Multi-fidelity sensitivity analysis

Loic Le Gratiet^{1,2}, <u>Claire Cannamela</u>² & Bertrand looss³

¹ Université Denis-Diderot, Paris, France

² CEA, DAM, DIF, F-91297 Arpajon, France

³ EDF R&D, 6 quai Watier, 78401 Chatou, France

7th International Conference on Sensitivity Analysis of Model Output

July 4th 2013

2/19

- Perform a global sensitivity analysis of a time-consuming numerical model output by calculating variance-based measures of model input parameters.
- Interest in the so-called Sobol indices.
- Surrogate the code output by a metamodel for estimating the Sobol indices.
- Focus on a multi-fidelity cokriging metamodel.
- Propose a Sobol index estimator taking into account the metamodel error and the sampling error introduced during the estimation.

Multi-fidelity co-kriging model

Multi-fidelity sensitivity analysis

Applications

3/19

• Objective : replace the output of a code, called $g_2(x)$, by a metamodel.

$$g_2(x): x \in Q \subset \mathbb{R}^d \mapsto \mathbb{R}$$

• Framework : a coarse version g_1 of g_2 is available.

Principle : build a metamodel of $g_2(x)$ which integrates as well observations of the coarse code output.

 $\longrightarrow \mathsf{Multi-fidelity} \ \mathsf{co-kriging} \ \mathsf{model}$

Recursive formulation of the model

Multi-fidelity co-kriging model :[Kennedy & O'Hagan (2000), Le Gratiet (2012)]

$$\begin{bmatrix} Z_2(x) = \rho Z_1^*(x) + \delta(x) \\ Z_1^*(x) \perp \delta(x) \end{bmatrix}$$

where $Z_1^*(x) \sim [Z_1(x) | \mathbf{Z}_1 = \mathbf{g}_1, \boldsymbol{\beta}_1, \sigma_1^2, \boldsymbol{\theta}_1], \text{ with } \mathbf{g}_1 = g_1(x), x \in \mathbf{D}_1$

and
$$Z_1(x) \sim \operatorname{GP}\left(\mathbf{f}_1^t(x)\boldsymbol{\beta}_1, \sigma_1^2 r_1(x, \tilde{x}; \boldsymbol{\theta}_1)\right), \ \delta(x) \sim \operatorname{GP}\left(\mathbf{f}_{\delta}^t(x)\boldsymbol{\beta}_{\delta}, \sigma_{\delta}^2 r_{\delta}(x, \tilde{x}; \boldsymbol{\theta}_{\delta})\right)$$

Parameters estimation :

• θ_1 , θ_δ , σ_1^2 , σ_δ^2 : maximum likelihood method • β_1 , $\begin{pmatrix} \beta_\delta \\ \rho \end{pmatrix}$: analytical posterior distribution (Bayesian inference)

• Finally, $Z_2^*(x) \sim [Z_2(x) | \mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$ with $\mathbf{g}_2 = g_2(x), x \in \mathbf{D}_2$

We suppose that $\mathbf{D}_2 \subset \mathbf{D}_1$ and $\boldsymbol{\theta}_1$, $\boldsymbol{\theta}_{\delta}, \sigma_1^2, \sigma_{\delta}^2$ are known.

Recursive formulation of the model

Multi-fidelity co-kriging model :[Kennedy & O'Hagan (2000), Le Gratiet (2012)]

$$Z_2(x) = \rho Z_1^*(x) + \delta(x)$$
$$Z_1^*(x) \perp \delta(x)$$

where $Z_1^*(x) \sim [Z_1(x)|\mathbf{Z}_1 = \mathbf{g}_1, \boldsymbol{\beta}_1, \sigma_1^2, \boldsymbol{\theta}_1], \text{ with } \mathbf{g}_1 = g_1(x), x \in \mathbf{D}_1$

and
$$Z_1(x) \sim \operatorname{GP}\left(\mathbf{f}_1^t(x)\boldsymbol{\beta}_1, \sigma_1^2 r_1(x, \tilde{x}; \boldsymbol{\theta}_1)\right), \ \delta(x) \sim \operatorname{GP}\left(\mathbf{f}_{\delta}^t(x)\boldsymbol{\beta}_{\delta}, \sigma_{\delta}^2 r_{\delta}(x, \tilde{x}; \boldsymbol{\theta}_{\delta})\right)$$

