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A short abstract 
• A foray into the problem of model selection or “data mining” 

in econometrics, i.e. finding which variables are driving a 

dependent variable of interest 

• We use the “total effect index” on variable triggers as a tool 

for determining the importance of variables in a regression 

• We compare it to that of a well-known data mining paper on a 

series of test problems using Monte Carlo simulations. 

• The results indicate that our algorithm identifies correct 

variables more often and is more robust (on the test cases 

investigated). 

 



Econometrics 
For those who don’t know (like me last year…) 
• Looking for, and quantifying, relationships between economic 

variables. 

• Then can be used for forecasting/policy evaluation/etc. 

• Relationships are usually assumed to be linear (in the 
parameters) 

• Examples of econometric variables (which are a function of 
time): 

• GDP 

• Unemployment rate 

• Disposable income 

• Unemployment rate 

• Bank reserves 

• etc…. 
 

 





Hoover and Perez Study 
• A paper was published in 1999 by Hoover and Perez investigating how well the 

contemporary approach to data mining performed. This is the basis for our work. 

• They assess how well the “LSE” data mining approach works by examining 
artificially-generated data based on real macroeconomic measurements. 

 

 



Test data: 18 macroeconomic variables, recorded quarterly from 1959-1995, with lags. 
Artificial dependent variable (PCE) is created as a function of some of these variables. All 
variables lagged including PCE. 

 

 



11 data-generating processes (DGPs) are created from the data. 

Each has added noise term. 

 

 



Variables are highly correlated in some instances. 

 

 



Some notation 

Let x=(x1, x2, …, xD)T be the vector of D candidate variables, and y be the 

dependent variable.  

• We suspect that y is a function of some subset of x. i.e. perhaps it is only a 

function of x2. Or x3 and x7.  

We have access to quarterly measurements of x and y over a number of years, 

i.e. we have a data set consisting of n measurements of each variable: 

 X=(x1, x2, …, xn)  

 y=(y1, y2, …, yn)T 

We want to use this data to select the variables that are driving y. 

We therefore consider models, indexed by k, of the form, 

  

 

i.e. linear regressions on subsets of the x.  

zk is a binary vector which denotes which variables to include in model k, e.g. 

 

 

Note that there will be 2D possible models (subsets of x) 

The aim is to choose the best one. 



Hoover and Perez (HP) method (based on LSE practice) 

(this is a conceptual outline only, not the full algorithm) 

• Fit a linear regression with all 40 candidate regressors 

• Use a batch of diagnostic tests for each regression to check 

suitability for linear regression. Discard data upon failure. 

• Calculate t-statistics 

• Remove variables with insignificant t-statistics 

• Remove regressors one by one starting with the lowest significant t-

statistic 

• After removing each regressor, perform an F-test comparing the 

restricted model to the general one (with all 40 regressors) 

• The algorithm is allowed to skip variables in the ordering and to try a 

number of search paths. 

 

The main tools are therefore the t-statistics for ordering regressors, 

and the F-test for comparing regression models. 

 

 



Their Results 

Using 1000 data sets from each DGP, Monte Carlo expected values. 

 

 

 

 

 

 

 

 

• DGP is correctly identified around half the time 

• Tends to include unwanted variables quite often, also discards true 

variables. 

• At other significance levels (5% and 10%), gave worse results. 



Ranking Regressors 

 

• The HP approach ranks variables according to t-statistics, then 

uses this a basis for model selection. 

• Ranking should ideally have true regressors with the highest t-

statistics. 

 

Our proposed way of ranking regressors is by using an 

application of the total effect index, ST 



Adaption to Model Selection 

How to frame the problem? 

Going back to the model selection problem, we have a fixed data set of n data points (in our 

test cases n=139) in 40 variables. 

We want to know which variables give the best fit to the data. We cannot change the values of 

a given variable, we only decide whether to include it in our regression model or not. This gives 

a system: 

 

 

 

 

 

 

 

i.e. qk = BIC(zk), where zk is a n-length binary vector with zki = 0 denotes the exclusion of zki, and 

zki = 1 includes it. E.g. 

zk = (0,1,1,0,1,0,0,1,…), then xk = (x2, x3, x5, x6,…) 
 

We perform a sensitivity analysis on the system q = BIC(z), i.e. how sensitive is model quality to 

the inclusion or exclusion of each regressor? 

• Treat the zi as discrete independent random variables Zi such that p(Zi = 0) = p(Zi = 1) = ½. 

• Use BIC (Bayesian Information Criterion) as measure of model quality 

• Use ST to judge importance of including each variable in the regression model 

Choice of regressors 

e.g. x3, x12, x14, etc. 

Regression model 

Regress y on chosen regressors, 

calculate coefficients using 

standard OLS estimator 

 

Measure of model 

“quality”: BIC 

z q 



Adaption to Model Selection 

We can now define the population of models, Γ,  by the following characteristics, 

 

 

i.e. the set of all regressor combinations and their corresponding BIC values. 

