end{cases}
\end{gathered}
$$

(Lots of alternation)

Mean squares

If $\sum_{v} \lambda_{v}=0$ then the following is a nonnegative estimate of a linear combination of σ_{u}^{2}

$$
\begin{aligned}
& \iint\left(\sum_{v} \lambda_{v} f\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right)\right)^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& =\sum_{v} \sum_{w} \lambda_{v} \lambda_{w} \iint f\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) f\left(\boldsymbol{x}_{w}: \boldsymbol{z}_{-w}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& =\sum_{v} \sum_{w} \lambda_{v} \lambda_{w} \underline{\tau}_{\operatorname{NXOR}(w, v)}^{2}
\end{aligned}
$$

Combinations with $\sum_{v \subseteq \mathcal{D}} \lambda_{v}=0$ are free of f_{\varnothing}^{2}
Q: What can we get as a square?
A: $\bar{\tau}_{u}^{2}$ and Υ_{u}^{2} (but what else?)

Cannot get $\underline{\tau}_{u}^{2}$ as a square

$$
\begin{aligned}
& \iint\left(\lambda_{0} f(\boldsymbol{z})+\lambda_{1} f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)+\lambda_{d} f(\boldsymbol{x})\right)^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& \text { with } \quad \lambda_{0}=A, \quad \lambda_{d}=B, \quad \lambda_{1}=-A-B, \quad \text { WLOG } \quad f_{\varnothing}=0 \\
& \text { XOR } \quad \varnothing \quad u \quad \mathcal{D} \quad \text { NXOR } \quad \varnothing \quad u \quad \mathcal{D} \\
& \left.\begin{array}{c}
\varnothing \\
u \\
\mathcal{D}
\end{array}\left[\begin{array}{ccc}
\varnothing & u & \mathcal{D} \\
u & \varnothing & -u \\
\mathcal{D} & -u & \varnothing
\end{array}\right] \rightarrow \begin{array}{c}
\varnothing \\
u \\
\mathcal{D}
\end{array}\right]\left[\begin{array}{ccc}
\mathcal{D} & -u & \varnothing \\
-u & \mathcal{D} & u \\
\varnothing & u & \mathcal{D}
\end{array}\right] \\
& \tau_{\text {NXOR }}^{2} \quad \varnothing \quad u \quad \mathcal{D} \\
& \rightarrow \begin{array}{c}
\varnothing \\
u \\
\\
\mathcal{D}
\end{array}\left[\begin{array}{ccc}
\sigma^{2} & \underline{\tau}_{-u}^{2} & 0 \\
\underline{\tau}_{-u}^{2} & \sigma^{2} & \underline{\tau}_{u}^{2} \\
0 & \underline{\tau}_{u}^{2} & \sigma^{2}
\end{array}\right] \rightarrow \begin{array}{c}
\sigma^{2}\left(A^{2}+B^{2}+(A+B)^{2}\right) \\
\end{array}
\end{aligned}
$$

τ_{u}^{2} as a square

We get

$$
\begin{aligned}
& \iint\left(A f(\boldsymbol{z})-(A+B) f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)+B \lambda_{d} f(\boldsymbol{z})\right)^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z} \\
& =\sigma^{2}\left(A^{2}+B^{2}+(A+B)^{2}\right)-\underline{\tau}_{u}^{2} B(A+B)-\underline{\tau}_{-u}^{2} A(A+B)
\end{aligned}
$$

To eliminate σ^{2} and $\underline{\tau}_{-u}^{2}$ we need $A=B=0$.
Substitution $\underline{\tau}_{-u}^{2}=\sigma^{2}-\bar{\tau}_{u}^{2}$ does not help.
Introducing more terms inside the square means more terms that need to cancel (e.g. $\underline{\tau}_{v}^{2}$ for $v \neq u)$

Weighted sums of squares

$$
\sum_{r=1}^{R} \alpha_{r} \iint\left(\sum_{u \subseteq \mathcal{D}} \lambda_{r, u} f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right)\right)^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z}
$$

The coefficient of $\sigma_{\mathcal{D}}^{2}$ is:

$$
\sum_{r=1}^{R} \alpha_{r} \sum_{u \subseteq \mathcal{D}} \lambda_{r, u}^{2}
$$

