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A short abstract

A foray into the problem of model selection or “data mining”
in econometrics, i.e. finding which variables are driving a
dependent variable of interest

We use the “total effect index” on variable triggers as a tool
for determining the importance of variables in a regression

We compare it to that of a well-known data mining paper on a
series of test problems using Monte Carlo simulations.

The results indicate that our algorithm identifies correct
variables more often and is more robust (on the test cases
investigated).




Econometrics

For those who don’t know (like me last year...)

Looking for, and quantifying, relationships between economic
variables.

Then can be used for forecasting/policy evaluation/etc.

Relationships are usually assumed to be linear (in the
parameters)

Examples of econometric variables (which are a function of
time):

GDP

Unemployment rate

Disposable income

Unemployment rate

Bank reserves

etc....
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* Problem: economic variables are a tangled web o
correlations, and lags.
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» Typically an econometrician has to identify which variables are
driving a dependent variable of interest, from a large pool of
candidate variables. This is the model selection problem, or
“data mining”.

» E.g. if the dependent variable of interest is GDP, there may be
hundreds of candidate variables (stock prices, price indices,
employment rates) to consider.

* Occam’s Razor says that we cannot simply include all candidate
variables in a regression model because this will lead to over-
fitting and a poor predictive model. We also would like to know
which variables are driving the output for policy information.
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Hoover and Perez Study

* A paper was published in 1999 by Hoover and Perez investigating how well the
contemporary approach to data mining performed. This is the basis for our work.

* They assess how well the “LSE” data mining approach works by examining
artificially-generated data based on real macroeconomic measurements.

Econometrics Journal (1999), volume 2. pp. 167-191.

Data mining reconsidered: encompassing and the
seneral-to-specific approach to specification search\
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Department of Economics, University of California,
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E-mail: kdhoover@ucdavis.edu; Homepage: www.ucdavis.edu/~kdhoover/
Department of Economics, Washington State University,
Pullman, Washington 99164-4741, USA
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Test data: 18 macroeconomic variables, recorded quarterly from 1959-1995, with lags.
Artificial dependent variable (PCE) is created as a function of some of these variables. All

variables lagged including PCE.

Variable Wariable number Times differenced CITIBASE

for stationarity® identifier®

Current Lag
1 2 3 4

Index of four coincident indicators 1 19 1 DCOINC
GNP price deflator 2 20 2 GD
Government purchases of goods and services 3 21 2 GGEQ
Federal purchases of goods and services 4 22 1 GGFEQ
Federal government receipts 5 23 2 GGFR
GNP 6 24 1 GNPQ
Disposable personal income 7 25 1 GYDQ
Gross private domestic investment 8 26 1 GPIQ
Total member bank reserves 9 27 2 FMRRA
Monetary base (federal reserve bank of St. Louis) 10 28 2 FMBASE
M1 11 29 1 FMI1DQ
M2 12 30 1 FM2DQ
Dow Jones stock price 13 31 1 FSDJ
Moody’s AAA corporate bond yield 14 32 1 FYAAAC
Labor force (16 years+, civilian) 15 33 1 LHC
Unemployment rate 16 34 1 LHUR
Unfilled orders (manufacturing, all industries) 17 35 1 MU
New orders (manufacturing. all industries) 18 36 2 MO
Personal consumption expenditure® N/A 37 38 39 40 1 GCQ

Note: Data run 1959.1-1995.1. All data from CITIBASE: Citibank economic database (Floppy disk version), July 1995 release. All
data converted to quarterly by averaging or summing as appropriate. All dollar denominated data in billions of constant 1987 dollars.
Series FMRRA, FMBASE, GGFR, FSDI, MU. and MO are deflated using the GNP price deflator (Series GD). * Indicates the number of
times the series had to be differenced before a Phillips—Perron test could reject the null hypothesis of non-stationarity at a 5% significance
level (Phillips and Perron 1988). ° Indicates the identifier code for this series in the CITIBASE economic database. © For calibrating
models in Table 4 actual personal consumption expenditure data is used as the dependent variables; for specification searches, actual data
is replaced by artificial data generating according to models in Table 3. Variable numbers refer to these artificial data, which vary from

context to context.




11 data-generating processes (DGPs) are created from the data.
Each has added noise term.

