

Block-Additive kernels and other contributions in computer experiments

Olivier ROUSTANT

http://www.emse.fr/~roustant

Ecole des Mines de St-Etienne

GDR MASCOT NUM

Outline

- 1. Background
- 2. Selected contributions

Spotlights on metamodeling, SFDs evaluation and software

3. Focus: "Interaction screening"

Application to the recovery of block-additive structures

Background

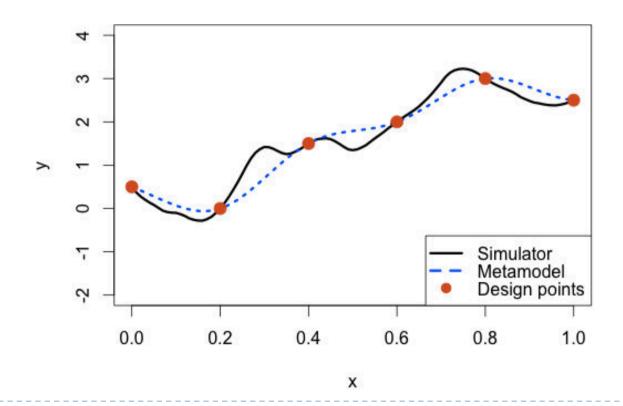
Industrial context

▶ Time-consuming computer codes

car crash-test simulator, thermal hydraulic code in nuclear plants, oil production simulator, etc.

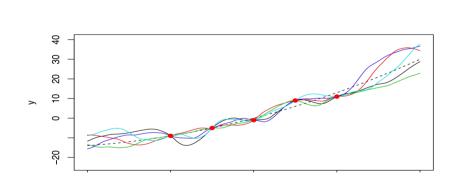
- ▶ xi's : input variables yj's : the output variables
- Many possible configurations for the variables: often uncertain, quantitative / qualitative, sometimes spatio-temporal, nested...

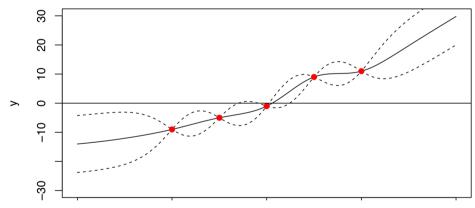
The idea is to build a metamodel, computationally efficient, from a few data obtained with the costly simulator



- ▶ Metamodel building: the probabilistic framework
 - Interpolation is done by conditioning a Gaussian Process (GP)

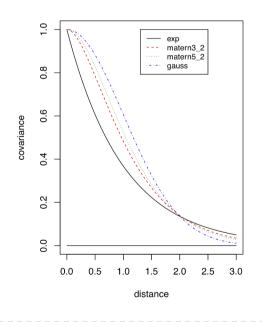
 Keywords: GP regression, Kriging model

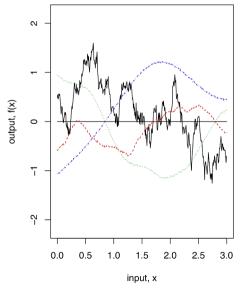




- ▶ Main advantages of probabilistic metamodels:
 - Uncertainty quantification
 - Flexibility w.r.t. the addition of new points
 - Customizable, thanks to the trend and the covariance kernel

$$k(x,x') = cov(Z(x),Z(x'))$$





Smoothness of the sample paths of a stationary process depending on the kernel smoothness at 0

- Metamodel building: the functional framework
 - Interpolation and approximation problems are solved in the setting of Reproducing Kernel Hilbert Spaces (RKHS), by regularization
- The probabilistic and functional frameworks are not fully equivalent, but translations are possible via the Loève representation theorem

$$\phi: egin{array}{c} \mathcal{H}_K
ightarrow ar{\mathcal{L}}(Z) \ K(x,.)
ightarrow Z_x \end{array} \hspace{0.5cm} \langle K(x,.), \ K(y,.)
angle = K(x,y) = \langle Z_x, \ Z_y
angle$$

In both frameworks, kernels play a key role.

Part 2 Selected contributions

Contributions - Metamodels

Additive kernels

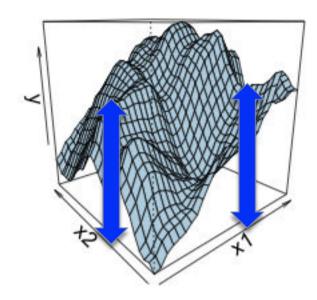
- Additive Kriging [at least: Plate, 1999]
 - Adapt the idea of Additive Models to Kriging $Z(x) = Z_1(x_1) + ... + Z_d(x_d)$
 - Resulting kernels, for independent processes:

$$k = k_1 \oplus \ldots \oplus k_d$$

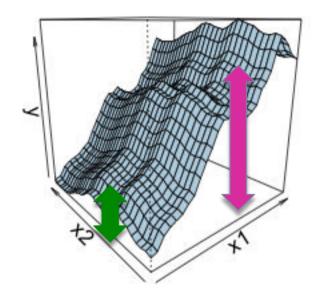
- ▶ The aim: To deal with the curse of dimensionality
- Our contribution [Collab with N. Durrande, and D. Ginsbourger]
 - ▶ Theory: Equivalence between kernel & sample paths additivity
 - Empiric: Investigation of a relaxation algorithm for inference

