Uncertainty Propagation and Inverse Problem
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Alexandre Birolleau', Didier Lucor* and Gaél Poétte!

TCEA, DAM, DIF, F-91297 Arpajon, France — alexandre.birolleau@cea.fr
TUPMC Univ Paris 06, UMR 7190, Institut Jean le Rond d’Alembert, F-75005 Paris, France

MAA( PARIS

Uncertainty propagation: generalized Polynomial Chaos
and iterative generalized Polynomial Chaos

8. pdf(0): o w(8) = U, pdf(U): A\

Uncertainty propagation through a model u.

e generalized Polynomial Chaos :

— (Q, F,P) is a random space. X is a random variable of law dPx.
— (¢1><<)keN is the polynomial orthonormal basis with respect to dPx : Jcb%cb{( dPx = 0k 1 V(k, 1) € NZ.
—u: QO —> R

P LA(Q,P
— Cameron-Martin theorem : If Ju(x)z dPx < 00, then up(X) = E uk¢]><<(X) (H ) u(X),
k=0 P—o0

where uy, = Ju(X)cl)ff(X) dPx.

k=0
e iterative generalized Polynomial Chaos (based on gPC and on the theory of moments):

P
—Step 0 : gPC : u(X) = ué(X) — Zk:ouk¢l><<(x)‘

~Step 1: 7! = ué(X), — ¢P(C basis adapted to Z] (th. moments), i.e. JCP]%](I)%] APz = d 1, V(k, t) €
N2,
u projection on this basis: uZ = |w(ZN$Z (Z') AP,y = [w(X)dZ (uF(X)) d
projection on this basis: wi = |w(Z') by (Z2") APy = [uw(X)dy (up(X)) dPx

—u(X) ~ ZP ukcb]}(((X) where Wy, = Ju(x)d)%(x) dPx(x).

P
New truncated polynomial approximation: w(X) ~ ulz; (zh) = Zkzou%]d)%] (zh).
: k—T1 _
—Step k : Step 1 with Z¥ = u%) (7% 1.
—End — uing(X)

Stabilization based on the theory of moments with the existence at each step of the polynomial orthonormal
basis adapted to the preceding approximation.

i-gPC iterations, quadrature level=9
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Hydrodynamics

Euler equation in 2D space

(31p + Ox(pux) + Oy (puy) —
Ot(pux) + dx(puZ + p) + dy(Puxuy) =0

$ At(puy) + Ox(purty) + dy(puf + ) =0 (1)
Ot(pe) + Ox(puxe + pux) + dy(puye + puy) =0

| closing p=(y—1)pe

e = e — 3(ug +ug)
Shock tube problem: a shock is propagating in a tube containing a light and a heavy fluid separated by a
preturbated interface = amplification of the perturbations as t goes on.
Stochastic interpretation: the inital interface between the two fluids is modeled as a stochastic process
['YZLT06].
N
Xint(y) = 0 Y Zn cos(2mbny) (2)

n=§

where the Zn are iid U(—1;1), and b, o are parameters.

Numerical resolution: Lagrange + projection, directional splitting, order 3 numerical flow.
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FIGURE 3: A solu-
tion at t = 0.

FIGURE 4: A solu-
tion at t = tgp,-

FIGURE 5: Mean
erowth of the insta-
bilities size.

Statistical study of the size of the instabilities with the random initial perturbations of the interface between

the two fluids.

Bayesian Inference

Inference on (b, o) in th bayesian formalism:

Tlhost (b, O—l X Tlpr (b, O—)JLP) (b, O—‘Ml

~"

posterior p?iror likelihood

where M is a set of measures.
The measures are from experimental shock tube experiments.

Conclusion

e i-oPC captures the discontinuities, i-gPC adapts the approximation to the solution,

algorithm numerical analysis, stabilization = [LBP12].

e Hydrodynamics shock tube numerical simulations, study of the size of the instabili-

ties.

e Bayesian Inference with gPC and i-gPC on non smooth problems = |[LBP13].

e Future work: bayesian inference on the parameters ot the stochastic process base on

experimental shock tube experiments.
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