Random errors
uy ~ N, 1)
uf =0.75uf_ | +ur/7/4

Models

Model 1: vl = 130.0u;

Model 2: 2 = 130.0u}

Model 2’ v2; =0.75y2;_1 + 85.99u;

Model 3: In(y3); = 0.395In(y3),_; + 0.3995 In(y3);_, + 0.00172u;  s.er. =0.00172. R% =0.99
Model 4: y4; = 1.33x11; 4 9.73u; ser =9.73. R2=10.58
Model 5 35 = —0.046x3; +0.11u; ser =0.11. R =0.93
Model 6: 16; = 0.67x11;—0.023x3¢ + 4.92u; s.er. =4.92, R*=0.58
Model 6A: v6; = 0.67x11;—0.32x3¢t + 4.92u; s.e.r. =4.92, R =0.64
Model 6B: v6; = 0.67x11;—0.65x3t + 4.92u; ser. =4.92. R*=0.74
Model 7: vy = 1.33x11; +9.73uf s.er. =9.73. R*=0.58
Model 7' v7 =0.75y7;_1 4+ 1.33x11;-0.9975x29; + 6.73u;

Model 8: 8 = —0.046x3; +0.11u} ser. =0.11. R*=0.93
Model 8’ 18; = 0.75y8;_; — 0.046x3; + 0.00345x21; + 0.073u;

Model 9: 19 = 0.67x11;-0.023x3; + 4.92.'.*}k ser. =492, R%?=0.58
Model 9’: ¥9t = 0.75y9,_1-0.023x3¢ + 0.01725x21¢ 4+ 0.67x11;—0.5025x29; + 3.25u;

Note: The variables y#; are the artificial variables created by each model. The variables x#; correspond to the variables
with the same number in Table 1. The coefficients for models 3. 4, and 5 come from the regression of personal consumption
expenditures (Dep. in Table 1) on independent variables as indicated by the models. The standard error of the regression
for models 3. 4. and 5 is scaled to set R* equal to that for the analogous regressions run on non-stationary data to mirror
Lovell. Model 6 is the average of models 4 and 5. Models 7. 8, and 9 have same coefficients as models 4, 5, and 6 with
autoregressive errors. Models 2/, 77, 8, and 9’ are exactly equivalent expressions for models 2. 7, 8. 9 in which lags of
the variables are used to eliminate the autoregressive parameter in the error process.




Variables are highly correlated in some instances.

Table 2. Correlation matrix for search variables.

Variable name Varable
and number number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Dep*
1. Four coincident indicators 0.67
2 GNP price deflator azr 024

3. Government purchases of goods and services
4. Faderal purchases of goods and services

5. Federal government receipts

6. GNP

7. Disposable personal mcome

& Gross private domestic investment

9. Total member bank reserves

10. Monetary base (federal reserve bank of St. Louis)

11. M1

12. M2

13. Dow Jones stock price

14. Moody’s AAA corporate bond yield
15. Labor force (16 years+, civilian)

16. Unemployment rate

17. Unfilled orders (manufacturing. all industries)

18. New orders (manufacturing, all industries)

*Dep. personal consumption expenditure

004 —0.09 8.81

007 008 054 6.22

021 028 003 001 2216

083 016 013 003 020 30.71

0,57 007 0.07 —00% 006 049 2509

076 019 003 -8 013 083 040 2591

—002 024 007 014 040 —0.03 024 —0.16 514.26

—00Z2 049 —002 007 025 —006 010 —006 054 138

024 —-0.04 —004 000 016 027 017 017 025 020 849

020 —006 —008 o007 01 020 017 o058 021 014 060 25.08

—0.04 —0.06 —0.06 —0.06 —0.12 0.03 —0.03 —0.02 —0.08 001 027 0.04 9540

023 011 —004 —005 007 011 007 020 —016 —006 —033 —0.33 —026 042

0.17 004 003 —0.04 —003 011 009 007 —-017 001 -0.04 —0.07 013 011 32115
—085 —013 =001 -0.02 =009 —0.73 =031 =066 008 007 —-023 =022 0.02 022 002 035

021 024 008 004 003 016 005 010 010 00% —03% -021 006 027 014 -023 62489
023 012 =029 —0i5 025 022 015 010 021 001 028 019 006 012 00F -012 —0.04 4114.8
0.60 —0.02 —0.02 —0.02 0.15 065 040 030 007 -0.03 047 041 018 -005 013 -050 —001 039 585

Note: Variables are differenced as mdicated m Table 1. Elements 1n bold type on the main diagonals are the standard deviations of each vaniable for the period beginning 1959.2 or 19393, depending
on the number of differences. Off-diagonal elements correlations are calculated for the vanables in Table 1 for the period 1959.3 to 1995.1. *Dep. indicates that personal consumption expenditure 1s the
dependent variable used in calibrating the models in Table 3. It is not a search variable. The dependent variables and its lags used in the simulations below are constructed according to those models.
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Some notation

Let x=(x,, x,, ..., Xp)" be the vector of D candidate variables, and y be the
dependent variable.