Additive kernels

- Examples of simulations [package fanovaGraph]
 - A rigid pattern... with more degrees of freedom



Non-additive kernel $Z(x) = \sigma Y(x)$



Additive kernel $Z(x) = \sigma_1 Z_1(x_1) + \sigma_2 Z_2(x_2)$

- ▶ The idea [Collab. with T. Muehlenstaedt, J. Fruth, S. Kuhnt and L. Carraro]
 - ▶ To identify groups of variables that have no interaction together
 - ▶ To use the interactions graph to define block-additive kernels

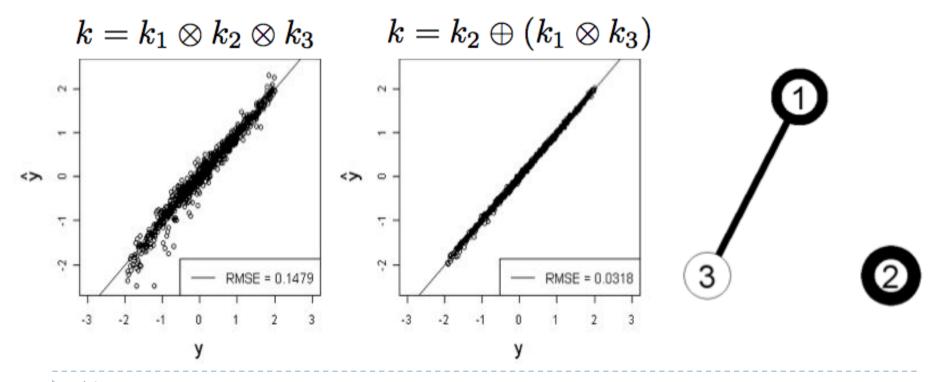
New mathematical tools

- ▶ Total interactions
 - \square Involves the inputs sets containing both x_i and x_i

$$S_{\{i,j\}}^{TI} = \sum_{J\supseteq\{i,j\}} S_J$$

- ► FANOVA graph
 - □ Vertices: input variables Edges: weighted by the total interactions

Illustration of the idea relevance on the Ishigami function $f(\mathbf{x}) = \sin(x_1) + A\sin^2(x_2) + B(x_3)^4 \sin(x_1) = f_2(x_2) + f_{1,3}(x_1, x_3)$

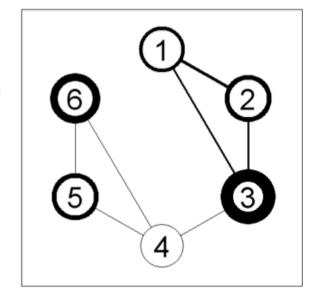


▶ Illustration of the blocks identification on a 6D function ("b")

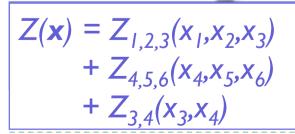
$$f(\mathbf{x}) = \cos([1,x_1,x_2,x_3]a')$$

+ $\sin([1,x_4,x_5,x_6]b')$
+ $\tan([1,x_3,x_4]c')$

ESTIMATION + THRESHOLDING



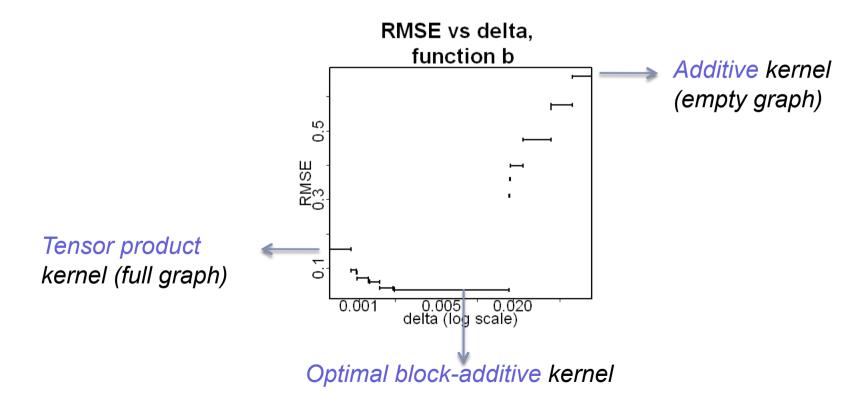
$$f(\mathbf{x}) = f_{1,2,3}(x_1, x_2, x_3) + f_{4,5,6}(x_4, x_5, x_6) + f_{3,4}(x_3, x_4)$$



