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@ Kriging model with Gaussian process

Basic idea : representing a deterministic and unknown function as the
realization of a Gaussian process

Notation
Gaussian process Y defined on the set X.
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@ When the distribution of the Gaussian process is known

Processus Gaussien conditionné

Observations

Prediction mean

1o 95% confidence intervals

Conditional realizations

T
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x

All this from explicit matrix vector formula
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@ Covariance function estimation

Parameterization
Covariance function model {o2Ky, 02 > 0,6 € ©} for the Gaussian Process
Y.

» o2 is the variance hyper-parameter

» 0 is the multidimensional correlation hyper-parameter. Kj is a stationary
correlation function.

Estimation

Y is observed at x4, ..., xn € X, yielding the Gaussian vector
y= (Y(X1 )7 cey Y(Xn))/\

Estimators 52(y) and 9(y)

"Plug-in" Kriging prediction

1 Estimate the covariance function

2 Assume that the covariance function is fixed and carry out the explicit
Kriging equations
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@ Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood
Define Ry as the correlation matrix of y = (Y(x), ..., Y(xn)) under

correlation function Kjy.
The Maximum Likelihood estimator of (o2, 8) is

- A 1 o
(62,0m) € argmin  — (In(\02R9|)+—2th01y)
02>0,0c0 N o
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Cross Validation for estimation

> j’@,f,—i = EUZ,G(Y(X/)UH sy Yie 1 Vit ~~~»,Vn)

> o2ch = var o(YO0)V1s s Vi1, Yigts s ¥n)

Leave-One-Out criteria we study

n
. . . )
fcy € argmin> "(yi — Jo.i, i)
oe0

and
" 2 5 2
1 Wi _yécv,i,fi) .2 1 Wi _yécv,i,fi)
" T2 2 = 1eéey =~ Z 2
n 4 62,02 . . n 4 c:
i=1 cv Ocyi,—i i=1 Ocv,i,—i
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@ Virtual Leave One Out formula

Let Ry be the correlation matrix of y = (y1, ..., ¥n) with correlation function
Ko

Virtual Leave-One-Out

BY), oy o

and =

Yi—VYo,i—i = (39_71)“ i —i (39_71)”

)

ﬁ O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood,
Mathematical Geology, 1983.

Using the virtual Cross Validation formula :
¢y € argmin 1thg1 diag (R?)iz R;1y
oco N
and

1 —1
52, = —y'R-" diag ( R, R;'
Tev ny 9cvdlag( 90v> 9cvy
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Finite sample analysis of ML and CV under model misspecification
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Objectives

We want to study the cases of model misspecification, that is to say the
cases when the true covariance function K; of Y is far from
K= {02K9,02 >0,0 € @}

In this context we want to compare Leave-One-Out and Maximum Likelihood
estimators from the point of view of prediction mean square error and
point-wise estimation of the prediction mean square error

We proceed in two steps

» When K = {02Kz,02 > 0}, with K5 a correlation function, and K; the
true unit-variance covariance function : theoretical formula and
numerical tests

> In the general case : numerical studies
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@ Case of variance hyper-parameter estimation

> ¥ : Kriging prediction of yo := Y(Xo) with fixed misspecified correlation
function Ks

v

E [ (Jo — ¥0)?| y] : conditional mean square error of the non-optimal
prediction

v

One estimates o2 by 52.

v

Conditional mean square error of j, estimated by 562c2 with ¢Z fixed
by Kz

The Risk
We study the Risk criterion for an estimator 62 of o2

Rz, =E [(E [(f’o - }/0)2‘ Y] - 5202)(0)2]

— Explicit formula for estimators of ¢ that are quadratic forms of the
observation vector
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@ Results for the variance hyper-parameter estimation

Procedure

» We make the distance between K; and K> vary, starting from 0.
» We calculate and study the Risk criterion

Results
» For not too regular design of experiments : CV is more robust than ML
to misspecification
> Larger variance but smaller bias for CV
> The bias term becomes dominating when K; # K>
» For regular design of experiments, CV is less robust to model
misspecification
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Case of variance and correlation hyper-parameter
estimation

For variance and correlation hyper-parameter estimation

» Numerical study on analytical functions
» Confirmation of the results of the variance estimation case

For more details

ﬁ Bachoc F, Cross Validation and Maximum Likelihood estimations of
hyper-parameters of Gaussian processes with model misspecification,
Computational Statistics and Data Analysis 66 (2013) 55-69,
http ://dx.doi.org/10.1016/j.csda.2013.03.016.
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Asymptotic analysis of ML and CV in the well-specified case
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@ Framework and objectives

Estimation
We do not make use of the distinction o2, 6. Hence we use the set
{Kp, 0 € ©} of stationary covariance functions for the estimation.

Well-specified model
The true covariance function K of the Gaussian Process belongs to the set
{Kp,0 € ©}. Hence

K= KGO’ 0o € ©

Objectives
» Study the consistency and asymptotic distribution of the Cross
Validation estimator
» Confirm that Maximum Likelihood is asymptotically more efficient
» Study the influence of the spatial sampling on the estimation
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@ Spatial sampling for hyper-parameter estimation

» Spatial sampling : Initial design of experiment for Kriging
» It has been shown that irregular spatial sampling is often an advantage
for hyper-parameter estimation

@ Stein M, Interpolation of Spatial Data : Some Theory for Kriging,
Springer, New York, 1999. Ch.6.9.

