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Background 
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Industrial context 

  Time-consuming computer codes 

  car crash-test simulator, thermal hydraulic code in nuclear 
plants, oil production simulator, etc. 

  xi’s : input variables – yj’s : the output variables 

  Many possible configurations for the variables: often uncertain,  
quantitative / qualitative, sometimes spatio-temporal,  nested... 

4 

x1 
x2 

xd 

y1 
y2 

yk 



Mathematical background 

  The idea is to build a metamodel, computationally efficient, 
from a few data obtained with the costly simulator 
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Mathematical background 

  Metamodel building: the probabilistic framework 

  Interpolation is done by conditioning a Gaussian Process (GP) 

 Keywords: GP regression, Kriging model 
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Mathematical background 

  Main advantages of probabilistic metamodels:  

  Uncertainty quantification 

  Flexibility w.r.t. the addition of new points 

  Customizable, thanks to the trend and the covariance kernel 

                k(x,x’) = cov( Z(x), Z(x’) )  
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Smoothness of the sample 

paths of a stationary process  
depending on the 

kernel smoothness at 0 



Mathematical background 

  Metamodel building: the functional framework 

  Interpolation and approximation problems are solved in the setting 
of Reproducing Kernel Hilbert Spaces (RKHS), by regularization 
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  The probabilistic and functional frameworks are not fully 
equivalent, but translations are possible via the Loève 
representation theorem 

  In both frameworks, kernels play a key role. 



Part 2 

Selected contributions 
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Contributions – Metamodels 



  Our contribution [Collab with N. Durrande, and D. Ginsbourger] 

  Theory: Equivalence between kernel & sample paths additivity 

  Empiric: Investigation of a relaxation algorithm for inference 

  Additive Kriging [at least: Plate, 1999] 

  Adapt the idea of Additive Models to Kriging 

  Z(x) = Z1(x1) + … + Zd(xd) 

  Resulting kernels, for independent processes: 

  The aim: To deal with the curse of dimensionality 

Additive kernels  
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Additive kernels 

  Examples of simulations [package fanovaGraph] 

  A rigid pattern... with more degrees of freedom 

12 

Non-additive kernel 

Z(x) = σY(x)   

Additive kernel 

Z(x) = σ1Z1(x1) + σ2Z2(x2)  



Block-additive kernels 

  The idea [Collab. with T. Muehlenstaedt, J. Fruth, S. Kuhnt and L. Carraro] 

  To identify groups of variables that have no interaction together 

  To use the interactions graph to define block-additive kernels 
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  New mathematical tools  

  Total interactions  

  Involves the inputs sets containing both xi and xj 

  FANOVA graph 

 Vertices: input variables – Edges: weighted by the total interactions 



Block-additive kernels 

  Illustration of the idea relevance on the Ishigami function 

 f(x) = sin(x1) + Asin2(x2) + B(x3)
4sin(x1) = f2(x2) + f1,3(x1,x3) 
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Block-additive kernels 

  Illustration of the blocks identification on a 6D function (“b”) 
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Cliques: 
 {1,2,3}, {4,5,6}, {3,4} 

f(x) = cos([1,x1,x2, x3]a’) 
       +sin([1,x4,x5,x6]b’) 
       +tan([1,x3,x4]c’) 

f(x) = f1,2,3(x1,x2,x3) 
       +f4,5,6(x4,x5,x6) 
       +f3,4(x3,x4) 

Z(x) = Z1,2,3(x1,x2,x3) 
       + Z4,5,6(x4,x5,x6) 
       + Z3,4(x3,x4) 

k(h) = k1,2,3(h1,h2,h3) 
    + k4,5,6(h4,h5,h6) 
    + k3,4(h3, h4) 

Indep. 
Assump. 