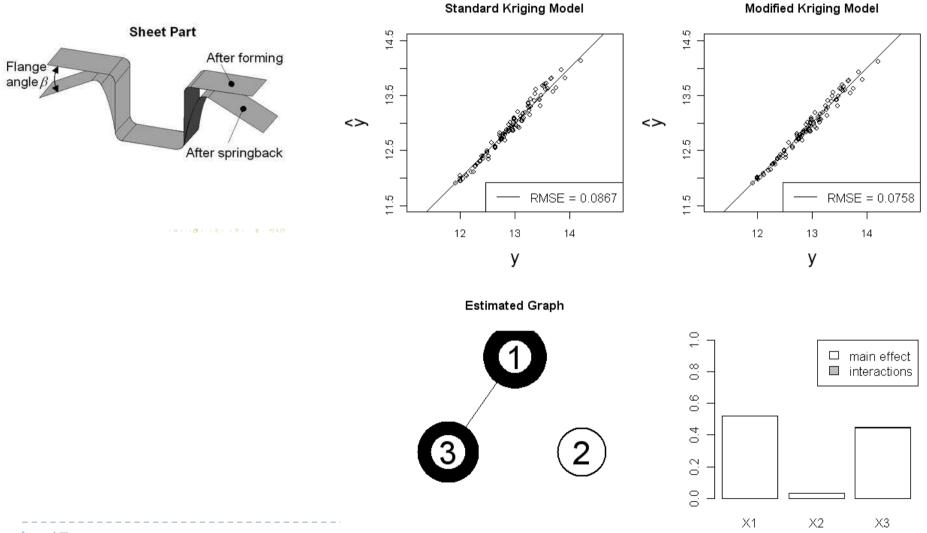
Indep. Assump.

$$k(\mathbf{h}) = k_{1,2,3}(h_1, h_2, h_3) + k_{4,5,6}(h_4, h_5, h_6) + k_{3,4}(h_3, h_4)$$

- Graph thresholding issue
 - Sensitivity of the method accuracy to the graph threshold value



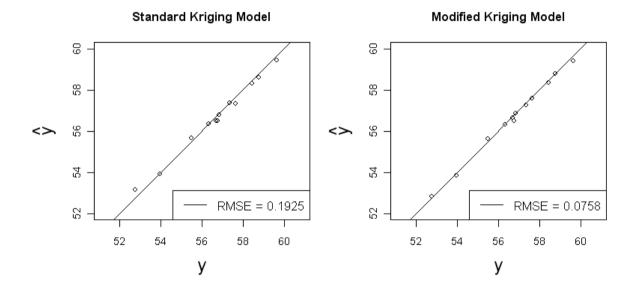
Application to two case studies



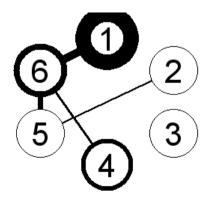
Application to two case studies

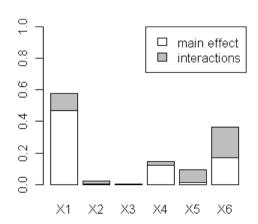
Piston slap problem

Leave-One-Out (RMSE): 0.0864 -> 0.0371



Estimated Graph





Kernels for Kriging mean SA

Motivation:

- ▶ To perform a sensitivity analysis (independent inputs) of the proxy
- To avoid the curse of recursion
- ▶ The idea [Collab. with N. Durrande, D. Ginsbourger and L. Carraro]
 - Adapt the ANOVA kernels,

$$k = (1 + k_1) \otimes ... \otimes (1 + k_d)$$

based on the fact that the FANOVA decomposition of

$$f = (1 + f_1) \otimes ... \otimes (1 + f_d)$$

where the f_i 's are zero-mean functions, is obtained directly by expanding the product (Sobol, 1993)

Kernels for Kriging mean SA

- Solution with the functional interpretation
 - \blacktriangleright Start from the Id- RKHS H_i with kernel k_i
 - ▶ Build the RKHS of zero-mean functions in H_i , by considering the linear form L_i : $h \to \int h(t) d\nu_i(t)$. Its kernel is:

$$k_{i,0}(x,y) = k_i(x,y) - \frac{\int k_i(x,s)d\nu_i(s) \times \int k_i(y,t)d\nu_i(t)}{\int \int k_i(s,t)d\nu_i(s)d\nu_i(t)}$$

Use the modified FANOVA kernel

$$k = (1 + k_{1,0}) \otimes ... \otimes (1 + k_{d,0})$$

Kernels for Kriging mean SA

With this kernel, the Sobol indices at any order of the corresp. Kriging mean are computed analytically without recursion

Proposition 3. The sensitivity indices S_I of m are given by:

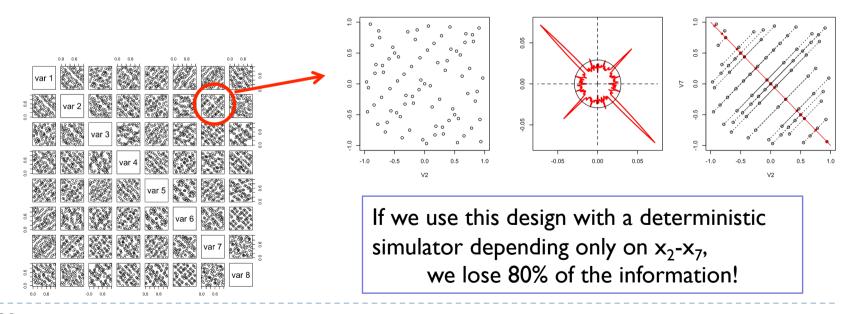
$$S_{I} = \frac{\operatorname{var}(m_{I}(\mathbf{X}_{I}))}{\operatorname{var}(m(\mathbf{X}))} = \frac{\mathbf{F}^{t} \mathbf{K}^{-1} \left(\bigcirc_{i \in I} \Gamma_{i} \right) \mathbf{K}^{-1} \mathbf{F}}{\mathbf{F}^{t} \mathbf{K}^{-1} \left(\bigcirc_{i = 1}^{d} (1_{n \times n} + \Gamma_{i}) - 1_{n \times n} \right) \mathbf{K}^{-1} \mathbf{F}}$$

where Γ_i is the $n \times n$ matrix $\Gamma_i = \int_{D_i} \mathbf{k}_0^i(x_i) \mathbf{k}_0^i(x_i)^t d\mu_i(x_i)$ and $1_{k \times l}$ is the $k \times l$ matrix of ones.

Contributions – Designs

Selection of an initial design

- ▶ The radial scanning statistic (RSS)
 - ▶ Automatic defects detection in 2D or 3D subspaces
 - Visualization of defects
 - Underlying mathematics:
 - law of a sum of uniforms, GOF test for uniformity based on spacings



Selection of an initial design

- ▶ Context: first investigation of a deterministic code
- Two objectives, and the current practice:
 - To catch the code complexity space-filling designs (SFDs)
 - To avoid losing information by dimension reduction space-fillingness should be stable by projection onto margins
- ▶ Our contribution [Collab. with J. Franco, A. Jourdan and L. Carraro]:
 - Dimension reduction techniques involve variables of the form b'x space-fillingness should be stable by projection onto oblique straight lines

Selection of an initial design

▶ Application of the RSS to design selection

Table 1 Worst value of Greenwood statistic for 8-dimensional SFDs of size 80

Design type ^a	Statistic value ^b
Uniform	0.039 (0.003)
Maximin Latin hypercube	0.048
Audze-Eglais Latin hypercube	0.037
Halton sequence	0.244
Faure sequence	0.161
Sobol sequence	0.101
Sobol sequence, with Owen scrambling	0.041 (0.006)
Sobol sequence, with Faure-Tezuka scrambling	0.088 (0.010)
Sobol sequence, with Owen + Faure-Tezuka scrambling	0.041 (0.006)
Strauss	0.040 (0.004)

Contributions – Software

Software for data analysis

The need

- ▶ To apply the applied mathematics on industrial case studies
- ▶ To investigate the proposed methodologies
- To re-use our [own!] codes I year later (hopefully more)...

The software form

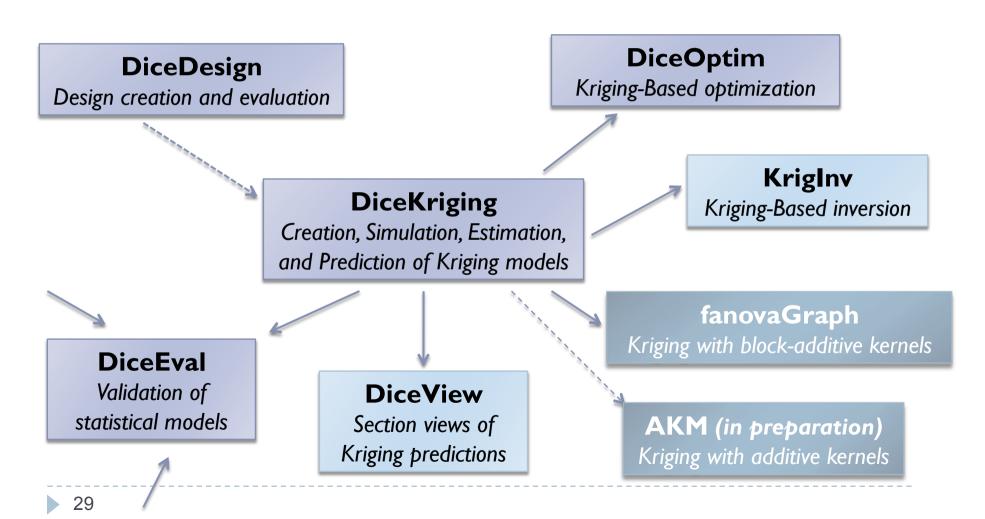
- R language:
 - Freeware Easy to use Huge choice of updated libraries (packages)
- User-friendly software prototypes
 - Trade-off between professional quality (unwanted) and un-re-usable codes

Software for data analysis

- ▶ The packages and their authors
 - A collective work: Supervisors [really], (former) PhD students and... some brave industrial partners!
 - ▶ **DiceDesign**: J. Franco, D. Dupuy, O. Roustant
 - ▶ **DiceKriging**: O. Roustant, D. Ginsbourger, Y. Deville
 - ▶ **DiceOptim**: D. Ginsbourger, O. Roustant
 - ▶ **DiceEval**: D. Dupuy, C. Helbert
 - ▶ **DiceView**: Y. Richet, Y. Deville, C. Chevalier
 - ▶ **KrigInv**: V. Picheny, D. Ginsbourger
 - ▶ fanovaGraph: J. Fruth, T. Muehlenstaedt, O. Roustant
 - ▶ (in preparation) AKM: N. Durrande

Software for data analysis

▶ The Dice packages (Feb. and March 2010) and their satellites



Software with data analysis

- Some comments about implementation [ongoing work with D. Ginsbourger, and Y. Deville]
- Leading idea
 - The code should be as close as possible as the underlying maths
 - Example: Operations on kernels.

