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Kriging model with Gaussian process

Basic idea : representing a deterministic and unknown function as the
realization of a Gaussian process
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Notation
Gaussian process Y defined on the set X .
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When the distribution of the Gaussian process is known

Observations

Prediction mean

95% confidence intervals

Conditional realizations

All this from explicit matrix vector formula
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Covariance function estimation

Parameterization
Covariance function model

{

σ2Kθ, σ
2 ≥ 0, θ ∈ Θ

}

for the Gaussian Process
Y .

◮ σ2 is the variance hyper-parameter

◮ θ is the multidimensional correlation hyper-parameter. Kθ is a stationary
correlation function.

Estimation
Y is observed at x1, ..., xn ∈ X , yielding the Gaussian vector
y = (Y (x1), ...,Y (xn)).

Estimators σ̂2(y) and θ̂(y)

"Plug-in" Kriging prediction

1 Estimate the covariance function

2 Assume that the covariance function is fixed and carry out the explicit
Kriging equations
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Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood
Define Rθ as the correlation matrix of y = (Y (x1), ...,Y (xn)) under
correlation function Kθ .
The Maximum Likelihood estimator of (σ2, θ) is

(σ̂2
ML, θ̂ML) ∈ argmin

σ2≥0,θ∈Θ

1

n

(

ln (|σ2
Rθ|) +

1

σ2
y t

R
−1
θ

y

)
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Cross Validation for estimation

◮ ŷθ,i,−i = Eσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

◮ σ2c2
θ,i,−i

= varσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

Leave-One-Out criteria we study

θ̂CV ∈ argmin
θ∈Θ

n
∑

i=1

(yi − ŷθ,i,−i )
2

and

1

n

n
∑

i=1

(yi − ŷ
θ̂CV ,i,−i

)2

σ̂2
CV

c2
θ̂CV ,i,−i

= 1 ⇔ σ̂2
CV =

1

n

n
∑

i=1

(yi − ŷ
θ̂CV ,i,−i

)2

c2
θ̂CV ,i,−i
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Virtual Leave One Out formula

Let Rθ be the correlation matrix of y = (y1, ..., yn) with correlation function
Kθ

Virtual Leave-One-Out

yi − ŷθ,i,−i =

(

R
−1
θ

y
)

i
(

R
−1
θ

)

i,i

and c2
i,−i =

1
(

R
−1
θ

)

i,i

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood,
Mathematical Geology, 1983.

Using the virtual Cross Validation formula :

θ̂CV ∈ argmin
θ∈Θ

1

n
y t

R
−1
θ

diag
(

R
−1
θ

)−2
R
−1
θ

y

and

σ̂2
CV =

1

n
y t

R
−1

θ̂CV
diag

(

R
−1

θ̂CV

)−1

R
−1

θ̂CV
y
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Objectives

We want to study the cases of model misspecification, that is to say the
cases when the true covariance function K1 of Y is far from
K =

{

σ2Kθ, σ
2 ≥ 0, θ ∈ Θ

}

In this context we want to compare Leave-One-Out and Maximum Likelihood
estimators from the point of view of prediction mean square error and
point-wise estimation of the prediction mean square error

We proceed in two steps

◮ When K =
{

σ2K2, σ
2 ≥ 0

}

, with K2 a correlation function, and K1 the
true unit-variance covariance function : theoretical formula and
numerical tests

◮ In the general case : numerical studies
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Case of variance hyper-parameter estimation

◮ ŷ0 : Kriging prediction of y0 := Y (x0) with fixed misspecified correlation
function K2

◮ E
[

(ŷ0 − y0)
2
∣

∣ y
]

: conditional mean square error of the non-optimal
prediction

◮ One estimates σ2 by σ̂2.

◮ Conditional mean square error of ŷ0 estimated by σ̂2c2
x0

with c2
x0

fixed
by K2

The Risk
We study the Risk criterion for an estimator σ̂2 of σ2

Rσ̂2,x0
= E

[

(

E

[

(ŷ0 − y0)
2
∣

∣

∣
y
]

− σ̂2c2
x0

)2
]

−→ Explicit formula for estimators of σ2 that are quadratic forms of the
observation vector
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Results for the variance hyper-parameter estimation

Procedure

◮ We make the distance between K1 and K2 vary, starting from 0.

◮ We calculate and study the Risk criterion

Results

◮ For not too regular design of experiments : CV is more robust than ML
to misspecification

◮ Larger variance but smaller bias for CV
◮ The bias term becomes dominating when K1 6= K2

◮ For regular design of experiments, CV is less robust to model
misspecification
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Case of variance and correlation hyper-parameter
estimation

For variance and correlation hyper-parameter estimation

◮ Numerical study on analytical functions

◮ Confirmation of the results of the variance estimation case

For more details

Bachoc F, Cross Validation and Maximum Likelihood estimations of
hyper-parameters of Gaussian processes with model misspecification,
Computational Statistics and Data Analysis 66 (2013) 55-69,
http ://dx.doi.org/10.1016/j.csda.2013.03.016.
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Framework and objectives

Estimation
We do not make use of the distinction σ2, θ. Hence we use the set
{Kθ, θ ∈ Θ} of stationary covariance functions for the estimation.

Well-specified model

The true covariance function K of the Gaussian Process belongs to the set
{Kθ, θ ∈ Θ}. Hence

K = Kθ0
, θ0 ∈ Θ

Objectives

◮ Study the consistency and asymptotic distribution of the Cross
Validation estimator

◮ Confirm that Maximum Likelihood is asymptotically more efficient

◮ Study the influence of the spatial sampling on the estimation
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Spatial sampling for hyper-parameter estimation

◮ Spatial sampling : Initial design of experiment for Kriging

◮ It has been shown that irregular spatial sampling is often an advantage
for hyper-parameter estimation

Stein M, Interpolation of Spatial Data : Some Theory for Kriging,
Springer, New York, 1999. Ch.6.9.