* We suspect that y is a function of some subset of x. i.e. perhaps itis only a
function of x,. Or x5 and x.

We have access to quarterly measurements of x and y over a number of years,
i.e. we have a data set consisting of n measurements of each variable:

X=(Xy, Xy, «e) X,

Y=(V1, Var oor Vi)'
We want to use this data to select the variables that are driving y.
We therefore consider models, indexed by k, of the form,

o~

ho— AT
y _ kazk

i.e. linear regressions on subsets of the x.
z, is a binary vector which denotes which variables to include in model k, e.g.

Z = (0,1,1,0,1,0,0,1,...) = Xy, = (9,23,75,Ts, ...)

Note that there will be 2P possible models (subsets of x)
The aim is to choose the best one.




Hoover and Perez (HP) method (based on LSE practice)

(this is a conceptual outline only, not the full algorithm)

Fit a linear regression with all 40 candidate regressors

Use a batch of diagnostic tests for each regression to check
suitability for linear regression. Discard data upon failure.

Calculate t-statistics
Remove variables with insignificant t-statistics

Remove regressors one by one starting with the lowest significant t-
statistic

After removing each regressor, perform an F-test comparing the
restricted model to the general one (with all 40 regressors)

The algorithm is allowed to skip variables in the ordering and to try a
number of search paths.

The main tools are therefore the t-statistics for ordering regressors,
and the F-test for comparing regression models.




Their Results
Using 1000 data sets from each DGP, Monte Carlo expected values.

Table 7. Specification search at 1% nominal size.?

True model?

12 2 3 4 5 6 7 8 9 Means

Percentage of searches for which
the true and final specifications are
related in categories:©
1. True = Final 79.9 0.8 70.2 80.2 79.7 0.7 24.6 78.0 0.8 46.1
2. True C Final, SERF < SERT 20.1 99.2 19.0 19.6 202 0.1 57.4 21.7 1.3 28.7
3. True C Final. SERF > SERT 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.2 0.6 0.1
4. True ¢ Final, SERF < SERT 0.0 0.0 3.7 0.1 0.0 56.3 13.0 0.1 77.0 16.7
5. True ¢ Final, SERF > SERT 0.0 0.0 6.9 0.0 0.0 42.9 5.0 0.0 20.3 8.3
True variable numberd Null set 37 37/38 11 3 3/11 11/29/37 3/21/37 3/11/21/29/37
Frequency variables included (percent) 100.0 95.7/93.6 999 100.0 0.8/99.8  100.0/82.0/  100.0/99.9/ 1.5/100.0/

100.0 09.9 1.4/83.5/99.9

* DGP is correctly identified around half the time

* Tends to include unwanted variables quite often, also discards true
variables.

* At other significance levels (5% and 10%), gave worse results.




Ranking Regressors

* The HP approach ranks variables according to t-statistics, then
uses this a basis for model selection.

* Ranking should ideally have true regressors with the highest t-
statistics.

Our proposed way of ranking regressors is by using an
application of the total effect index, S;




Adaption to Model Selection
How to frame the problem?

Going back to the model selection problem, we have a fixed data set of n data points (in our
test cases n=139) in 40 variables.

We want to know which variables give the best fit to the data. We cannot change the values of
a given variable, we only decide whether to include it in our regression model or not. This gives
a system:

Regression model

. Regress y on chosen regressors
Choice of regressors & 4 . £ . ’ Measure of model
—_— calculate coefficients using

. . “quality”: BIC
€.8. X3, X1, X14, €1C standard OLS estimator

Z q

i.e. g, = BIC(z,), where z, is a n-length binary vector with z,; = 0 denotes the exclusion of z,;, and
z,; = lincludes it. E.g.

z,=(0,1,1,0,1,0,0,1,...), then x, = (x,, X3, Xs, Xg,-..)