Illustration with isotropic kernels

$$k_{\text{iso}}(x, y; \theta) = k(x, y; \theta, \dots, \theta)$$

$$\frac{\partial k_{\mathrm{iso}}}{\partial \theta}(x, y; \theta) = \sum_{i=1}^{p} \frac{\partial k}{\partial \theta_i}(x, y; \theta, \dots, \theta)$$

Unwanted solution: to create a new program k_{iso} for each new kernel k

Implemented solution: to have the same code for any basis kernel k

Tool: object-oriented programming

Contributions – References

Additive kernels:

- PhD thesis of N. Durrande
- N. Durrande, D. Ginsbourger, O. Roustant (+2012), "Additive covariance kernels for high-dimensional Gaussian process modeling", in revision for the Annales de la Faculté des Sciences de Toulouse

Block-Additive kernels:

- ▶ J. Fruth, O. Roustant, S. Kuhnt (+2011), "Total interaction indices for the decomposition of functions with high complexity", HAL.
- T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt (2011), "Data-driven Kriging models based on FANOVA-decomposition", published online in Statistics & Computing.

ANOVA* kernels

- ▶ PhD thesis of N. Durrande (2011)
- N. Durrande, D. Ginsbourger, O. Roustant, L. Carraro (+2012), "Reproducing kernels for spaces of zero mean functions. Application to sensitivity analysis", in revision for the *Journal of Multivariate Analysis*

Radial Scanning Statistic:

- A first version in the PhD thesis of J. Franco (2009)
- The actual one in: O. Roustant, J. Franco, L. Carraro, A. Jourdan (2010), "A radial scanning statistic for selecting space-filling designs in computer experiments", in A. Giovagnoli, A.C. Atkinson, B. Thorsney and C. May, "MODA 9 Advances in Model-Oriented Design and Analysis", Springer (Physica-Verlag), p. 189-196

Software

- See slide 25 for the packages authors' names
- O. Roustant, D. Ginsbourger, Y. Deville (+2012), "DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization", in revision for the Journal of Statistical Software.
- ▶ For a synthesis: O. Roustant, mémoire d'HDR, coming soon (on my webpage)

Part 3 Focus: Interaction screening

Ongoing research, in collaboration with J. Fruth and S. Kuhnt

FANOVA-Hoeffding decomposition

(Efron and Stein, 1981, Hoeffding 1948, Sobol later)

Assume that $X_1, ..., X_d$ are independent random variables. Let f be a function defined on D in \mathbb{R}^d . Then f is uniquely decomposed as:

$$f(X) = \mu_0 + \sum_{i=1}^d \mu_i(X_i) + \sum_{i < j} \mu_{ij}(X_i, X_j) + \dots + \mu_{1,\dots,d}(X_1, \dots, X_d)$$

with the centering conditions:

$$\mathrm{E}(\mu_I(X_I)) = 0, \quad I \subseteq \{1, \ldots, d\}$$

and the non-simplification conditions, implying orthogonality:

$$\mathrm{E}(\mu_{ii'}(X_iX_{i'})\mid X_i) = \mathrm{E}(\mu_{ii'i''}(X_iX_{i'}X_{i''})\mid X_iX_{i'}) = \cdots = 0.$$

FANOVA decomposition

(main effects, interactions)

- ▶ The terms are obtained recursively:
 - Mean, Main effects

$$\mu_0 = E(f(X))$$
 $\mu_i(X_i) = E(f(X)|X_i) - \mu_0$

▶ 2nd order interactions

$$\mu_{ij}(X_i, X_j) = E(f(X)|X_i, X_j) - \mu_i(X_i) - \mu_j(X_j) - \mu_0$$

And more generally:

$$\mu_I(X_I) = E(f(X)|X_I) - \sum_{I' \subsetneq I} \mu_{I'}(X_{I'})$$

FANOVA decomposition (Sobol indices)

The name "FANOVA" becomes from the relation on variances implied by orthogonality:

$$D = \text{var}(f(\boldsymbol{X})) = \text{var}(\mu_0) + \sum_{i=1}^d \text{var}(\mu_i(X_i)) + \sum_{i < j} \text{var}(\mu_{ij}(X_i, X_j)) + \cdots + \text{var}(\mu_{1,...,d}(X_1, ..., X_d))$$