We cannot make this 0 without $\alpha_{r}<0$ (or trivially $\lambda_{r, u}=0$ or all $\alpha_{r}=0$)
So \cdots no unbiased nonnegative estimate of $\underline{\tau}_{u}^{2}$. (checkmate)

Bilinear, with $O(d)$ evaluations

Suppose $\lambda_{u}=0$ for $|u| \notin\{0,1, d-1, d\}$. Same for $\gamma_{v}=0$.
Then the rule

$$
\sum_{u} \sum_{v} \lambda_{u} \gamma_{v} \iint f\left(\boldsymbol{x}_{u}: \boldsymbol{z}_{-u}\right) f\left(\boldsymbol{x}_{v}: \boldsymbol{z}_{-v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{z}
$$

takes $O(d)$ computation \cdots not $O\left(d^{2}\right)$.
For $j \neq k$, let j represent $\{j\}$ and $-j$ represent $-\{j\}$ etc.

$O(d)$ pairs, with $k \neq j$

$\left.\begin{array}{c}\mathrm{XOR} \\ \varnothing \\ -j \\ \mathcal{D}\end{array} \begin{array}{cccccc}\varnothing & j & k & -j & -k & \mathcal{D} \\ \hline \\ -j & \varnothing & \{j, k\} & \mathcal{D} & -\{j, k\} & -j \\ \mathcal{D} & -j & -\{j, k\} & \varnothing & \{j, k\} & j \\ -k & j & k & \varnothing\end{array}\right]$
NXOR
\varnothing
$\boldsymbol{\gamma}$
$-j$
$\mathcal{D}$$\quad\left[\begin{array}{cccccc}\varnothing & j & k & -j & -k & \mathcal{D} \\ \mathcal{D} & -j & -k & j & k & \varnothing \\ -j & \mathcal{D} & -\{j, k\} & \varnothing & \{j, k\} & j \\ j & \varnothing & \{j, k\} & \mathcal{D} & -\{j, k\} & -j \\ \varnothing & j & k & -j & -k & \mathcal{D}\end{array}\right]$

$$
\underline{\tau}_{\mathrm{NXOR}(u, v)}^{2}
$$

Assuming $f_{\varnothing}=0\left(\right.$ WLOG if $\left.\sum_{u} \lambda_{u}=0\right)$

$$
\begin{gathered}
\underline{\tau}_{\mathrm{NXOR}}^{2} \\
\varnothing \\
\\
\\
-j \\
\mathcal{D}
\end{gathered} \begin{array}{cccccc}
\varnothing & j & k & -j & -k & \mathcal{D} \\
{ }_{-}
\end{array}\left[\begin{array}{cccccc}
\sigma^{2} & \underline{\tau}_{-j}^{2} & \tau_{-k}^{2} & \underline{\tau}_{j}^{2} & \tau_{k}^{2} & 0 \\
\underline{\tau}_{-j}^{2} & \sigma^{2} & \underline{\tau}_{-\{j, k\}}^{2} & 0 & \underline{\tau}_{\{j, k\}}^{2} & \underline{\tau}_{j}^{2} \\
\underline{\tau}_{j}^{2} & 0 & \underline{\tau}_{\{j, k\}}^{2} & \sigma^{2} & \underline{\tau}_{-\{j, k\}}^{2} & \underline{\tau}_{-j}^{2} \\
0 & \underline{\tau}_{j}^{2} & \underline{\tau}_{k}^{2} & \underline{\tau}_{-j}^{2} & \underline{\tau}_{-k}^{2} & \sigma^{2}
\end{array}\right]
$$

$$
\sum_{j} \underline{\tau}_{j}^{2}=\sum_{j} \sigma_{j}^{2} \quad \sum_{j} \sum_{k \neq j} \underline{\tau}_{-\{j, k\}}^{2}=d(d-1) \sigma^{2}-\sum_{u}(2(d-1)-|u|)|u| \sigma_{u}^{2}
$$

$$
\sum_{j} \underline{\tau}_{-j}^{2}=d \sigma^{2}-\sum_{u}|u| \sigma_{u}^{2} \quad \sum_{j} \sum_{k \neq j} \underline{\tau}_{\{j, k\}}^{2}=\sum_{u:|u|=2} \sigma_{u}^{2}+2 \sum_{j} \sigma_{j}^{2}
$$

