
Automatic determination of numerical properties
of software and systems

Eric Goubault and Sylvie Putot

Modelling and Analysis of Interacting Systems, CEA LIST

MASCOT-NUM 2012 Meeting, March 21-23, 2012

Eric Goubault and Sylvie Putot Modelling and Analysis of Interacting Systems, CEA LISTAutomatic determination of numerical properties of software and



Automatic validation of numerical programs

◮ Context: safety-critical programs
◮ flight control or industrial install. (e.g. nuclear plants) control
◮ long-term objective: scientific computing
◮ guaranteed methods, that prove good behaviour or else try to

give counter-examples

◮ Starting point: bound the error due to floating-point numbers
◮ (deterministic) propagation of rounding errors in computations
◮ can also propagate any uncertainty on inputs or parameters

◮ Now: towards functional proof of algorithms, hybrid systems

◮ A few words on an extension to stochastic uncertainties
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Static analysis of numerical programs

◮ Validate finite precision implementations: prove that the
program computes something close to what is expected (in
real numbers)

◮ accuracy of results
◮ behaviour of the program (control flow, number of iterations)

◮ But also validate algorithms: bound when possible the
method/approximation error

◮ ideally, find good match between method and implementation
errors

◮ Automatically, given a source code, and for sets of (possibly
uncertain) inputs and parameters: static analysis
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Householder scheme for square root computation

Householder
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Outline of the talk

◮ Introduction to static analysis

◮ Static analysis of numerical programs

◮ Applications - the Fluctuat static analyzer

◮ First steps towards imprecise probabilities
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Static analysis

◮ Analysis of the source source, for a set of inputs and
parameters, without executing it:

◮ does the program always terminate; can it ever reach a bad
state ?

◮ is there a possibility of run-time error, such as division by zero?
◮ worst case execution time?
◮ synchronization errors (deadlocks, data races)?
◮ does the program compute accurately?

◮ The ideal static analyzer (for run-time error for instance) is
◮ sound: if there is an error, the analyzer reports it
◮ complete: if the analyzer reports an error, it is a genuine one

◮ But any interesting program property is undecidable in
general:

◮ in general choose sound (but not complete)
◮ then focus on trade-off between performance and accuracy,

that expresses the property of interest
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Example in intervals

◮ Program seen as a discrete dynamical system X n+1 = F (Xn)
◮ based on a notion of control points in the program
◮ equations describe how values of variables are collected at each

control point, for all possible executions (collecting semantics)

void main() {
int x=[-100,50]; [1]
while [2] (x < 100) {
[3] x=x+1; [4]
} [5]
}































x0 = ⊤
x1 = [−100, 50]
x2 = x1 ∪ x4

x3 = ] −∞, 99] ∩ x2

x4 = x3 + [1, 1]
x5 = [100,+∞[∩x2

◮ The sets of possible values of variables at control points are
invariants of F , computed as the least fixpoint of the system

◮ F monotonic on a complete lattice, least fixpoint exists
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Invariants

◮ Invariants allow to conclude about the safety (for instance
absence of run-time errors) of programs

◮ Computing the least fixpoint X = F (X ):
◮ limit of the Kleene iteration (Jacobi/Gauss-Seidel like method)

X 0 = ⊥, X 1 = F (X 0), . . ., X k+1 = X k ∪ F (X k)
◮ with convergence acceleration to terminate in finite time

◮ or policy iteration (Newton-like method)
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Outline of the talk

◮ Introduction to static analysis

◮ Static analysis of numerical programs
◮ zonotopic abstract domains
◮ modelling finite precision

◮ Applications - the Fluctuat static analyzer

◮ First steps towards imprecise probabilities
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Affine arithmetic

◮ Assignment of a variable x whose value is given in a range
[a, b] introduces a noise symbol εi :

x̂ =
(a + b)

2
+

(b − a)

2
εi .