We perform a sensitivity analysis on the system g = BIC(z), i.e. how sensitive is model quality to
the inclusion or exclusion of each regressor?

Treat the z; as discrete independent random variables Z; such that p(Z,=0) = p(Z,= 1) = %.
Use BIC (Bayesian Information Criterion) as measure of model quality
Use S, to judge importance of including each variable in the regression model




Adaption to Model Selection
We can now define the population of models, I, by the following characteristics,

I' = {(Zl, ql)_, (Zz, qz), cany (2240, q240)}

i.e. the set of all regressor combinations and their corresponding BIC values.

We represent this set of values as a finite (but big) population, which we sample
from. Each model is assigned equal probability.

We define V and It asthe variance and expectation operators in this population
(just to be extra clear).

Now we use the total effect index in the following way,

Ezwé (sz (Q|ZN%'))
V(q)

i.e. we are taking the total effect index of g (BIC), with respect to each regressor.

Sti =

We estimate S;; by sampling from I, using the Monte Carlo estimator.

We expect (Vz,(¢|Z~i)) (and hence S.,) to be small if x; is not included in the model,
and vice versa.




Estimating Sensitivity Indices

We use the Monte Carlo Method.

Standard estimator:
E,. (Vo (qlz~i)) 07y

St =

V(q) o2
1 N
ohi= gy 2 o) o)
7 = e O ) ~ Ela(o)]

This involves choosing a random z, then for each regressor, turning it

on if it is off, and off it is on, i.e.

z. = (0,1,1,0,1,0,0,1,..) =
2 = (1,1.1,0,1,0,0,1,...) =
2y = (0,0,1,0,1,0,0,1,...) =
2y = (0,1.0,0,1,0,0,1,...) =

k

szrlf

X
Zkrg.’

szrgf

(332, Iz, s, s, )
(331,51’32, &Iz, Is, I, )
(333, Is, g, )

(3321 s L5, Iy, )

R R

qx
k1’
2/

4,3’




Building an Algorithm

We discovered that S; cannot be used alone to select regressors — sometimes gets
confused with correlations and lagged variables. But does have significant
advantages in certain DGPs.

From the preliminary study it was found that S; and t-statistics can perhaps be used
in a complementary fashion to rank regressors.

Our algorithm consists of finding a regression model using the t-ranking, and a
regression model using the S;-ranking, then a final comparison step to find the final
model (variable selection).

Full Data {X,y}

t-model ST-model

Final model




Full Algorithm Full Data {X,y}
|

v

Get ST value for each regressor. Rank
filtered set in order of ST.

v I

>

R I ki &
egress y on all regressors, rank in .

& y 8 ’ I Calculate adaptive-a value I T

order of t-score ot

— e — t —_—— —— S

Successively add regressors starting
from empty set, in order of decreasing
ST. Perform F-test each time. Stop |«
when removal causes p-value >

\ 4 adaptive-a.
Successively remove regressors from

full set, in order of increasing t-score. r——— — — — — .I
Perform F-test each time. Stop when o
e . Try removing any regressors with c
removal causes p-value < adaptive-a. I §7<0.2 one by one, using F-test. Stop J_ S
. 7 . 5.
I when no removal is possible I oa

t-model ST-model

Choose model with fewest regressors (since both satisfy F-
test), otherwise choose model with lowest BIC

v

Final model




General Steps — “Testing Up”

Rank all regressors by t-score or S;.
Define the initial candidate model as the empty set of regressors.

Add to the candidate model the highest-ranking regressor (that is not already in
the candidate model)

4. Perform an F test, comparing the validity of the candidate model to that of the
GUM.

5. If the probability of the candidate model is below a given significance level , go
to step 3 (continue adding regressors), otherwise, go to step 6.

6. Since the F-test has invalidated the addition of the last regressor, remove the last
regressor added — this is the final model.

This results in two models, a “t-model” and an “S;-model”. The final model is chosen
by,
The model with the fewest regressors (since they are already both validated by
F-test)
Or, in the case where the regressors are equal in number but not the same,
The model with the lowest BIC




Extension: “Adaptive alpha”

* Algorithm relies on the F-test, which requires a significance level a to define what
is a valid reduction of the GUM.