(unnormalized) Sobol indices:

$$D_I = \operatorname{var}(\mu_I(X_I))$$

FANOVA decomposition

(Total indices)

▶ The total index of one variable X_i implies all the subsets J containing {i}

$$D_i^T = \sum_{J\supseteq \{i\}} D_J$$

 \blacktriangleright Extension for a group of variables X_i : implies all the subsets Jthat contain at least one element in I (or equivalenty, that are not contained in -1)

$$D_I^T = \sum_{\substack{J \ J \cap I
eq \emptyset}} D_J$$

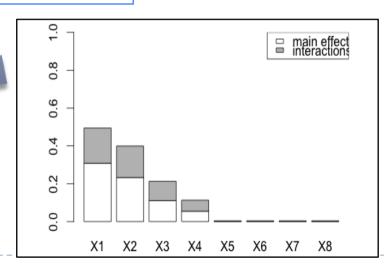
Total indices and screening

- If $D_i^T=0$, the variable X_i is removed (no terms containing X_i)
 - ▶ Remark: A condition is required on the probability measure

$$g(X_1,\ldots,X_d) = \prod_{k=1}^d rac{|4X_k-2|+a_k}{1+a_k}$$

a = (0, 1, 4.5, 9, 99, 99, 99, 99)

[package sensitivity]



Total indices of the g-Sobol function:

X₅, X₆, X₇, X₈ can be removed

Total interactions & FANOVA graph

The total interaction index of a group of variables X_l implies all subsets J containing l. For a pair:

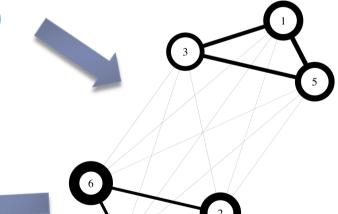
$$\mathbf{D}_{\mathbf{i},\mathbf{j}}^{\mathsf{TI}}$$
 = $\mathfrak{D}_{ij} := \mathrm{var}\left(\sum_{I \supseteq \{i,j\}} \mu_I(X_I)
ight) = \sum_{I \supseteq \{i,j\}} D_I$

- ▶ The FANOVA graph is a valued graph with:
 - Vertices: the input variables (weigth: main effect)
 - ▶ Edges: exists if the total interaction index is >0, (weight: its value)

Total interactions & Interaction screening

- If $D_{i,j}^{TI} = 0$, the interaction (X_i, X_j) is removed in the graph (no terms containing both X_i and X_j)
 - Remark: A condition is required on the probability measure

$$f(X_1, \dots, X_6) = \cos([1, X_1, X_5, X_3] \beta) + \sin([1, X_4, X_2, X_6] \gamma)$$



Total interaction indices of f:

All the interactions (X_i, X_j) with i in the 1st group {1,3,5} and j in the 2nd one {2,4,6} can be removed

Total interaction indices – Theory

FANOVA decomposition (Closed indices)

The closed index of a group of variables X_I implies all subsets J contained in I

$$D_I^C = \operatorname{var}\left(E[f(\boldsymbol{X})|X_I]\right) = \sum_{J\subseteq I} D_J$$

▶ The link with total indices is the following:

$$D = D_{-I}^C + D_I^T$$

First formula

There is an obvious link between total interaction indices and total effects of a group of variables

Proposition I

Second formula ("fixing method")

Fix $x_3, ..., x_d$, and consider the 2^{nd} order interaction of the 2-dimensional function:

$$(x_1, x_2) \rightarrow f(x) = f_1(x_{-2}) + f_2(x_{-1}) + f_{12}(x_1, x_2; x_{-\{1,2\}})$$

Denote $D_{12|x3,...,xd}$ the its index. Then, the t. i. index is obtained by integration over $x_3,...,x_d$.

Second formula ("fixing method")

Proposition 2

$$\mathfrak{D}_{ij} = \mathrm{E}\left(D_{i,j|X_{-\{i,j\}}}\right)$$

Proofs (see [Fruth et al., 2011])

- 1. With the FANOVA decomposition of the 2-dimensional functions
- 2. Via total indices

Total interaction indices – Estimation

Estimators of the total interaction indices

Via closed effects with Monte Carlo (Sobol method)

$$\widehat{\mathfrak{D}}_{ij} = \widehat{D} + \widehat{D}_{-\{i,j\}}^C - \widehat{D}_{-i}^C - \widehat{D}_{-j}^C$$

Via total effects with RBD-FAST

$$\widehat{\mathfrak{D}}_{ij} = \widehat{D}_i^T + \widehat{D}_j^T - \widehat{D}_{\{i,j\}}^T$$

FAST + (usual) Monte Carlo, for the fixing method

$$\widehat{\mathfrak{D}}_{ij} = rac{1}{n_{ ext{MC}}} \sum_{k=1}^{n_{ ext{MC}}} \widehat{D}_{i,j|X_{-\{i,j\}}}^k$$

Estimators: some properties

Estimator	Positivity	Bias	Variance
Closed effects / Sobol method	NO	0	?
Total effects / RBD-FAST	NO	can be large	?
Fixing method / FAST + MC	YES	small	?