◮ functional abstraction: link to the inputs via the noise symbols,
allowing sensitivity analysis and worst case generation

◮ Addition is computed componentwise (no new noise symbol):

x̂ + ŷ = (αx
0 + αy

0
) + (αx

1 + αy
1
)ε1 + . . . + (αx

n + αy
n)εn

◮ Multiplication : we select an approximate linear form, the
approximation error creates a new noise term :
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Affine arithmetic and static analysis

◮ Non linear operations: approximate linear form (Taylor
expansion), new noise term for the approximation error

◮ close to Taylor models of low degree: because large ranges of
values in general for static analysis

◮ possibly other polynomial approximations in the future
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Set-theoretical operations

◮ Partial order:
◮ geometric inclusion on zonotopes augmented by slack variables

for initial values of variables
◮ functional order: preserves input-output relations

◮ Weaker structure than lattice: no least upper bound (join) or
greatest lower bound (meet)

◮ Join (to collect abstract values from different control flows):
any upper bound of the union of zonotopes is sound

◮ Meet (to interpret conditionals): we must over-approximate
the intersection of zonotopes
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Example computation of a (m)ub

r̂x = 3 + ε1 + 2ε2

r̂y = 1 − 2ε1 + ε2

r̂u = ε1 + ε2

r̂ z = r̂x ∪ r̂y = 2+0ε1+1ε2+3εU r̂x , r̂y functions of r̂u

Sylvie Putot MEASI, CEA LIST Automatic determination of numerical properties of software and



Example computation of a (m)ub

r̂x = 3 + ε1 + 2ε2

r̂y = 1 − 2ε1 + ε2

r̂u = ε1 + ε2

r̂ z = r̂x ∪ r̂y = 2+0ε1+1ε2+3εU r̂x , r̂y functions of r̂u

Keep“minimal common dependencies”:

r z
i = argmin

rx
i
∧r

y
i
≤α≤rx

i
∨r

y
i

|α|, ∀i ≥ 1
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Example computation of a (m)ub

r̂x = 3 + ε1 + 2ε2

r̂y = 1 − 2ε1 + ε2

r̂u = ε1 + ε2

r̂ z = r̂x ∪ r̂y = 2+0ε1+1ε2+3εU r̂x , r̂y functions of r̂u

For each var, the concretization is the interval union of the
concretizations (γ(ẑ) = [−2, 6]) :

i) r z
0 = mid(γ(r̂x) ∪ γ(r̂y ))

ii) βz = sup γ(r̂x) ∪ γ(r̂y ) − r z
0 − ‖r̂ z‖

1
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Example computation of a (m)ub

r̂x = 3 + ε1 + 2ε2

r̂y = 1 − 2ε1 + ε2

r̂u = ε1 + ε2

r̂ z = r̂x ∪ r̂y = 2+0ε1+1ε2+3εU r̂x , r̂y and r̂ z functions of r̂u

For each var, the concretization is the interval union of the
concretizations (γ(ẑ) = [−2, 6]) :

i) r z
0 = mid(γ(r̂x) ∪ γ(r̂y ))

ii) βz = sup γ(r̂x) ∪ γ(r̂y ) − r z
0 − ‖r̂ z‖

1
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Intersections: main idea, informally

r e a l x = [ 0 , 1 0 ] ;
r e a l y = 2∗x ;
i f ( y >= 10)

y = x ;

◮ Affine forms before tests: x = 5 + 5ε1, y = 10 + 10ε1

◮ Main idea to interpret tests:
◮ translate the condition in the space of noise symbols: ε1 ≥ 0
◮ abstract domain for the noise symbols: intervals, octagons, etc.
◮ result may no longer be a zonotope

◮ Here ε1 ∈ [0, 1] in the then branch, implies y ∈ [0, 10] at the
end of the program
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Floating-point numbers (IEEE 754 norm)

◮ Limited range and precision : potentially inaccurate results or
run-time errors