* Problem: some DGPs require low « to accurately identify DGP, while others
require higher value. These best a values will not be known in real problems.

P value

0% 1= ' 0.03 . ; .
/ Y03998 T~
035F / S
/ 0.025 g
0.3
002} N J -
025+ / /,/ R e
/f //
/ - e
D2 / T 0.015 . -
o s
/ -
/ ATy
0.15- / /o vooan
/ 0.01 //"
0.1 / #
/ /
- 0.005- // .
0.05 Y- 0.03197 /
|
sz X2 4
Y 00003t
None 37 38 39 40 MNone 38 37 39 40 15

Variables in candidate medel (including all to the left of the marker)

Requires a above 0.032

Variables in candidate model (including all to the left of the marker)

Requires a below 0.013




Extension: “Adaptive alpha”
Solution is to allow a to vary with the data.

 Define p, as the value returned from the F-test by comparing the GUM against the
empty set of regressors (i.e. assuming that y is dependent on at least one
regressor, this will usually be a “false” model)

 Define p,, as the value returned from the F-test by comparing all regressors with
S;>0.01 (this will very likely contain the DGP regressors — could also define in
other ways).

0.7
Now define adaptive alpha, p-values
o, as, 0.6} — — ~cutoff line 4
0.5 /[ _
@y = pL + O(pu — pL)
© 0.4 .
S
Will be a cutoff some 5 03 .
fraction ¢ between the 02 |
high and low values. '
¢ = 0.2 approx. gives good 0-1/
results 0 . . .
1 2 3 4 5 6

Regressor index (in order of importance using ST)




Extension: “Pruning”

We also try a “pruning” stage in the algorithm, i.e. after regressors are chosen using the
testing-up steps, try removing any of the regressors in the final model, one by one, using the F-
test as a criterion of success. Allows for occasional ranking errors due to “bad data” or errors in

calculation of S;
E.g. DGP9
S, ordering (highest to lowest)

S, 0.45 0.32 0.16 0.07 0.01 0.01 0.01 0.00 0.00 0.00
Regressor index 11 37 12 29 30 32 38 2 10 9
0.35 . | . . Candidate models
{} p<a,
0.3} .
{X]_]_} p < aa
0.25 /‘“EE&; {x11, X357} p<a,
0 {X11, X37 , X35} p<a,
[ = 7
3 / {11, X377 X123, X0} P> a,
o 0.15} .
... would stop here. Pruning tries
0.1r 7 removing regressors from the accepted
0.05 model. We find that we can remove X,,
- ' - X1, X37 , X =0.1002 > a
None 11 37 12 29 30 Xy, 37,7 20} P a

Variables in candidate model (including all to the left of the marker)

This is the true DGP.




Full Algorithm Full Data {X,y}
|

v

Get ST value for each regressor. Rank
filtered set in order of ST.

v I

>

R I ki &
egress y on all regressors, rank in .

& y 8 ’ I Calculate adaptive-a value I T

order of t-score ot

— e — t —_—— —— S

Successively add regressors starting
from empty set, in order of increasing
ST. Perform F-test each time. Stop |«
when removal causes p-value >

\ 4 adaptive-a.
Successively remove regressors from

full set, in order of increasing t-score. r——— — — — — .I
Perform F-test each time. Stop when o
e . Try removing any regressors with c
removal causes p-value < adaptive-a. I §7<0.2 one by one, using F-test. Stop J_ S
. 7 . 5.
I when no removal is possible I oa

t-model ST-model

Choose model with fewest regressors (since both satisfy F-
test), otherwise choose model with lowest BIC

v

Final model




Measuring Performance
We take R = 500 datasets from each DGP (to average over noise) and caculate the
following measures

, R
1. ¢ = % Yo W(Xgy = Xzf) - Exact ID (best)
v R
2. Co =+ 1(Xzy CXz;) - DGP nested in final model
. R
3. O3 = % Zr:l 1(Xz0 ,@ XZf) - DGP not nested in final model (worst)

Additionally, we use measures of “potency” and “gauge”

Potency: A measure of the frequency of
inclusion of correct variables (ideal = 1)

Gauge: A measure of the frequency of inclusion
of incorrect variables (ideal = 0)

Note that these measure will vary depending on the values of the tuning parameters
in the HP algorithm and the one presented here (particularly a and ).

We measure performance at optimised parameter values and (qualitatively) when
parameter values are unknown.