Zhu Z, Zhang H, Spatial sampling design under the infill
asymptotics framework, Environmetrics 17 (2006) 323-337.

◮ Our question : Is irregular sampling always better than regular sampling
for hyper-parameter estimation ?
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Two asymptotic frameworks for hyper-parameter estimation

Asymptotics (number of observations n → +∞) is an area of active
research (Maximum-Likelihood estimator)

Two main asymptotic frameworks

◮ fixed-domain asymptotics : The observations are dense in a bounded
domain
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◮ increasing-domain asymptotics : A minimum spacing exists between the
observation points −→ infinite observation domain.

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

. Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation 17/25 .



.

Choice of the asymptotic framework

Comments on the two asymptotic frameworks

◮ fixed-domain asymptotics
From 80’-90’ and onwards. Fruitful theory

Stein, M., Interpolation of Spatial Data Some Theory for Kriging,
Springer, New York, 1999.

However, when convergence in distribution is proved, the asymptotic
distribution does not depend on the spatial sampling −→ Impossible to
compare sampling techniques for estimation in this context

◮ increasing-domain asymptotics :
Asymptotic normality proved for Maximum-Likelihood under general
conditions

Sweeting, T., Uniform asymptotic normality of the maximum
likelihood estimator, Annals of Statistics 8 (1980) 1375-1381.

Mardia K, Marshall R, Maximum likelihood estimation of models
for residual covariance in spatial regression, Biometrika 71 (1984)
135-146.
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Randomly perturbed regular grid
◮ Observation point i :

vi + ǫXi

◮ (vi )i∈N∗ : regular square grid of step one in dimension d
◮ (Xi )i∈N∗ : iid with uniform distribution on [−1, 1]d

◮ ǫ ∈]− 1
2
, 1

2
[ is the regularity parameter.

◮ ǫ = 0 −→ regular grid.
◮ |ǫ| close to 1

2
−→ irregularity is maximal

Illustration with ǫ = 0, 1
8
, 3

8
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Consistency and asymptotic normality

Under general conditions

For ML

◮ a.s convergence of the random Fisher information : The random trace

1

n
Tr

(

R
−1
θ0

∂Rθ0

∂θi

R
−1
θ0

∂Rθ0

∂θj

)

converges a.s to the element (IML)i,j of a p × p deterministic matrix IML

as n → +∞
◮ asymptotic normality : With ΣML = 2I

−1
ML

√
n
(

θ̂ML − θ0

)

→ N (0,ΣML)

For CV

Same result with more complex random traces for asymptotic covariance
matrix ΣCV

−→ consistency and same rate of convergence for CV
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Objectives for the analysis of the spatial sampling impact

The asymptotic covariance matrices ΣML,CV depend only on the regularity
parameter ǫ.
−→ in the sequel, we study the functions ǫ → ΣML,CV

Small random perturbations of the regular grid

We study
(

∂2

∂ǫ2 ΣML,CV

)

ǫ=0

◮ Closed form expression for ML for d = 1 using Toeplitz matrix sequence
theory

◮ Otherwise, it is calculated by exchanging limit in n and derivatives in ǫ

Large random perturbations of the regular grid

We study ǫ → ΣML,CV

◮ Closed form expression for ML and CV for d = 1 and ǫ = 0 using
Toeplitz matrix sequence theory

◮ Otherwise, it is calculated by taking n large enough

. Maximum Likelihood and Cross Validation for Kriging hyper-parameter estimation 21/25 .



.

Small random perturbations of the regular grid

Matèrn model. Dimension one. One estimated hyper-parameter.
Levels plot of (∂2

ǫΣML,CV )/ΣML,CV in ℓ0 × ν0

Top : ML

Bot : CV

Left : ℓ̂ (ν0 known)

Right : ν̂ (ℓ0 known)
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There exist cases of degradation of the estimation for small perturbation for
ML and CV. Not easy to interpret
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Large random perturbations of the regular grid

Plot of ΣML,CV . Top : ML. Bot : CV.

From left to right : (ℓ̂, ℓ0 = 2.7, ν0 = 1), (ν̂, ℓ0 = 0.5, ν0 = 2.5), (ν̂, ℓ0 = 2.7,
ν0 = 2.5)
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Conclusion on the well-specified case

◮ CV is consistent and has the same rate of convergence as ML

◮ We confirm that ML is more efficient

◮ Irregularity in the sampling is generally an advantage for the estimation,
but not necessarily

◮ With ML, irregular sampling is more often an advantage than with CV
◮ Large perturbations of the regular grid are often better than small ones for

estimation
◮ Keep in mind that hyper-parameter estimation and Kriging prediction are

strongly different criteria for a spatial sampling

For further details :

Bachoc F, Asymptotic analysis of the role of spatial sampling for
hyper-parameter estimation of Gaussian processes, Submitted,
available at http ://arxiv.org/abs/1301.4321.
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Conclusion

General conclusion

◮ ML preferable to CV in the well-specified case

◮ In the misspecified case, with not too regular design of experiments :
CV preferable because of its smaller bias

◮ In both misspecified and well-specified cases : the estimation benefits
from an irregular sampling

◮ The variance of CV is larger than that of ML in all the cases studied.

Perspectives

◮ Designing other CV procedures (LOO error ponderation, decorrelation
and penalty term) to reduce the variance

◮ Expansion-domain asymptotic analysis of the misspecified case

Thank you for your attention !
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