Complex Systems Design Reasons why, Challenges, Results

© Systematic 2010

Decision Loop in design

GDR MASCOT-NUM 23/03/2012

Complex System Design of

Design Loop

CSDL Project

- Consortium
 - 28 partners : 20 industrial partners (end users and techno providers), 8 Research Institutes and universities
 - 3 year project (started in sept. 2009), 18M€ budget (40% supported by French government (Industry))
- Technical challenges :
 - Manage a hierarchy of interoperable surrogate models
 - Evaluate robustness of a design with respect to risks and uncertainties
 - Exploration techniques adapted to the different level of fidelity of the models
 - Develop a methodology to analyze the design process of complex systems
 - Develop interactive visualization tools to support decision making

Industrial Use Cases

Objective : Provide actual design processes

- To illustrate the dataflow and workflow
- To support the development of methodologies to better manage the design of complex systems
- To give R&D directions
- To monitor and validate the software integration
- To specify the HPC needs to carry out such designs

5 industrial use cases

- Aircraft Environmental Control System
- Thermal car engine
- Electrical car engine
- Catalytic exhaust
- Stato reactor inlet

Aircraft Environmental Control

Design of an Aircraft ECS

<u>Objective</u> : Size the different elements of the ECS (turbine, heat exchanger) to maintain a comfortable temperature in the cabin on the ground during hot day or during the high altitude cruise.

- ==> Methodology and process to
- perform each simulation in its native environment
- couple the different simulation to explore efficiently explore the design space
- synthesize the results and support decision making

==> Develop and integrate the elements of the new process.

а

ECS Model

GDR MASCOT-NUM 23/03/2012

SYSTEMATIC

Surrogate model for the CFD results

Surrogate constructed BY the CFD specialist FOR the ECS specialist

- Workflow
- DOE "minimum"
- "Qualified" surrogate model
 - > domain of validity
 - > error estimate

Challenges

Integrate the surrogate model In the modelica model

Surrogate model integrated BY the system specialist

- Compatibility with system simulation
- Common interface for different
- Ease of integration / modification

Vue "physique

ue "performances

Design the ECS

Surrogate model used BY the system specialist

- Workflow for exploration
- Mathematical tools
 - > Sensitivity analysis
- > optimization
- > evaluation of robustness

Synthesis for decision

utonom

GDR MASCOT-NUM 23/03/2012

-parformances globales -solution physique -comportement d'un composant

Visualisation interactive de impact des paramètres de design sur

Collaborative Visualization

Key Elements in this problem

- Coupling between physical and system simulations
 - Surrogate models
- Design of parts of ECS
 - Optimization methods
 - Sensitivity Analysis
 - Uncertainties propagation (robust design)
- Process
 - Integration of the different elements in a workflow to explore efficiently the design space.
- Synthesis of results
 - Interactive Visualization to support decision making

DOE using Kring MSE

maximun mse - mean mse 15 25 20 30 iterations

Error adapted sampling (30 points)

Adaptive sampling reduces interpolation error for given computationnal budget

Adaptive sampling is a sequential process

08

0.6

0.4

Extension to multiple objectives: work in progress

iterations

20

10*

DOE: Reduction of dimension

Problem : Black Box with 15 inputs and 3 outputs Find the relevant parameters for each output to Construct a surrogate model

Algo:

- 1. Build a coarse surrogate
- ANOVA with coarse surrogate (Sobol) 2.
- 3. Perfom fine DOE on relevant inputs
- Build surrogate on the reduced space 4.
- 5. Estimate error using coarse DOE

