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Rectangle rule in dimension 1
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How to generalize the design of experiments with d > 1. ..

(a) regular grid (b) finite group of the torus T?



How to generalize the design of experiments with d > 1. ..

AAAAAAAAAAAAAAA

(c) sparse grid

(d) orthogonal array



Orthogonal arrays: a very quick introduction

Consider A= OA(n,d, g, t)
n: number of points

d: number of factors

g: number of levels, here h =0, L = %,_ oy = qT—l
ie. AC{0,1,... 921" and |A| = n
t: strength, t € {0,1,...,d}
Definition
A has strength t if each of its n X t submatrices contains each t-uple in
{0, %, . "T_l}t the same number of times.

— "every projection of A onto any t variables is a g-levels regular grid"



So, what are we interested in?

Two existing methods of estimating variance-based sensitivity indices (SI)

» Fourier Amplitude Sensitivity Test (FAST): Cukier, Schaibly, Shuler,
Levine. .. (4 papers in the 1970's), Saltelli et al. (1999)

> Random Balance Designs method (RBD): Tarantola et al. (2006)

Links to existing numerical integration theories

> lattice rules (discrete Fourier transform (DFT) on finite subgroups of the
torus), mountains of papers and books beginning from the 1960's

> randomized orthogonal arrays sampling, Patterson (1954), Owen (1994)

Generalizations, improvements, error analysis. .. 7?7

Tissot J.Y., Prieur C., Variance-based sensitivity analysis using harmonic
analysis (submitted).
Preprint available at http://hal.archives-ouvertes.fr/hal-00680725



Background: harmonic ANOVA

Xi,...,X4 indep. random variables
f such that E[f(X)?] < +o0

> Hoeffding decomposition:

f(X) = Z fu(xu)
uC{1,..., d}
where f) = E[f(X)] and

Vo C u, E[f(Xy)|Xo] = 0.

» ANOVA decomposition:

Var[f(X)}

(]

Var[fu(Xu)]

» Variance-based Sl:

Var[fu(Xu)]

Su(f,X) = ar [F(X)]

If X1,.... Xq ~U([0,1])

> Hoeffding decomposition:

FX) = > a(f)exp(2irk-X)

kezd

Z Z ck(f)exp(2imk - X)

fll (Xll )

where ¢, () = E[f(X)exp(—2irk-X)] and
7¢ = {k|Vieu, ki € Z* and Vi ¢ u, k; = 0}
> Parseval’s identity —

37 ()

_ Va(f) _ kezd
> =i = G

ke(Zd)*



Background: harmonic estimator of the Sl's

Let D be a finite subset of [0,1]%. Define

e (f,D) = |D|fo)exp( 2irk - x)

xeD

W(f, Ky, D) Z [ck(f, D)| K, is a finite truncation subset of Z¢
kEKy

V(f, D) :=%o(f?, D) —Go(f, D)?, note that V(f) = co(F?) — co(f)?

Su(f Ky, D) :=

— efficient design of experiments (DOE) D?



Background: a first example (multidimensional DFT and
trigonometric interpolation)
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(a) D= {O,;...,"ql} (b) D* :Zdﬁ(—g,g]d
(spatial domain) (frequency domain)

> Yk € D*, ¢ (f, D) is the k-th discrete complex Fourier coefficient

> f(x):= Z Ci(f, D) exp(2iTk - x) is the trigo. interp. poly. (TIP) of £
keD*

> gl.(f, D*nzd, D)= Su(?) — metamodel approach



Background: remark on multidimensional DFT

> generally unfeasible (curse of dimensionality)

> possible generalization: Smolyak algorithm on hyperbolic crosses (i.e.
interpolation on sparse grids) => become ill-conditioned as g 1 and d T,

Kdmmerer & Kunis (2011)
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FAST revisited

§5A5T<fv Ku,X*(CP,w)) = §u((7; o R1)f, Ku7 G(w))

> x"(¢p,w): DOE in classic FAST
@: random shift in [0, 27)¢
w: "generator" of the DOE, € (N*)? -
» T, and Ri: linear operators on Lz([O, l)d) , R
o,fn
> G(w): cyclic group with generator w/n
(;)1/n
N 1 . ,
> &(f,6(w) =7 EG(: )f(x)ex”(*’”k X): (a) DOE in revisited FAST
xeG(w