We represent this set of values as a finite (but big) population, which we sample 

from. Each model is assigned equal probability. 

We define        and          as the variance and expectation operators in this population 

(just to be extra clear). 

Now we use the total effect index in the following way, 

 

 

 

i.e. we are taking the total effect index of q (BIC), with respect to each regressor. 

We estimate STi by sampling from Γ, using the Monte Carlo estimator. 

 

 

We expect                         (and hence STi) to be small if xi is not included in the model, 

and vice versa. 

 



Estimating Sensitivity Indices  

We use the Monte Carlo Method. 

Standard estimator: 

 

 

 

 

 

 

This involves choosing a random z, then for each regressor, turning it 

on if it is off, and off it is on, i.e. 



Building an Algorithm 

 

We discovered that ST cannot be used alone to select regressors – sometimes gets 

confused with correlations and lagged variables. But does have significant 

advantages in certain DGPs. 

 

From the preliminary study it was found that ST and t-statistics can perhaps be used 

in a complementary fashion to rank regressors. 

 

Our algorithm consists of finding a regression model using the t-ranking, and a 

regression model using the ST-ranking, then a final comparison step to find the final 

model (variable selection). 

Full Data {X,y} 

t-model ST-model 

Final model 



Full Data {X,y} 

Get ST value for each regressor. Rank 

filtered set in order of ST. 

Regress y on all regressors, rank in 

order of t-score 
Calculate adaptive-α value 

Successively remove regressors from 

full set, in order of increasing t-score. 

Perform F-test each time. Stop when 

removal causes p-value < adaptive-α. 

t-model ST-model 

Successively add regressors starting 

from empty set, in order of decreasing 

ST. Perform F-test each time. Stop 

when removal causes p-value > 

adaptive-α. 

Try removing any regressors with 

ST<0.2 one by one, using F-test. Stop 

when no removal is possible 

Choose model with fewest regressors (since both satisfy F-

test), otherwise choose model with lowest BIC 

Final model 
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Full Algorithm 



General Steps – “Testing Up” 

 

1. Rank all regressors by t-score or ST . 

2. Define the initial candidate model as the empty set of regressors. 

3. Add to the candidate model the highest-ranking regressor (that is not already in 

the candidate model) 

4. Perform an F test, comparing the validity of the candidate model to that of the 

GUM. 

5. If the probability of the candidate model is below a given significance level , go 

to step 3 (continue adding regressors), otherwise, go to step 6. 

6. Since the F-test has invalidated the addition of the last regressor, remove the last 

regressor added – this is the final model. 

 

This results in two models, a “t-model” and an “ST-model”. The final model is chosen 
by, 

 The model with the fewest regressors (since they are already both validated by 

F-test) 

Or, in the case where the regressors are equal in number but not the same, 

 The model with the lowest BIC 

 



Extension: “Adaptive alpha” 

• Algorithm relies on the F-test, which requires a significance level α to define what 

is a valid reduction of the GUM. 

• Problem: some DGPs require low α to accurately identify DGP, while others 

require higher value. These best α values will not be known in real problems. 

E.g. DGP3 

 

 

 

 

 

 

 

 

 

 

 

 Requires α above 0.032              Requires α below 0.013 



Extension: “Adaptive alpha” 

Solution is to allow α to vary with the data. 

• Define pL as the value returned from the F-test by comparing the GUM against the 

empty set of regressors (i.e. assuming that y is dependent on at least one 

regressor, this will usually be a “false” model) 
• Define pH as the value returned from the F-test by comparing all regressors with 

ST >0.01 (this will very likely contain the DGP regressors – could also define in 

other ways). 

Now define adaptive alpha,  

αa as, 

 

 

 

Will be a cutoff some 

fraction φ between the  

high and low values. 

φ = 0.2 approx. gives good 

results 



Extension: “Pruning” 

We also try a “pruning” stage in the algorithm, i.e. after regressors are chosen using the 
testing-up steps, try removing any of the regressors in the final model, one by one, using the F-

test as a criterion of success. Allows for occasional ranking errors due to “bad data” or errors in 
calculation of ST 

E.g. DGP9 

ST ordering (highest to lowest) 

 

 
ST 0.45 0.32 0.16 0.07 0.01 0.01 0.01 0.00 0.00 0.00 

Regressor index 11 37 12 29 30 32 38 2 10 9 

Candidate models 

{}  p < αa 

{x11}  p < αa  

{x11, x37}  p < αa 

{x11, x37, , x12} p < αa 

{x11, x37, , x12 , x29} p > αa 
 

… would stop here. Pruning tries 
removing regressors from the accepted 

model. We find that we can remove x12 
 

{x11, x37, , x29} p = 0.1002 > αa 

 

This is the true DGP. 