Estimators: numerical cost

Number of function evaluations to evaluate all the total interaction indices

RBD-FAST	$N=2(Md+L) imes\left(inom{d}{2}+d ight)$	
$Sobol\ method$	$N = n_{Sobol} imes \left(inom{d}{2} + d + 1 ight)$	
Fixing method	$N = \binom{d}{2} imes n_{MC} imes n_{FAST}$	

In this table:

▶ d=problem dimension, M=6, n_{FAST} =500 (to satisfy the positivity constraint), L(>100), n_{Sobol} , n_{MC} are integers.

Empirical tests

- In the following the 3 estimators are compared for a same number of function evaluations
- Example I:A 6-dimensional complex function
- Example 2: A function with only one 3rd order interaction
- ▶ Example 3:A function with 2nd order interactions only

Example 1: A 6-dim. complex function

▶ Let us consider the 6D g-Sobol function over [-0,1]⁶

$$g(X_1,\ldots,X_d) = \prod_{k=1}^d \frac{|4X_k-2|+a_k}{1+a_k}$$

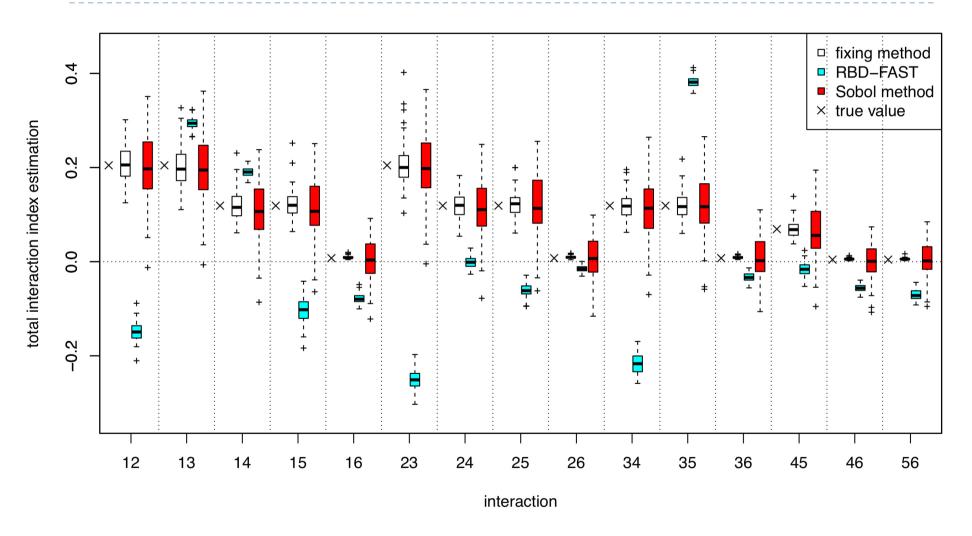
with a = (0, 0, 0, 0.4, 0.4, 5), and uniform distrib.

- ▶ This is a complex function:
 - ▶ Overall variance: ≈ 3.27
 - ▶ Sum of main effects + 2nd order interactions: ≈ 2.06

Example 1: A 6-dim. complex function

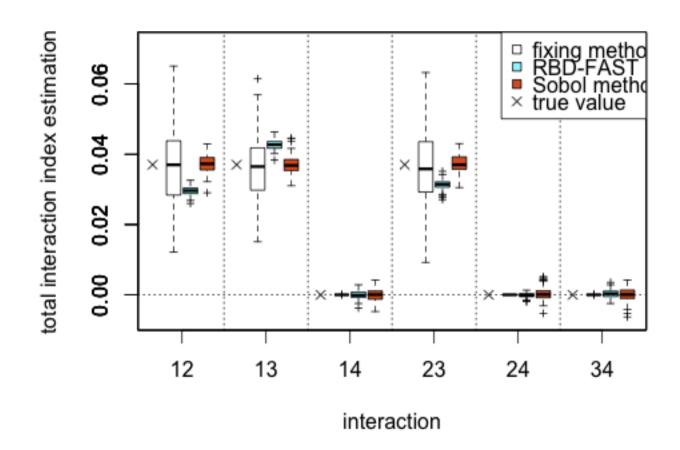
- We compare the three estimators for an equal number of functions evaluations
 - $N = 75\ 000 -> L = 7500, n_{Sobol} = 3\ 409, n_{MC} = 10$
 - N = 600 000 -> 8 times higher values for L, n_{Sobol} , n_{MC}