ESTIMATION 
+ 

THRESHOLDING 



Block-additive kernels 

  Graph thresholding issue 

  Sensitivity of the method accuracy to the graph threshold value 
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Additive kernel 

(empty graph) 

Tensor product 

kernel (full graph) 

Optimal block-additive kernel 



Application to two case studies 
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Application to two case studies 
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Piston slap problem 

Leave-One-Out (RMSE): 

0.0864 -> 0.0371 



  The idea [Collab. with N. Durrande, D. Ginsbourger and L. Carraro] 

  Adapt the ANOVA kernels,  

 based on the fact that the FANOVA decomposition of 

 where the fi’s are zero-mean functions, is obtained directly by 
expanding the product (Sobol, 1993) 

Kernels for Kriging mean SA 
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  Motivation: 

  To perform a sensitivity analysis (independent inputs) of the proxy 

  To avoid the curse of recursion 



Kernels for Kriging mean SA 

  Solution with the functional interpretation 

  Start from the 1d- RKHS Hi with kernel ki 

  Build the RKHS of zero-mean functions in Hi, by considering 
the linear form Li:                        . . Its kernel is: 

  Use the modified FANOVA kernel 
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Kernels for Kriging mean SA 
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With this kernel, the Sobol indices at any order of the corresp.  

Kriging mean are computed analytically without recursion 
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Contributions – Designs 



Selection of an initial design 

  The radial scanning statistic (RSS)  

  Automatic defects detection in 2D or 3D subspaces 

  Visualization of defects 

  Underlying mathematics:  

  law of a sum of uniforms, GOF test for uniformity based on spacings 
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If we use this design with a deterministic 
simulator depending only on x2-x7,  

we lose 80% of the information! 



Selection of an initial design 

  Context: first investigation of a deterministic code 

  Two objectives, and the current practice: 

  To catch the code complexity 

  space-filling designs (SFDs) 

  To avoid losing information by dimension reduction  

  space-fillingness should be stable by projection onto margins 

  Our contribution [Collab. with J. Franco, A. Jourdan and L. Carraro]: 

  Dimension reduction techniques involve variables of the form b’x 

 space-fillingness should be stable by projection onto oblique straight lines 
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Selection of an initial design 

  Application of the RSS to design selection 
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Contributions – Software 



Software for data analysis 

  The need 

  To apply the applied mathematics on industrial case studies 

  To investigate the proposed methodologies 

  To re-use our [own!] codes 1 year later (hopefully more)… 

  The software form 

  R language:  

  Freeware - Easy to use - Huge choice of updated libraries (packages) 

  User-friendly software prototypes 

  Trade-off between professional quality (unwanted) and un-re-usable codes 
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Software for data analysis 

  The packages and their authors 

  A collective work: Supervisors [really], (former) PhD students 
and… some brave industrial partners! 

  DiceDesign: J. Franco, D. Dupuy, O. Roustant 

  DiceKriging: O. Roustant, D. Ginsbourger, Y. Deville 

  DiceOptim: D. Ginsbourger, O. Roustant 

  DiceEval: D. Dupuy, C. Helbert 

  DiceView: Y. Richet, Y. Deville, C. Chevalier 

  KrigInv: V. Picheny, D. Ginsbourger 

  fanovaGraph: J. Fruth, T. Muehlenstaedt, O. Roustant 

  (in preparation)  AKM: N. Durrande 
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Software for data analysis 

  The Dice packages (Feb. and March 2010) and their satellites 
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DiceKriging 
Creation, Simulation, Estimation, 
and Prediction of Kriging models 

DiceEval 
Validation of 

statistical models 

DiceDesign 
Design creation and evaluation 

DiceOptim 
Kriging-Based optimization 

fanovaGraph 
Kriging with block-additive kernels 

KrigInv 
Kriging-Based inversion 

DiceView 
Section views of 

Kriging predictions 
AKM (in preparation) 
Kriging with additive kernels 



Software with data analysis 

  Some comments about implementation [ongoing work with 
D. Ginsbourger, and Y. Deville] 

  Leading idea 

  The code should be as close as possible as the underlying maths 

  Example: Operations on kernels.  
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Unwanted solution: to create a new 
program kiso for each new kernel k 