Comparison actual value / predicted value

Sobol analysis using coarse surrogate

Interactive design space

exploration

Tapez une question

+ _ B

:펠] Eichier Edition Affichage Insertion Format Qutils Données Fenêtre 2

Microsoft Excel - data_16dec_09.xls

Arial

in 🕫 🖬 Σ Alan Σ 🐬 🖏 i X 🕰 • 3 i 9 • ભ • I 😣 Σ • 51 🕅 👪 🚥 🗸 🖓

- 8 - GISIE = = 用 I = % 00 % 23 注意 注 I = - 3 - A -

-		_																
	A18	- ×	V fx															
1	A		В	C	D	E	F	G	Н	I	J	К	L	M	N	0	P	Q
1	D_BPR	SRV		MTOW	EW	TLW	Fuel	Poussée orig	Pente	BFL	Poussée pente	LFL	Empreinte	Marge 0,8	Cz accr 0.8	Marge 0,85	Cz accr 0.85	
2	1000	0	64	28 176 kg	15 609 kg	17 983 kg	11 068 kg	11 800 lbf	5,4%	4 852 ft	11 063 lbf	4 134 ft	5,19 lb/km	1,446	0,548	1,433	0,442	
3		0	66	28 335 kg	15 757 kg	18 135 kg	11 079 kg	11 800 lbf	5,4%	4 759 ft	11 091 lbf	4 080 ft	5,20 lb/km	1,483	0,534	1,469	0,431	
4		0	68	28 381 kg	15 900 kg	18 275 kg	10 982 kg	11 800 lbf	5,4%	4 634 ft	11 072 lbf	4 028 ft	5,15 lb/km	1,371	0,519	1,320	0,419	
5		0	70	28 557 kg	16 050 kg	18 429 kg	11 007 kg	11 800 lbf	5,4%	4 557 ft	11 111 lbf	3 981 ft	5,16 lb/km	1,402	0,508	1,351	0,409	
6		0	72	28 739 kg	16 202 kg	18 586 kg	11 038 kg	11 800 lbf	5,3%	4 487 ft	11 153 lbf	3 937 ft	5,18 llb/km	1,433	0,497	1,380	0,401	
7		-0,5	64	28 074 kg	15 459 kg	17 840 kg	11 115 kg	10 997 lbf	4,5%	5 189 ft	11 017 lbf	4 115 ft	5,21 llo/km	1,452	0,545	1,439	0,440	
8	1 3	-0,5	66	28 237 kg	15 607 kg	17 992 kg	11 130 kg	10 997 lbf	4,4%	5 095 ft	11 047 lbf	4 062 ft	5,22 lb/km	1,489	0,532	1,475	0,429	
9	1	-0,5	68	28 284 kg	15 750 kg	18 132 kg	11 034 kg	10 997 lbf	4,5%	4 970 ft	11 028 lbf	4 010 ft	5,18 lb/km	1,377	0,517	1,325	0,417	
10		-0,5	70	28 461 kg	15 900 kg	18 286 kg	11 061 kg	10 997 lbf	4,4%	4 893 ft	11 067 lbf	3 964 ft	5,19 llo/km	1,408	0,506	1,356	0,408	
11	3	-0,5	72	28 644 kg	16 052 kg	18 443 kg	11 093 kg	10 997 lbf	4,3%	4 824 ft	11 111 lbf	3 920 ft	5,20 lb/km	1,439	0,495	1,386	0,399	
12		-1	64	27 972 kg	15 314 kg	17 701 kg	11 158 kg	10 222 lbf	3,5%	5 520 ft	10 973 lbf	4 096 ft	5,23 lb/km	1,457	0,543	1,444	0,438	
13		-1	66	28 139 kg	15 462 kg	17 854 kg	11 177 kg	10 222 lbf	3,5%	5 417 ft	11 004 lbf	4 044 ft	5,24 lb/km	1,494	0,530	1,480	0,428	
14		-1	68	28 186 kg	15 605 kg	17 994 kg	11 081 kg	10 222 lbf	3,5%	5 276 ft	10 985 lbf	3 900.0	Z 00 lb 4-4	A 004	0.646	4 000	0.440	
15		-1	70	28 365 kg	15 755 kg	18 148 kg	11 110 kg	10 222 lbf	3,5%	5 190 ft	11 026 lbf	3 9 🎴	Constraint An	alysis				
16		-1	72	28 549 kg	15 907 kg	18 304 kg	11 143 kg	10 222 lbf	3,4%	5 112 ft	11 070 lbf	39				List at a las	of functions	
17																		

before

now

SYSTEMATIRAT AVT 173 Sofia May 16-19-2001 GDR MASCOT-NUM 23/03/2012

Self Organizing Maps

GDR MASCOT-NUM 23/03/2012

EM/

Erom Static to Dynamic

Analysis of variance

Interactive visualization

Save view (3D)

📣 Visu -> data_avion5.xls

GDR MASCOT-NUM 23/03/2012

© Systematic Complex System

esign

Scatter Plots -> data_avion5.xls

SYSTEMA

.

Interactive reconstruction of physical Matlab prototype based on POD Solutions

reconstruction

POD

Shortcomings

- Surrogate models
 - Black box approach reaches its limits
 - Curse of dimensionality
 - Difficulty to have error estimates
 - Progress being made with intrusive models (but still open for compressible flows)
- DOE
 - Dimensionality reduction
 - "optimal sampling" for multiple outputs
 - Difficult to explore a constraint domain : many expensive evaluation are wasted : need to be able to "orientate" the DOE
- Optimization
 - Multiple objective optimization with expensive objectives / constraints evaluation still a challenge
 - Robust optimization (OOU far from being an every day tool)
 - Some ideas have emerged for probabilistic constraints (but mono objective)
- Visualization
 - Intuitive representation of uncertain values

stematic omplex System Design ab

Conclusion

- Real progresses have been made
 - CSDL benefits a LOT from previous projects (OPUS, etc...)
 - Real life problems are necessary to stress the new methods
 - Unique collaborative action
 - Results being integrated in commercial softwares
- But this should be a considered as a beginning
 - Real scientific challenges have to be tackled
 - Support from scientific community indispensable

Thank you for your attention !

The cluster and its projects are sponsored by:

For more information: www.systematic-parisregion.org