Using $O(d)$ terms

We can estimate

$$
\begin{aligned}
& \sum_{u} \sigma_{u}^{2} 1_{|u|=1} \\
& \sum_{u} \sigma_{u}^{2} 1_{|u|=2} \\
& \sum_{u}|u| \sigma_{u}^{2} \\
& \sum_{u}|u|^{2} \sigma_{u}^{2}
\end{aligned}
$$

Another $O(d)$ ouantity

Largest element in u :

$$
\lceil u\rceil= \begin{cases}\max \{j \mid j \in u\}, & u \neq \varnothing \\ 0, & u=\varnothing\end{cases}
$$

Then

$$
\begin{aligned}
\sum_{j=1}^{d-1} \bar{\tau}_{\{1,2, \ldots, j\} c}^{2} & =\sum_{u} \sigma_{u}^{2} \sum_{j=1}^{d-1} 1_{u \cap\{1, \ldots, j\}^{c} \neq \varnothing} \\
& =\sum_{u} \sigma_{u}^{2} \sum_{j=1}^{d-1} 1_{u \cap\{j+1, \ldots, d\} \neq \varnothing} \\
& =\sum_{u} \sigma_{u}^{2}(\lceil u\rceil-1)
\end{aligned}
$$

A mean dimension in the truncation sense.
Easier to compute than effective dimension.

Optimal estimates

Sobol's estimates have been improved (!!) recently:
Kucherenko, Feil, Shah, Mauntz (2011), and
Janon, Klein, Lagnoux, Nodet \& Prieur (2012) (Grenoble)
Let $\eta^{2}=\sum_{u} \delta_{u} \sigma_{u}^{2}$.

We would like

$$
\mathbb{E}\left(\hat{\eta}^{2}\right)=\eta^{2} \quad \text { and }, \quad \operatorname{Var}\left(\hat{\eta}^{2}\right)=\text { minimum }
$$

Using variance components theory
Unfortunately $\operatorname{Var}\left(\hat{\eta}^{2}\right)$ depends on 4 'th moments
Fortunately There is a theory of MINimum Quadratic Norm UNbiased Estimates (MINQUE)*
Unfortunately They do not appear to be available for crossed random effects
Fortunately We can choose where to sample and our estimator.
*C. R. Rao (1970s)

Speculation

For all for one $\sum_{u} \lambda_{u} \underline{\tau}_{v}^{2}$

$$
\begin{aligned}
\operatorname{minimize} & \sum_{u} \lambda_{u}^{2} \\
\text { subject to } & \sum_{u} \lambda_{u} \underline{\tau}_{u}^{2}=\sum_{u} \delta_{u} \sigma_{u}^{2} \\
\text { and } & \sum_{u} \lambda_{u}=0
\end{aligned}
$$

This ignores \# of function evaluations. So instead

$$
\operatorname{minimize}\left(\sum_{u} \lambda_{u}^{2}\right) \times\left(\sum_{u} 1_{\lambda \neq 0}\right)=\|\lambda\|_{2}^{2} \times\|\lambda\|_{0}
$$

Merci, la deuxieme fois

- GDR Coordinators: Clémentine Prieur, Bertrand looss, Fabien Mangeant
- Scientific and organizing committee
- Françoise Poggi
- National Science Foundation of the U.S. DMS-0906056

MCQMC 2014

Please come to Leuven for MCQMC 2014.

Sensitivity for extremes

Gary Tang asked about sensitivity measures that are more attuned to extreme values of $f(\boldsymbol{x})$.
Some joint work with Josef Dick:

1) Transform $f(\boldsymbol{x})$ (don't like)
2) Analysis of skewness $\int f(\boldsymbol{x})^{3} \mathrm{~d} \boldsymbol{x}$ (don't like either)
3) Analysis of fourth moment $\int f(\boldsymbol{x})^{4} \mathrm{~d} \boldsymbol{x}$ (don't like either)
4) Estimate $\int f_{u}(\boldsymbol{x})^{4} \mathrm{~d} \boldsymbol{x}$ (like much more, still testing!)