@ Zhu Z, Zhang H, Spatial sampling design under the infill
asymptotics framework, Environmetrics 17 (2006) 323-337.

» Our question : Is irregular sampling always better than regular sampling
for hyper-parameter estimation ?
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Two asymptotic frameworks for hyper-parameter estimation

Asymptotics (number of observations n — +o0) is an area of active
research (Maximum-Likelihood estimator)

Two main asymptotic frameworks

» fixed-domain asymptotics : The observations are dense in a bounded
domain

oo o
oo o
ooo

o 12 3 4 s 6 7

o 12 3 4 s 6 7

o 12 3 4 s 6 7

T 7 f 3 4 5§ 7 ]

TE o6 7 T

> increasing-domain asymptotics : A minimum spacing exists between the
observation points — infinite observation domain.
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@ Choice of the asymptotic framework

Comments on the two asymptotic frameworks

» fixed-domain asymptotics
From 80’-90’ and onwards. Fruitful theory

ﬁ Stein, M., Interpolation of Spatial Data Some Theory for Kriging,
Springer, New York, 1999.

However, when convergence in distribution is proved, the asymptotic

distribution does not depend on the spatial sampling — Impossible to

compare sampling techniques for estimation in this context

> increasing-domain asymptotics :

Asymptotic normality proved for Maximum-Likelihood under general

conditions

@ Sweeting, T., Uniform asymptotic normality of the maximum
likelihood estimator, Annals of Statistics 8 (1980) 1375-1381.

ﬁ Mardia K, Marshall R, Maximum likelihood estimation of models
for residual covariance in spatial regression, Biometrika 71 (1984)
135-146.
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Randomly perturbed regular grid

» Observation point / :
Vi + eX;

> (Vi)ien= : regular square grid of step one in dimension d
> (X)jen+ : iid with uniform distribution on [—1, 1]¢

> c €] — %, 1[is the regularity parameter.

> ¢ =0 — regular grid.
> |e| close to § — irregularity is maximal

; ; 13
lllustration with e = 0, 5, 3
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@ Consistency and asymptotic normality

Under general conditions
For ML
» a.s convergence of the random Fisher information : The random trace

1 Tr R71 8R60 R71 BRQO
n % o0, % 96

converges a.s to the element (I ); ; of a p x p deterministic matrix Iy,
asn— +oo

» asymptotic normality : With X,y = 2'1\7/2
vn (éML - 90) = N(0,Zm)
For CV

Same result with more complex random traces for asymptotic covariance
matrix ZCV

— consistency and same rate of convergence for CV
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@ Objectives for the analysis of the spatial sampling impact

The asymptotic covariance matrices X ¢y depend only on the regularity
parameter e.
in the sequel, we study the functions € — Zy cv
Small random2 perturbations of the regular grid
o)

We study <ﬁzMLycv> o

» Closed form expression for ML for d = 1 using Toeplitz matrix sequence

theory
» Otherwise, it is calculated by exchanging limit in n and derivatives in ¢

Large random perturbations of the regular grid
We study € — Zpy cv

> Closed form expression for ML and CV for d = 1 and ¢ = 0 using
Toeplitz matrix sequence theory

» Otherwise, it is calculated by taking n large enough
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Small random perturbations of the regular grid

Matérn model. Dimension one. One estimated hyper-parameter.
Levels plot of (8522ML,CV)/ZML,CV in £y X 1y

Top : ML

Bot : CV

Left : ¢ (1 known)
Right : 2 (€9 known)

400

L 700

There exist cases of degradation of the estimation for small perturbation for
ML and CV. Not easy to interpret
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Large random perturbations of the regular grid

Plot of s, cv- Top : ML. Bot :

From left to right : (£, ¢y = 2.7,
vy = 25)

CV.
vo = 1), (0,4 = 0.5, vy = 2.5), (9, 4o = 2.7,

g
2
8
s 8 s 8 s
i i :
H s B H
iF H
E £ o E
2
H H H E)
6 g
2 § 2
2
H 88 H
is i e
i, id HE
E E E
Iy a 2
H 2 o expasin M
o4 a2 o0 02 o o0 a2 oo 02 o

Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation

23/25



Conclusion on the well-specified case

» CV is consistent and has the same rate of convergence as ML

» We confirm that ML is more efficient

» Irregularity in the sampling is generally an advantage for the estimation,
but not necessarily

> With ML, irregular sampling is more often an advantage than with CV

> Large perturbations of the regular grid are often better than small ones for
estimation

> Keep in mind that hyper-parameter estimation and Kriging prediction are
strongly different criteria for a spatial sampling

For further details :

@ Bachoc F, Asymptotic analysis of the role of spatial sampling for
hyper-parameter estimation of Gaussian processes, Submitted,
available at http ://arxiv.org/abs/1301.4321.
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@ Conclusion

General conclusion
» ML preferable to CV in the well-specified case
» In the misspecified case, with not too regular design of experiments :
CV preferable because of its smaller bias
» In both misspecified and well-specified cases : the estimation benefits
from an irregular sampling
» The variance of CV is larger than that of ML in all the cases studied.

Perspectives

» Designing other CV procedures (LOO error ponderation, decorrelation
and penalty term) to reduce the variance

» Expansion-domain asymptotic analysis of the misspecified case

Thank you for your attention !
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