- Parameters estimation :
 - θ_1 , θ_{δ} , σ_1^2 , σ_{δ}^2 : maximum likelihood method • β_1 , $\begin{pmatrix} \beta_{\delta} \\ \rho \end{pmatrix}$: analytical posterior distribution (Bayesian inference)
- Finally, $Z_2^*(x) \sim [Z_2(x)|\mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$ with $\mathbf{g}_2 = g_2(x), x \in \mathbf{D}_2$

We suppose that $\mathbf{D}_2 \subset \mathbf{D}_1$ and $\boldsymbol{\theta}_1$, $\boldsymbol{\theta}_{\delta}$, σ_1^2 , σ_{δ}^2 are known.

Recursive formulation of the model

Multi-fidelity co-kriging model :[Kennedy & O'Hagan (2000), Le Gratiet (2012)]

$$Z_2(x) = \rho Z_1^*(x) + \delta(x)$$
$$Z_1^*(x) \perp \delta(x)$$

where $Z_1^*(x) \sim [Z_1(x) | \mathbf{Z}_1 = \mathbf{g}_1, \boldsymbol{\beta}_1, \sigma_1^2, \boldsymbol{\theta}_1], \text{ with } \mathbf{g}_1 = g_1(x), x \in \mathbf{D}_1$

and
$$Z_1(x) \sim \operatorname{GP}\left(\mathbf{f}_1^t(x)\boldsymbol{\beta}_1, \sigma_1^2 r_1(x, \tilde{x}; \boldsymbol{\theta}_1)\right), \ \delta(x) \sim \operatorname{GP}\left(\mathbf{f}_{\delta}^t(x)\boldsymbol{\beta}_{\delta}, \sigma_{\delta}^2 r_{\delta}(x, \tilde{x}; \boldsymbol{\theta}_{\delta})\right)$$

- Parameters estimation :
 - θ_1 , θ_{δ} , σ_1^2 , σ_{δ}^2 : maximum likelihood method • β_1 , $\begin{pmatrix} \beta_{\delta} \\ \rho \end{pmatrix}$: analytical posterior distribution (Bayesian inference)
- Finally, $Z_2^*(x) \sim [Z_2(x) | \mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$ with $\mathbf{g}_2 = g_2(x), x \in \mathbf{D}_2$

We suppose that $\mathbf{D}_2 \subset \mathbf{D}_1$ and $\boldsymbol{\theta}_1$, $\boldsymbol{\theta}_{\delta}$, σ_1^2 , σ_{δ}^2 are known.

In Universal Cokriging, the predictive distribution of Z₂^{*}(x) is not Gaussian.
The predictive mean and variance can be decomposed as :

$$\mu_{Z_2}(x) = \mathbb{E}\left[Z_2(x) | \mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1\right]$$
$$= \hat{\rho}\mu_{Z_1}(x) + \mu_{\delta}(x)$$

$$\sigma_{Z_2}^2(x) = \operatorname{var} \left(Z_2(x) | \mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1 \right]$$
$$= \hat{\rho}^2 \sigma_{Z_1}^2(x) + \sigma_{\delta}^2(x)$$

• Remarks :

- in $\mu_{Z_2}(x)$: β and ρ are replaced by their posterior means.
- in $\sigma_{Z_2}^2(x)$: we infer from the posterior distributions of β and ρ .

Multi-fidelity co-kriging model

Multi-fidelity sensitivity analysis

Applications

Sobol index definition

• Context :

- The input is a random vector $X = (X^{d_1}, X^{d_2})$ defined on $(\Omega_X, \mathcal{F}_X, \mathbb{P}_X)$, with probability measure $\mu = \mu^{d_1} \otimes \mu^{d_2}$, $d = d_1 + d_2$.
- We replace the code output $g_2(x)$ with a multi-fidelity co-kriging model $Z_2^*(x)$ defined on $(\Omega_Z, \mathcal{F}_Z, \mathbb{P}_Z)$.
- Objective : we are interested in evaluating the closed Sobol indices defined by

$$\mathbf{S}^{d_1} = \frac{\mathbf{V}^{d_1}}{\mathbf{V}} = \frac{\operatorname{var}_X \left(\mathbb{E}_X \left[g_2(X) | X^{d_1} \right] \right)}{\operatorname{var}_X \left(g_2(X) \right)}$$

• Classical approach estimation : replace $g_2(x)$ by $\mu_{Z_2^*}(x)$.