◮ A few figures for simple precision normalized f.p. numbers :
◮ largest ∼ 3.40282347 ∗ 1038

◮ smallest positive ∼ 1.17549435 ∗ 10−38

◮ max relative rounding error = 2−23 ∼ 1.19200928955 ∗ 10−7

◮ Consequences:
◮ potentially non intuitive representation error:

1

10
= 0.00011001100110011001100 · · · (binary)

⇒ float( 1

10
) = 0.1000000014901161194 · · · (decimal)

◮ absorption : 1 + 10−8 = 1 in simple precision float
◮ associative law not true : (−1 + 1) + 10−8 6= −1 + (1 + 10−8)
◮ cancellation: loss of relative accuracy if subtracting close nbs
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In real world : costly or catastrophic examples

◮ 25/02/91: a Patriot missile misses a Scud and crashes on an
american building : 28 deads.

◮ the missile program had been running for 100 hours,
incrementing an integer every 0.1 second

◮ but 0.1 not representable in a finite number of digits in base 2
◮ Drift on 100 hours ∼ 0.34s : location error ∼ 500m

◮ Explosion of Ariane 5 in 1996 (conversion of a 64 bits float
into a 16 bits integer : overflow)

◮ An index of the Vancouver stock exchange in 1982
◮ truncated at each transaction : errors all have same sign
◮ within a few months : lost half of its correct value

◮ Sinking of an offshore oil platform in 1992 : inaccurate finite
element approximation
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Our model for the analysis of numerical computations

◮ Aim: compute rounding errors and their propagation
◮ for each variable, we compute (f x , r x , ex)
◮ then we will abstract each term (real value and errors)

f l o a t x , y , z ;
x = 0 . 1 ; // [ 1 ]
y = 0 . 5 ; // [ 2 ]
z = x+y ; // [ 3 ]
t = x∗ z ; // [ 4 ]

f x = 0.1 + 1.49e−9 [1]

f y = 0.5

f z = 0.6 + 1.49e−9 [1] + 2.23e−8 [3]

f t = 0.06 + 1.04e−9 [1] + 2.23e−9 [3] − 8.94e−10 [4] − 3.55e−17 [ho]
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Evolution of the error on t
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Towards an abstract model

◮ IEEE norm on f.p. numbers allows to prove properties:
◮ elementary rounding error when rounding r x to ↑◦ r x :

∃(δr > 0, δa > 0), |r x− ↑◦ r x | ≤ max(δr | ↑◦ r x |, δa)

◮ the f.p. result of arithmetic elementary operations
+,−,×, /,

√
is the rounded value of the real result

◮ For each variable x , a triplet (f x , rx , ex):
◮ r x is an abstraction of the real (ideal) value of x
◮ f x is an abstraction of the machine (finite precision) value of x
◮ ex is an abstraction of the difference

◮ Abstraction of rx , ex and f x using set-membership methods
◮ the simplest: intervals
◮ affine forms (zonotopes)
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Full abstraction

Abstract value: an interval and two affine forms x = (fx , r̂x , êx):

r̂x = rx
0 +

∑

i

rx
i εr

i

êx = ex
0 +

∑

i

ex
i εr

i +
∑

l

ex
l εe

l

◮ fx = [f x , f x ] bounds the finite prec value, (f x , f x) ∈ F × F,

◮ ex
l εe

l : uncertainty on the rounding error committed at point l
of the program (its center being in ex

0 ), and its propagation
through further computations,

◮ ex
i εr

i : propagation of the uncertainty on value at point i , on
the error term,

◮ dependency between errors and values partially modelled
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Outline of the talk

◮ Introduction to static analysis

◮ Static analysis of numerical programs

◮ Applications - the Fluctuat static analyzer

◮ First steps towards imprecise probabilities
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FLUCTUAT

◮ Takes source C code (most of ANSI C, except union types and
malloc most notably), with assertions (for instance range of
values and imprecision on input, but also range of gradient of
evolution of values)