DFT on cyclic group / rank-1 lattice rule



Shift and regularization operators on L2([0, 1]9)

Define Ry and T, ¢ € [0,27)9; and also R, = R10---0 Ry (p times)
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Rp and Ty, (properties)

> ANOVA decomposition is R, and T-invariant
— Su((n oRp)f) = Su(f)

> Riemann-Lebesgue lemma: |ck(f)| — 0 as ||k|| — o

"the smoother the function, the faster the convergence"
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RBD revisited
SESP(F, Ky, x™ (0, p)) = Spiy ((Th 0 Rp)f, pKyiy, A(mr))

> x*(m,p): DOE in classic RBD
p € N* (generally set to 1) / 7r: random permutation in (&,)? /
p=(1-p)r/2p,...,(1 - p)7/2p)

(51 2), i=0,...,n—1}: OA(n,d,m,1)

'

> A

» A(m): randomized orthogonal array based on A
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(a) Awithn=6 (b) A((35) x () (c) A((35) x (25)(36))




Potential generalizations

(Operators R, and T, are now omitted — p is set to 1 in RBD)

> gu(f, Ky, G(o.s)) with a group G of any rank r < d not so easy in practice

> g;(f, K{;},A(ﬂ')) with a Sl of any order: gu(f, Ku,A(ﬂ')) OK
— already applied in Xu & Gertner (2011)

> S, (f, Ku,A(ﬂ')> with any orthogonal array A =0A(n,d, q,t) OK



Cubature error in FAST

3 [alf, 6(w)

keEKy

G (F?, G(w)) —o(f, G(w))?

Recall that gu(f7 Ku, G(w)) =

»> truncation error

> integration error (Poisson summation formula)

A(f,Gw) —a()= D cun(f)

he G(w)-\{0}

where G(w)* ={h e Z¢ | h-w =0 (mod n)} is the infinite subgroup of
79 orthogonal to G.

—> main issue: "constructing G(w) which minimizes the error in some sense"



Classic approach: error minimization=avoiding interferences

> interference between k and h <= ¢ (f, G(w)) =t (f, G(w))

> criterion to avoid the interference between k and h:
P(k,h,w) : (k—h)-w #0 (mod n)

Proposition 1
Let K = UyspKu (Ku C Z&) and G(w) of order n such that

Vk,h € K, k #h, P(k,h,w) is true.
If n = |K| then
fic(x) = Yk &(f, G(w)) exp(2imk - x) is the t.ip. of f at the nodes g € G(w)

and 5. (f, Ku, G(w)) = Su(fx) — metamodel approach

Remarks: (1) |K| < n = metamodel approach but weaker conclusion
(2) computational complexity O(n“) (basic exhaustive algorithm)



New approach: error minimization=achieving the (optimal)
rate of convergence in a space of smooth functions

Weighted Korobov space Ho ~,a, @ > 1, v = (1) > 0 (RKHS)

p
Vi Fll, 4 (we={i | ki #0})

> f e Haryd = |(f)| < =—F7%,
~y H,'euk |ki|o/2

Constructing w in rank-1 lattice rules

> B%®* (n)=  min sup Co(f, G(w)) — colf
A= ) )

> objective: constructing w such that G(w) achieves a nearly optimal rate
of convergence B, ~.4(n) > B:f’;’d(n)
> Korobov-type construction O(dn?) (Korobov, 1960)
component-by-component construction O(d?>n?) (Sloan & Reztsov, 2002)
fast CBC construction O(dnlog(n)) (using FFT) (Nuyens & Cools, 2004)

fast CBC construction for embedded lattice rules O(dnlog(n)?) (Cools et
al., 2006)



New approach (cont.)

Proposition 2
Let f € Ha,~,qa and B, .4(n) defined as previously. There exists G(w) of order
n such that:

> if f2€ Hor g, |V(F, G(w)) = V(F)| = O(Bary,a(n)) + O(Bar 47,a(n))
and B = B(n) such that
> for [u] = 1, [Vu(f, Za,5 N 2§, G(w)) = Vu(f)| = O(Bay.a(n)* /%)
> for [ul = 2, |Vi(F, Zas N 22, G(w)) — Vu(f)| =
O( log (Bay.y,d(n)*l/"‘)Bamd(n)lfl/a)

where Z4 5 = {k | TIZ, max(1, |ki|) < B}: Zaremba cross (=hyperbolic cross)