- + Computationally cheap
- do not infer from the meta-model error

Sobol index definition

• Context :

- The input is a random vector $X = (X^{d_1}, X^{d_2})$ defined on $(\Omega_X, \mathcal{F}_X, \mathbb{P}_X)$, with probability measure $\mu = \mu^{d_1} \otimes \mu^{d_2}$, $d = d_1 + d_2$.
- We replace the code output $g_2(x)$ with a multi-fidelity co-kriging model $Z_2^*(x)$ defined on $(\Omega_Z, \mathcal{F}_Z, \mathbb{P}_Z)$.
- Objective : we are interested in evaluating the closed Sobol indices defined by

$$\mathbf{S}^{d_1} = \frac{\mathbf{V}^{d_1}}{\mathbf{V}} = \frac{\operatorname{var}_X \left(\mathbb{E}_X \left[g_2(X) | X^{d_1} \right] \right)}{\operatorname{var}_X \left(g_2(X) \right)}$$

Classical approach estimation : replace g₂(x) by µ_{Z^{*}₂}(x).

- + Computationally cheap
- do not infer from the meta-model error

• Another approach :[Oakley & O'Hagan (2004), Marrel & al. (2009)]

Replace $g_2(x)$ by $Z_2^*(x)$ and consider the term :

$$S_{Z_2^*}^{d_1} = \frac{\operatorname{var}_X \left(\mathbb{E}_X \left[Z_2^*(X) | X^{d_1} \right] \right)}{\operatorname{var}_X \left(Z_2^*(X) \right)} \quad (\text{on } (\Omega_Z, \mathcal{F}_Z, \mathbb{P}_Z))$$

They suggest the following quantity :

$$\tilde{S}_{Z_{2}^{*}}^{d_{1}} = \frac{\mathbb{E}_{Z}\left[\operatorname{var}_{X}\left(\mathbb{E}_{X}\left[Z_{2}^{*}(X)|X^{d_{1}}\right]\right)\right]}{\mathbb{E}_{Z}\left[\operatorname{var}_{X}\left(Z_{2}^{*}(X)\right)\right]}$$

They evaluate its uncertainty with :

$$\widetilde{\Sigma}_{Z_{2}^{*}}^{2} = \frac{\operatorname{var}_{Z}\left(\operatorname{var}_{X}\left(\mathbb{E}_{X}\left[Z_{2}^{*}(X)|X^{d_{1}}\right]\right)\right)}{\mathbb{E}_{Z}\left[\operatorname{var}_{X}\left(Z_{2}^{*}(X)\right)\right]^{2}}$$

- + infer from the meta-model error
- Computationally expensive (numerical integrations)
- $-~\tilde{S}^{d_1}_{Z_2^*}$ is not the expectation of $S^{d_1}_{Z_2^*}$ and $\widetilde{\Sigma}^2_{Z_2^*}$ is different from the variance of $S^{d_1}_{Z_2^*}$

• Recall : $S_{Z_2^*}^{d_1}$ is a random variable

$$S_{Z_{2}^{*}}^{d_{1}} = \frac{\operatorname{var}_{X} \left(\mathbb{E}_{X} \left[Z_{2}^{*}(X) | X^{d_{1}} \right] \right)}{\operatorname{var}_{X} \left(Z_{2}^{*}(X) \right)}$$

• Objective : We want to build

10/19

- A unbiased Monte Carlo estimator S^{d1}_{Z^{*}₂,m} of S^{d1}_{Z^{*}₂}, where m represents the number of Monte-Carlo particles.
- An estimator of the variance of $\hat{\mathrm{S}}^{d_1}_{Z^*_2,m}$.

such that $X = (X^{d_1}, X^{d_2}) \quad \tilde{X} = (X^{d_1}, \tilde{X}^{d_2}) \quad X^{d_2} \perp \tilde{X}^{d_2}$

• For $k = 1, ..., N_Z$:

- 1. Sample a realization $z^*_{2,k}(\mathbf{x})$ of $Z^*_2(\mathbf{x})$ at points in \mathbf{x} .
- 2. Compute $\hat{\mathrm{S}}^{d_1}_{Z^*_2,m,k,1}$ from $z^*_{2,k}(\mathbf{x})$ with : [Janon & al. (2012)]

$$\hat{S}_{Z_{2}^{*},m,k,1}^{d_{1}} = \frac{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) z_{2,k}^{*}(\tilde{x}_{i}) - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i})^{2} - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}$$

- 3. For l = 2, ..., B:
 - Sample with replacements \mathbf{x}^{B_l} from \mathbf{x}
 - Compute $\hat{\mathrm{S}}^{d_1}_{Z^*_2,m,k,l}$ from $z^*_{2,k}(\mathbf{x}^{B_l})$.

such that
$$X = (X^{d_1}, X^{d_2}) \quad \tilde{X} = (X^{d_1}, \tilde{X}^{d_2}) \quad X^{d_2} \perp \tilde{X}^{d_2}$$

- For $k = 1, \ldots, N_Z$:
 - 1. Sample a realization $z_{2,k}^*(\mathbf{x})$ of $Z_2^*(\mathbf{x})$ at points in \mathbf{x} .
 - 2. Compute $\hat{\mathrm{S}}^{d_1}_{Z^*_2,m,k,1}$ from $z^*_{2,k}(\mathbf{x})$ with : [Janon & al. (2012)]

$$\hat{S}_{Z_{2}^{*},m,k,1}^{d_{1}} = \frac{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) z_{2,k}^{*}(\tilde{x}_{i}) - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i})^{2} - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}$$

- 3. For l = 2, ..., B:
 - Sample with replacements \mathbf{x}^{B_l} from \mathbf{x}
 - Compute $\hat{\mathbf{S}}^{d_1}_{Z^*_2,m,k,l}$ from $z^*_{2,k}(\mathbf{x}^{B_l})$.

such that
$$X = (X^{d_1}, X^{d_2}) \quad \tilde{X} = (X^{d_1}, \tilde{X}^{d_2}) \quad X^{d_2} \perp \tilde{X}^{d_2}$$

- For $k = 1, \ldots, N_Z$:
 - 1. Sample a realization $z_{2,k}^*(\mathbf{x})$ of $Z_2^*(\mathbf{x})$ at points in \mathbf{x} .
 - 2. Compute $\hat{\mathrm{S}}^{d_1}_{Z^*_2,m,k,1}$ from $z^*_{2,k}(\mathbf{x})$ with : [Janon & al. (2012)]

$$\hat{\mathbf{S}}_{Z_{2}^{*},m,k,1}^{d_{1}} = \frac{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) z_{2,k}^{*}(\tilde{x}_{i}) - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i})^{2} - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}$$

3. For l = 2, ..., B:

- Sample with replacements \mathbf{x}^{B_l} from \mathbf{x}
- Compute $\hat{\mathbf{S}}^{d_1}_{Z^*_2,m,k,l}$ from $z^*_{2,k}(\mathbf{x}^{B_l})$.

such that
$$X=(X^{d_1},X^{d_2})$$
 $ilde{X}=(X^{d_1}, ilde{X}^{d_2})$ $X^{d_2}\perp ilde{X}^{d_2}$

- For $k = 1, \ldots, N_Z$:
 - 1. Sample a realization $z_{2,k}^*(\mathbf{x})$ of $Z_2^*(\mathbf{x})$ at points in \mathbf{x} .
 - 2. Compute $\hat{\mathrm{S}}^{d_1}_{Z^*_2,m,k,1}$ from $z^*_{2,k}(\mathbf{x})$ with : [Janon & al. (2012)]

$$\hat{\mathbf{S}}_{Z_{2}^{*},m,k,1}^{d_{1}} = \frac{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) z_{2,k}^{*}(\tilde{x}_{i}) - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}{\frac{1}{m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i})^{2} - \left(\frac{1}{2m} \sum_{i=1}^{m} z_{2,k}^{*}(x_{i}) + z_{2,k}^{*}(\tilde{x}_{i})\right)^{2}}$$

- 3. For l = 2, ..., B :
 - $\bullet~$ Sample with replacements \mathbf{x}^{B_l} from \mathbf{x}
 - Compute $\hat{\mathrm{S}}^{d_1}_{Z^*_2,m,k,l}$ from $z^*_{2,k}(\mathbf{x}^{B_l}).$