Implemented solution:  to have the 
same code for any basis kernel k 
Tool: object-oriented programming 

 Illustration with isotropic kernels 
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  ANOVA* kernels 

  PhD thesis of N. Durrande (2011) 

  N. Durrande, D. Ginsbourger, O. Roustant, L. Carraro (+2012), 
"Reproducing kernels for spaces of zero mean functions. Application to 
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  A first version in the PhD thesis of J. Franco (2009)  

  The actual one in: O. Roustant, J. Franco, L. Carraro, A. Jourdan (2010), 
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  Software 

  See slide 25 for the packages authors’ names 

  O. Roustant, D. Ginsbourger, Y. Deville (+2012), "DiceKriging, DiceOptim: 
two R packages for the analysis of computer experiments by kriging-based 
metamodelling and optimization", in revision for the Journal of Statistical 
Software. 

  For a synthesis: O. Roustant, mémoire d’HDR, coming soon (on 
my webpage) 
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Part 3 

Focus: Interaction screening 

Ongoing research, in collaboration with J. Fruth and S. Kuhnt 
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FANOVA-Hoeffding decomposition  
(Efron and Stein, 1981, Hoeffding 1948, Sobol later) 

36 

  Assume that X1, …, Xd are independent random variables.  

 Let f be a function defined on D in Rd .  Then f is uniquely 
decomposed as: 

 with the centering conditions: 

 and the non-simplification conditions, implying orthogonality: 



  The terms are obtained recursively: 

  Mean, Main effects 

  2nd order interactions 

  And more generally: 

FANOVA decomposition  
(main effects, interactions) 
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FANOVA decomposition  
(Sobol indices) 
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  The name “FANOVA” becomes from the relation on 
variances implied by orthogonality: 

  (unnormalized) Sobol indices:  



FANOVA decomposition  
(Total indices) 
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  The total index of one variable Xi implies all the subsets J 
containing {i} 

  Extension for a group of variables XI: implies all the subsets J 
that contain at least one element in I (or equivalenty, that are 
not contained in – I) 



Total indices and screening 

40 

  If Di
T=0, the variable Xi is removed (no terms containing Xi) 

  Remark: A condition is required on the probability measure 

Total indices of the 

g-Sobol function: 

X5, X6, X7, X8 
can be removed   

[package 

 sensitivity] 

a = (0, 1, 4.5, 9, 99, 99, 99, 99) 



Total interactions & FANOVA graph 

  The total interaction index of a group of variables XI implies 
all subsets J containing I. For a pair: 

  The FANOVA graph is a valued graph with: 

  Vertices: the input variables (weigth: main effect) 

  Edges: exists if the total interaction index is >0, (weight: its value)  
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Di,j
TI  = 



Total interactions & Interaction screening 
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  If Di,j
TI = 0, the interaction (Xi,Xj) is removed in the graph 

(no terms containing both Xi and Xj) 

  Remark: A condition is required on the probability measure 

Total interaction indices of f: 

All the interactions (Xi,Xj) with i in the 

1st group {1,3,5} and j in the 2nd one 
{2,4,6} can be removed   
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Total interaction indices – Theory 



FANOVA decomposition  
(Closed indices) 
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  The closed index of a group of variables XI implies all 
subsets J contained in I 

  The link with total indices is the following: 



First formula 

  There is an obvious link between total interaction indices 
and total effects of a group of variables 

 Proposition 1 
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Second formula (“fixing method”) 

  Fix x3, …, xd, and consider the 2nd order interaction of the 
2-dimensional function: 

  

 (x1, x2)  f(x) = f1(x-2) + f2(x-1) + f12(x1,x2; x-{1,2}) 

  Denote D12|x3,…,xd the its index. Then, the t. i. index is 
obtained by integration over x3,...,xd.  
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Second formula (“fixing method”) 

Proposition 2 

Proofs (see [Fruth et al., 2011]) 

1.  With the FANOVA decomposition of the 2-dimensional functions 

2.  Via total indices 
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Total interaction indices – Estimation 



Estimators of the total interaction 

indices 

  Via closed effects with Monte Carlo (Sobol method) 

  Via total effects with RBD-FAST 

  FAST + (usual) Monte Carlo, for the fixing method  
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Estimators: some properties 
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Estimator  Positivity Bias Variance 

Closed effects /

Sobol method 
NO 0 ? 