Results — Optimum Performance

We measure performance (C,), averaged over all DGPs, at a range of values of a and ¢ and use
the optimum values, i.e. the best possible performance.

DGP | ST (no skip, no adapt) ST (no skip) ST (full) HP
o =0.0371 0 =03 =03 a=4-10"*
Cl Gauge Pot. Cl Gauge Pot. Cl Gauge Pot. Cl Gauge Pot.
1 08.70 0.00 1.00 | 99.83 0.00 1.00 | 99.83 0.00 1.00]| 99.22 0.00 1.00

]

98.52 0.00 1.00 | 99.37 0.00 1.00 | 99.37 0.00 1.00 | 95.94 0.00  1.00
79.36 0.01 0.95 | 95.23 0.00 0.99 | 95.97 0.00 0.98 | 62.01 0.00 0.81
98.59 0.00 1.00 | 99.16 0.00 1.00 | 99.16 0.00 1.00 | 99.29 0.00  1.00
98.79 0.00 1.00 | 99.86 0.00 1.00 | 99.86 0.00 1.00 | 99.26 0.00  1.00
6 98.70 0.00 1.00 | 99.22 0.00 1.00 | 99.22 0.00 1.00 | 99.19 0.00  1.00
6A 65.31 0.00 0.88 | 7T8.37 0.01 0.95 | 96.24 0.00 0.99 | 85.30 0.01 0.93
6B 97.61 0.00 1.00 | 98.57 0.00 1.00 | 99.37 0.00 1.00 | 95.38 0.00  1.00

e

own

7 92.66 0.00 0.99 | 97.09 0.00 1.00 | 99.50 0.00 1.00 | 95.76 0.00  1.00
8 08.44 0.00 1.00 | 99.91 0.00 1.00 | 99.92 0.00 1.00 | 99.05 0.00  1.00
9 91.38 0.00 0.99 | 96.53 0.00 1.00 | 99.61 0.00 1.00 | 95.18 0.00  1.00

Mean | 92.55 0.00 0.98 | 96.65 0.00  1.00 | 98.91 0.00 1.00 | 94.33 0.00 0.98

» HP performance is increased significantly due to optimisation (46.1% to 94.6% exact DGP)

* Qur full algorithm improves performance, though requires extensions for best performance.
Good improvement on DGPs 3 and 6A.

* Small percentage point increase, but 5-fold decrease in incorrect identification (depending
on how you look at it!). These are the hardest data sets.




Results — General Performance

* Inreal situations, best tuning parameter values would not be known.

*  We can compare qualitatively what happens when tuning parameters are varied (acknowledging that
scales are not strictly comparable)

1.0
=
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[5)]
=
2
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g 0.2 e 7
O - -@‘4"*
Dh:—¢=ﬁ-’~' DO -0 -G -Q-OF OO O B -G-B-0- 0 O -G -B-O-D- A -G-GO
0 0.005 0.01 0.015 0.02 0.025 003
o
g = —= ] = ] = I r— T
——ihy
5 -1
'FE 0.8 -6-C2 B
": —e--C3
o 06+ |
oy
=
2
;§ 0.4
]
@ 02r .
[ &)
~ o A e eeepemm— e fpmmm = o= m-=- -&
A 0.15 0.2 0.25 03 0.358 04 0.45 0.5
o

* HP algorithm (left) has a sharp peak at about a=10e-4. Much higher or lower values result in large drop in
performance

*  Qur algorithm shows robust performance over all . a is in a sense optimised for automatically.




Conclusions

S, can be used to rank regressors using the “triggers” problem-framing

Appears to have advantages over t-scores in certain DGPs

Our algorithm can outperform that of Hoover and Perez, both in the
optimised (and perhaps more notably) in the unoptimised case.

We hope that S; could be a useful tool to econometricians.

Open Questions

* Can we prove any theoretical properties of the procedure (e.g. is it
consistent)?