(a) 224 (b) Z2,10



Bias in RBD

Recall that

Ek f7A ™ 2
Su(f, Ku, A(T)) = Vi, Ku, A()) _ kez’;u| (f,A(m))|
ulls Nu, V(f,A(ﬂ')) /C\O(f27A(7'r)) _/C\O(f,A(Tr))z

Let A be an OA(n,d, g, t) and y the normalized counting measure on (&,)¢

> we are interested in E, [V(f, A(ﬂ))] and E, [Vu(f, Ku,A(ﬂ))]

> let f € Ho = Ha,1 (unweighted Korobov space), we have

E, [yek(f, A(ﬂ))|2] = |a(F)]? + Var, [Ek(f,A(ﬂ-))] +0(q?)



Bias in RBD (cont.)

Theorem 1 ([Owen, 1994] revisited as a duality relation)

Denote D = {0, %, . %}d, we have

Var, [Eo(f,A(ﬂ'))] - % 3 <|iB(u, r)(1—q)'—‘“')< >l D)|2)

lu|>t r=0

where
B(u7 r) = Z Z 1\{I€u, AiI:AjI}|:’
i=1 j=1

consists of the number of pairs of rows (A;, Aj) that match on exactly r of the
axes in u.

Remark: note that t = 0 and n = 1 leads to Parseval's identity.



Bias in RBD (cont.)

Proposition 3

Let A= OA(n,d, q,t) free of the coincidence defect (= no two rows of A
agree in any t + 1 columns). If there exists o > 2t + 1 such that f € Hq then

(1) if f2 € Ha, then E,, [V(f, A(w))] = V(F) = 23 s VulF) + o(n7?)
() E, [Vu(f, Ku,A(Tr))] = Vu(F) + B + corunc(F, Ku) + o(n™Y)

where B < |Ku|(V(F) + co(£)?)

In practice,
» no bias correction needed for v(f, A(m))

> B could be greater than Vi (f)



Bias correction in RBD

(1) A= OA(n,d,q,1)

Ve n__ v LI

VE(f, Ky, A(r)) = m\/;(f, Ky, A(m)) — mv(fﬂq(ﬂ.))
- b

Vi (F, Ky, Am) - = = Vi (F, Koy, A(m)

LSy _
= i1 (VI Am) +a(f, A))
(2) A= OA(na d7 q, 2)
Vic(fa K{i}7 A(ﬂ')) = V:(f, K{,‘}, A(ﬂ'))

/\Zj(f" Kiiys A(ﬂ-)) = /\Zj(f, Ky, A(ﬂ'))

. n
n— Kl

Kipl oo A
— U (Y(f, A()) - Vi —
n—|Kijyl ( ( (7)) J)



Analytical test case: Sobol's g-function

d
o |4x,-—2|+a,-

f(x) =][£i(x), where f,-(x,-)—? , a>0

i=1

2

0 05 1

0 if 3i | ki # 0 and even

For any k € Z%, a(f) = ) H am
otherwise




Analytical test case (cont.)

First test case: RBD + bias correction
» d=6,a=(0,0,1,1,9,9)

> n=1681
(a) A= OA(1681,6,1681,1)
(b) A= OA(1681,6,41,2) (Bush's construction)

> truncation sets based on a Zaremba cross (8 = 12)

> boxplots of 200 independent replicates

Second test case: FAST (new approach)
» d =30 a=(0,051,15,2,...,14.5)

> embedded lattice rule G(w) = (G(w,n)), 110 10
Nmax = 2*° ~ 5.10°
j<k= G(w,?)C G(w,2"

> truncation sets based on a Zaremba cross (3(n) = 0.8n"/*)



RBD - first-order sensitivity indices
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RBD — second-order sensitivity indices
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FAST — first-order sensitivity indices

first-order sensitivity indices
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FAST — first-order sensitivity indices (log/log)

first-order sensitivity indi

sample size (log)



FAST — second-order sensitivity indices
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FAST — second-order sensitivity indices (log/log)

sample size (log)



Summary

We revisited FAST and RBD in light of
» DFT on cyclic groups/lattice rules

» randomized ortogonal array sampling

FAST: we proposed a new approach based on lattice rules

RBD: we generalized RBD to any orthogonal array
we proposed a bias correction method



That's all folks!