Total effects / 

RBD-FAST 
NO can be large ? 

Fixing method / 

FAST + MC 
YES small ? 



Estimators: numerical cost 

  Number of function evaluations to evaluate all the total 
interaction indices 

  In this table:  

  d=problem dimension, M=6, nFAST=500 (to satisfy the positivity 
constraint), L(>100), nSobol, nMC are integers. 
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Empirical tests 

  In the following the 3 estimators are compared for a same 
number of function evaluations 

  Example 1: A 6-dimensional complex function 

  Example 2: A function with only one 3rd order interaction 

  Example 3: A function with 2nd order interactions only 
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Example 1: A 6-dim. complex function 

  Let us consider the 6D g-Sobol function over [-0,1]6 

 with a = (0, 0, 0, 0.4, 0.4, 5), and uniform distrib. 

  This is a complex function: 

  Overall variance: ≈ 3.27 

  Sum of main effects + 2nd order interactions: ≈ 2.06 
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Example 1: A 6-dim. complex function 

  We compare the three estimators for an equal number of 
functions evaluations  

  N = 75 000 -> L = 7500, nSobol = 3 409, nMC = 10 

  N = 600 000 -> 8 times higher values for L, nSobol, nMC 
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Example 1: A 6-dim. complex function 
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Results for N = 15x40000, obtained with 100 replicates 



Example 2: Pure 3rd order interaction 

56 

Results for N = 6x5000, obtained with 100 replicates, for the function:  

x1x2x3, over [-1,1]4 (uniform measure) 



Example 3: 2nd order interactions only 
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Results for N = 6x5000, obtained with 100 replicates, for the function:  

sin(x1+x2) + 0.4*cos(x3+x4), over [-1,1]4 (uniform measure) 



Example 3: 2nd order interactions only 
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Remark: With the new estimator for the Sobol method [Janon et al, 2012] 



Some important remarks 

  The accuracy of the fixing method depends on the 
variability of the interaction of the fixed function with 
respect to the fixed variables 

  Very good for second order interaction only 

  Not so good for a (pure) high order interaction 

  Very good when the total interaction is zero 

 Recommended for interaction screening 

  RBD-FAST is sometimes highly biased 

  Needs a correction (see [Tissot and Prieur, 2011]) 
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Total interaction indices – Conclusion 



Conclusion (1/2) 

  TII generalizes screening to interactions 

  Estimation:  

  The fixing method reduces computations to 2-dim. functions, 
and is highly accurate to estimate inactive TII. 

  Two other estimators defined over usual estimators for total 
or closed indices 

  Their accuracy depends on those ones 

  Reasonable global computational cost: O(d2)  
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Conclusion (2/2) 

  Scope: 

  2 ≤ d ≤ 20 (say) 

  Suited to functions with high order interactions 

  Under the assumption “2nd-order interactions only”: 

  TII = 2nd order interaction 

  The fixing method is very accurate 

  Applications: 

  Data-driven identification of groups of variables 

  Recovery of block-additive structures 
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Thank you for your attention! 
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Supplementary slides 
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Software for data analysis 
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  DiceOptim: Kriging-Based optimization 

  1llustration of the adaptive constant liar strategy for 10 processors 

Start: 9 points (triangles) – Estimate a Kriging model. 
1st stage: 10 points simultaneously (red circles) – Reestimate. 
2nd stage: 10 new points simult. (violet circles) – Reestimate. 
… 



Supplementary slides 

  DiceView:  2D (3D) section views of the Kriging curve 
(surface) and Kriging prediction intervals (surfaces) at a site 
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