Full Data {X,y} 

Get ST value for each regressor. Rank 

filtered set in order of ST. 

Regress y on all regressors, rank in 

order of t-score 
Calculate adaptive-α value 

Successively remove regressors from 

full set, in order of increasing t-score. 

Perform F-test each time. Stop when 

removal causes p-value < adaptive-α. 

t-model ST-model 

Successively add regressors starting 

from empty set, in order of increasing 

ST. Perform F-test each time. Stop 

when removal causes p-value > 

adaptive-α. 

Try removing any regressors with 

ST<0.2 one by one, using F-test. Stop 

when no removal is possible 

Choose model with fewest regressors (since both satisfy F-

test), otherwise choose model with lowest BIC 

Final model 
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Full Algorithm 



Measuring Performance 

We take R = 500 datasets from each DGP (to average over noise) and caculate the 

following measures 

 

 

 

 

 

Additionally, we use measures of “potency” and “gauge” 

 

 

 

 

 

 

Note that these measure will vary depending on the values of the tuning parameters 

in the HP algorithm and the one presented here (particularly α and φ). 

We measure performance at optimised parameter values and (qualitatively) when 

parameter values are unknown. 

- Exact ID (best) 

 
- DGP nested in final model 

 

- DGP not nested in final model (worst) 

Potency: A measure of the frequency of 
inclusion of correct variables (ideal = 1) 

 

Gauge: A measure of the frequency of inclusion 
of incorrect variables (ideal = 0) 



Results – Optimum Performance 

We measure performance (C1), averaged over all DGPs, at a range of values of α and φ and use 

the optimum values, i.e. the best possible performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• HP performance is increased significantly due to optimisation (46.1% to 94.6% exact DGP) 

• Our full algorithm improves performance, though requires extensions for best performance. 

Good improvement on DGPs 3 and 6A. 

• Small percentage point increase, but 5-fold decrease in incorrect identification (depending 

on how you look at it!). These are the hardest data sets. 



Results – General Performance 
• In real situations, best tuning parameter values would not be known. 

• We can compare qualitatively what happens when tuning parameters are varied (acknowledging that 

scales are not strictly comparable) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• HP algorithm (left) has a sharp peak at about α=10e-4. Much higher or lower values result in large drop in 

performance 

• Our algorithm shows robust performance over all φ. α is in a sense optimised for automatically. 

 



Conclusions 

 

• ST can be used to rank regressors using the “triggers” problem-framing 

• Appears to have advantages over t-scores in certain DGPs 

• Our algorithm can outperform that of Hoover and Perez, both in the 

optimised (and perhaps more notably) in the unoptimised case. 

• We hope that ST could be a useful tool to econometricians. 

 

Open Questions 

• Can we prove any theoretical properties of the procedure (e.g. is it 

consistent)? 

• Performance against other model selection procedures 

• Generalising to other test functions 

 

 

 



Extra 



Ranking Regressors 

 
Size of smallest ranked set including DGP

Size of DGP set
 

• ST outperforms the t-statistics on 

average 

• Performance is however 

dependent on the DGP 

• ST better for DGPs 3 and 6A in 

particular 

• t-test better for DGP 8 

 

 

 

Suggests that ST might be better 

overall, but a hybrid between the 

two measures could be best? 

 



Effective DGP (EDGP) 

Hoover and Perez say in their work: “searches for both DGPs 6 and 9 most frequently end in 
failure. This suggests, not a failure of the algorithm, but unavoidable properties of the data.”  
In these DGPs the signal-to-noise ratio is too low for certain variables to be identified. 

We propose the concept of an “effective DGP” (EDGP), as the (sub)set of DGP variables which 
can be reasonably identified by an algorithm given the signal-to-noise ratio. 

 We use a tool called the “parametricness index” (PI): 
 

 

 

 

 

 Measures ratio of information criteria when removing regressors one by one with 

replacement. 

 Essentially a measure of suitability of a model for given data set. 

 PI < 1.2 indicates non-parametric (i.e. one or more regressors can be removed without 

significantly affecting model quality) 

 

We examine PI values of DGPs and IC ratios of removing specific regressors… 



Effective DGP (EDGP) 

 

 

 

 

 

 

 

 

DGPs 6 and 9 have significantly lower mean PI (av. over 5000 samples). These correspond to 

those identified by HP. Now examining IC ratios… 

 

 

 

 

 

 

 

Weak regressors are defined as mean ICR < 1.2.  

We now redefine EDGPs by removing these regressors (this changes DGPs 6 and 9) 



Results – Optimum Performance 

 

Check results compared to true DGPs: 

 

 

 

 

 

 

• Results are only different for DGPs 6 and 9 

• No correct IDs of the DGP for any algorithms due to signal to noise ratio too low. 