* Performance against other model selection procedures
* Generalising to other test functions




Extra




Ranking Regressors

_ Size of smallest ranked set including DGP

o
Size of DGP set
DGP ST t-test * S;outperforms the t-statistics on
1|- - average
2 1.00 1.00  Performance is however
3 1.01 1.53 dependent on the DGP
4 1.00 1.04 * S, better for DGPs 3 and 6A in
5 1.00 1.00 particular
6 1.00 106 e t-test better for DGP 8
6A 1.12 3.95
6B 1.02 1.14
7 1.15 1.04
Suggests that S; might be better
8 1.64 1.00 )
overall, but a hybrid between the
9 1.13 1.01
two measures could be best?
Mean over DGPs 1.11 1.38




Effective DGP (EDGP)

Hoover and Perez say in their work: “searches for both DGPs 6 and 9 most frequently end in
failure. This suggests, not a failure of the algorithm, but unavoidable properties of the data.”

In these DGPs the signal-to-noise ratio is too low for certain variables to be identified.

We propose the concept of an “effective DGP” (EDGP), as the (sub)set of DGP variables which
can be reasonably identified by an algorithm given the signal-to-noise ratio.

» We use a tool called the “parametricness index” (PI):

1/2

IO, a(2x,0%) = |y = ¥&l[* + A\n log(n)ryay — noy + dn'/Zlog(n)sy

. . IG)\n,d(Zk,OA'Q) oo
PI _ lllfzkeql(ik} (Ic)\?l’d(zk!é.%)) ljt f’fé > 1
n ifr; =1

» Measures ratio of information criteria when removing regressors one by one with
replacement.

» Essentially a measure of suitability of a model for given data set.

» Pl < 1.2 indicates non-parametric (i.e. one or more regressors can be removed without
significantly affecting model quality)

We examine Pl values of DGPs and IC ratios of removing specific regressors...




Effective DGP (EDGP)

DGP |DGP Indices F,.(1.2) Pl oor Plgy, Pl (mean) Py, Pl .o EDGP Indices

1 {} - - - - - - {1

2 {37} 0.00 16.55 25.59 41.80 60.83 84.61 {37}

3 {37,38} 0.04 0.88 1.53 2.54 3.52 4.17 {37,38}

4 {11} 0.00 30.50 37.82 49.19 61.78 74.88 {11}

5 3} 0.00 365.84 415.39 493.63 578.17 668.84 {3}

6 {3,11} 0.98 0.37 0.38 0.53 0.79 1.40 {11}

B6A {3,11} 0.00 2.77 4,15 6.44 8.95 11.69 {3,11}

6B {3,11} 0.00 15.11 18.10 23.04 28.38 33.72 3,11}
{11,29,37} 0.00 2.84 4.16 6.46 8.96 11.76 {11,29,37}
{3,21,37} 0.00 5.77 8.40 13.49 19.22 26.41 {3,21,37}

9 {3,11,21,29,37} J1.00 0.75 0.75 0.77 0.81 0.93 {11,29,37}

DGPs 6 and 9 have significantly lower mean Pl (av. over 5000 samples). These correspond to
those identified by HP. Now examining IC ratios...

DGP Variable |F,,(1.2) ICR,,  ICR,, ICR (mean) ICR,, ICR 4 0
e 0.98 0.37 0.38 0.53 0.79 1.40
° X 11 0.00 15.79 19.27 25.03 31.33 37.31
e 0.99 0.75 0.75 0.82 0.94 1.20
X 11 0.00 8.44 9.95 12.56 15.41 18.36
9 s 0.99 0.75 0.75 0.81 0.92 1.18
X g 0.00 2.15 2.88 4.24 5.73 7.38
X 37 0.00 3.87 5.46 8.82 12.61 17.25

Weak regressors are defined as mean ICR < 1.2.
We now redefine EDGPs by removing these regressors (this changes DGPs 6 and 9)




Results — Optimum Performance

Check results compared to true DGPs:

DGP | ST (no skip, no adapt) ST (no =kip) ST (full) HP
a = 0.0371 w=0.3 0 =0.3 a=4-10"%
Cl1 Gauge Pot. Cl Gauge Pot. C1 Gauge Pot. C1 Gauge Pot.
6 0.010  0.001 0.500 | 0.010  0.000 0.500 | 0.020 0.000 0.500|0.030 0.000 0.499
9 0.000 0.002 0.592 | 0.000  0.000 0.600 | 0.000 0.000 0.600|0.000 0.000 0.599
Mean | 0.010  0.001 0.546 | 0.010  0.001 0.550 | 0.010  0.000 0.550 | 0.020 0.000 0.549

* Results are only different for DGPs 6 and 9

* No correct IDs of the DGP for any algorithms due to signal to noise ratio too low.