◮ Gives, fully automatically, characterization of ranges/errors,
and describe the origins of errors: identification of pieces of
code with numerical difficulties

◮ Is/has been used for a wide variety of codes (automotive,
nuclear industry, aeronautics, aerospace) of size up to about
50000 LOCs (on laptop PCs 1Gb)

◮ Academic version available upon request
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Second order filters

Filters
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Back to the Householder scheme

Householder
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First extension to hybrid systems analysis

◮ Classical program analysis: inputs given in ranges, possibly
with bounds on the gradient between two values

◮ Behaviour is often not realistic

◮ Hybrid systems analysis: analyze both physical environment
and control software for better precision

◮ Environment modelled by switched ODE systems
◮ abstraction by guaranteed integration (the solver is guaranteed

to over-approximate the real solution)

◮ Interaction between program and environment modelled by
assertions in the program

◮ sensor reads a variable value at time t from the environment,
◮ actuator sends a variable value at time t to the environment,

◮ Other possible use of guaranteed integration in program
analysis: bound method error of ODE solvers
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Outline of the talk

◮ Introduction to static analysis

◮ Static analysis of numerical programs

◮ Applications - the Fluctuat static analyzer

◮ First steps towards imprecise probabilities
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Combining deterministic and probabilistic methods

◮ Inputs known in intervals or by probability distribution:
◮ e.g. temperature distribution, but only a range for pressure

◮ More generally, inputs given by uncertain probabilities
◮ Discrete p-boxes or Dempster-Shafer structures
◮ Generalize probabilities and interval computations
◮ Represent sets of probability distributions: between an upper

and a lower Cumulative Distribution Function P(X ≤ x)

−1 −0.5 0.250.5 1 2

1

◮ Less pessimistic but still guaranteed abstractions
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Arithmetic on Dempster-Shafer structures

◮ Starting point: arithmetic on discrete p-boxes or
Dempster-Shafer structures not very efficient

◮ rely on either independence or unknown dependency between
variables

◮ arithmetic for unknown dependency is costly and inaccurate

X = input(); New DS structure
Y = input(); New (independent) DS structure
Z = X+Y; Independent arithmetic
T = Z+X; Must use unknown dependency(!)
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Probabilistic affine forms

◮ Encode as much deterministic dependencies as possible by
affine arithmetic

◮ Associate a DS structure to each noise symbol

◮ Only the non affine operations create DS structures (noise
symbols) with dependency to some other symbols

X = input(); X = ε1: new DS structure
Y = input(); Y = ε2: new (independent) DS structure
Z = X+Y; Z = ε1 + ε2

T = Z+X; T = 2ε1 + ε2: DS of T uses independent arithmetic

◮ Both more accurate and faster than direct DS arithmetic:
◮ more accurate: relation exactly encoded
◮ faster: operations on DS structures (the costly part) performed

only when the DS of a variable is needed (end of the program
or non linear operations)
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◮ Static Analysis of Finite Precision Computations, VMCAI 2011
(Verification, Model-Checking and Abstract Interpretation)

◮ A generalization of P-boxes to affine arithmetic, Computing,
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within a Continuous Environment, CAV 2009
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Some related work and tools for f.p.programs

Tools dedicated to the analysis of f.p. behavior:

◮ CADNA: roundoff error estmation by stochastic testing
http://www-anp.lip6.fr/cadna/

◮ GAPPA: automatic proof generation of arithmetic properties
http://lipforge.ens-lyon.fr/www/gappa/

Static analysis tools that take into account f.p. semantics:

◮ ASTREE: static analysis of run-time error
http://www.astree.ens.fr/

◮ FRAMA-C: platform for source-code analysis of C software
http://frama-c.cea.fr/index.html

◮ POLYSPACE: static analysis of run-time error
www.mathworks.com/products/polyspace/
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Thanks for your attention!

Contact: {Eric.Goubault,Sylvie.Putot}@cea.fr
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