Example 1: A 6-dim. complex function



Results for N = 15x40000, obtained with 100 replicates

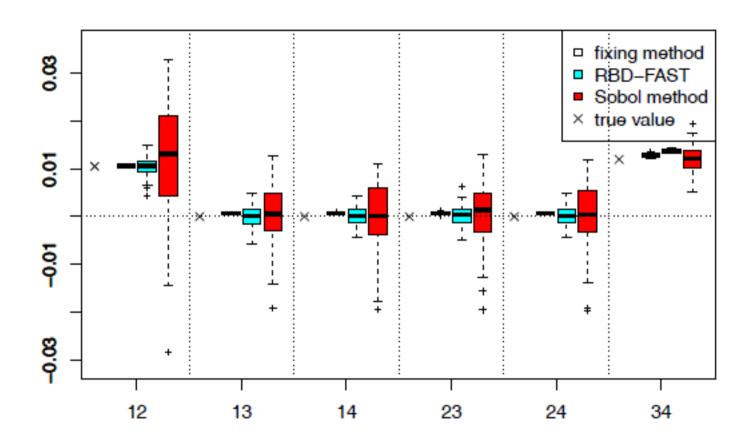
Example 2: Pure 3rd order interaction



Results for N = 6x5000, obtained with 100 replicates, for the function:

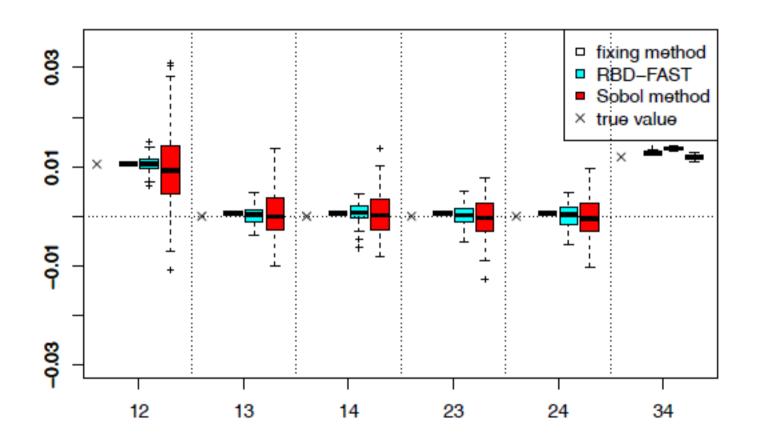
 $x_1x_2x_3$, over [-1,1]⁴ (uniform measure)

Example 3: 2nd order interactions only



Results for N = 6x5000, obtained with 100 replicates, for the function: $sin(x_1+x_2) + 0.4*cos(x_3+x_4)$, over $[-1,1]^4$ (uniform measure)

Example 3: 2nd order interactions only



Remark: With the new estimator for the Sobol method [Janon et al, 2012]

Some important remarks

- The accuracy of the fixing method depends on the variability of the interaction of the fixed function with respect to the fixed variables
 - Very good for second order interaction only
 - Not so good for a (pure) high order interaction
 - Very good when the total interaction is zero
 - → Recommended for interaction screening
- ▶ RBD-FAST is sometimes highly biased
 - ▶ Needs a correction (see [Tissot and Prieur, 2011])

Total interaction indices – Conclusion

Conclusion (1/2)

▶ TII generalizes screening to interactions

Estimation:

- The fixing method reduces computations to 2-dim. functions, and is highly accurate to estimate inactive TII.
- Two other estimators defined over usual estimators for total or closed indices
 - ▶ Their accuracy depends on those ones
- Reasonable global computational cost: O(d²)

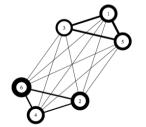
Conclusion (2/2)

Scope:

- \triangleright 2 \leq d \leq 20 (say)
- Suited to functions with high order interactions
- ▶ Under the assumption "2nd-order interactions only":
 - ▶ TII = 2nd order interaction
 - ▶ The fixing method is very accurate

Applications:

- Data-driven identification of groups of variables
 - Recovery of block-additive structures

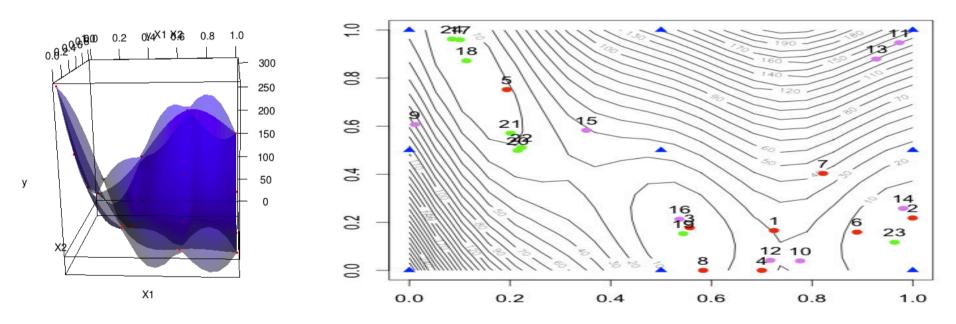


Thank you for your attention!

Supplementary slides

Software for data analysis

- DiceOptim: Kriging-Based optimization
 - Illustration of the adaptive constant liar strategy for 10 processors



Start: 9 points (triangles) – Estimate a Kriging model.

1st stage: 10 points simultaneously (red circles) – Reestimate.

2nd stage: 10 new points simult. (violet circles) – Reestimate.

.

Supplementary slides

 DiceView: 2D (3D) section views of the Kriging curve (surface) and Kriging prediction intervals (surfaces) at a site