• The estimator of $S_{Z_2^*}^{d_1}$:

 $\hat{\mathcal{S}}_{Z_2^*,m}^{d_1}$ is defined as the empirical mean of the sample $\left(\hat{\mathcal{S}}_{Z_2^*,m,k,l}^{d_1}\right)_{\substack{k=1,\ldots,N_Z\\l=1,\ldots,B}}$:

$$\hat{\mathcal{S}}^{d_1}_{Z_2^*,m} = \frac{1}{N_Z \times B} \sum_{k=1}^{N_Z} \sum_{l=1}^B \hat{\mathcal{S}}^{d_1}_{Z_2^*,m,k,l}$$

• The variance of the estimator $\hat{\mathcal{S}}^{d_1}_{Z_2^*,m}$:

 $\hat{\Sigma}^2_{\hat{\mathcal{S}}^{d_1}_{Z_2^*,m}} \text{ is estimated from the empirical variance of } \left(\hat{\mathcal{S}}^{d_1}_{Z_2^*,m,k,l}\right)_{\substack{k=1,\ldots,N_Z\\l=1,\ldots,B}}:$

$$\hat{\Sigma}^2_{\hat{\mathcal{S}}^{d_1}_{Z_2^*,m}} = \frac{1}{N_Z \times B - 1} \sum_{k=1}^{N_Z} \sum_{l=1}^{B} \left(\hat{\mathcal{S}}^{d_1}_{Z_2^*,m,k,l} - \hat{\mathcal{S}}^{d_1}_{Z_2^*,m} \right)^2$$

It integrates both meta-modeling error and Monte-Carlo integrations error.

• Variance due to the meta-modeling :

$$\begin{split} \operatorname{var}_{Z} \left(\mathbb{E}_{X} \left[\hat{\mathcal{S}}_{Z_{2}^{*},m}^{d_{1}} | Z_{2}^{*}(x) \right] \right) \text{ can be estimated by :} \\ \widehat{\Sigma}_{Z_{2}^{*}}^{2} &= \frac{1}{B} \sum_{l=1}^{B} \left[\frac{1}{N_{Z}-1} \sum_{k=1}^{N_{Z}} \left(\hat{\mathcal{S}}_{Z_{2}^{*},m,k,l}^{d_{1}} - \overline{\hat{\mathcal{S}}}_{Z_{2}^{*},m,l}^{d_{1}} \right)^{2} \right] \end{split}$$

• Variance due to Monte-Carlo integrations :

13/19

$$\begin{aligned} \operatorname{var}_X \left(\mathbb{E}_Z \left[\hat{\mathcal{S}}_{Z_2^*,m}^{d_1} | (X_i, \tilde{X}_i)_{i=1,...,m} \right] \right) \text{ can be estimated by :} \\ \widehat{\Sigma}_{\mathsf{MC}}^2 &= \frac{1}{N_Z} \sum_{k=1}^{N_Z} \left[\frac{1}{B-1} \sum_{l=1}^B \left(\hat{\mathcal{S}}_{Z_2^*,m,k,l}^{d_1} - \overline{\hat{\mathcal{S}}}_{Z_2^*,m,k}^{d_1} \right)^2 \right] \end{aligned}$$

• Determining the minimal number of Monte-Carlo particles m :

Considering given the cokriging model $Z_2^*(x)$, the minimal value m is the one such that $\hat{\Sigma}^2_{Z_2^*(x)} \approx \hat{\Sigma}^2_{\rm MC}$

• Variance due to the meta-modeling :

$$\begin{aligned} \operatorname{var}_{Z}\left(\mathbb{E}_{X}\left[\hat{\mathcal{S}}_{Z_{2}^{*},m}^{d_{1}}|Z_{2}^{*}(x)\right]\right) \text{ can be estimated by :} \\ \widehat{\Sigma}_{Z_{2}^{*}}^{2} &= \frac{1}{B}\sum_{l=1}^{B}\left[\frac{1}{N_{Z}-1}\sum_{k=1}^{N_{Z}}\left(\hat{\mathcal{S}}_{Z_{2}^{*},m,k,l}^{d_{1}}-\overline{\hat{\mathcal{S}}}_{Z_{2}^{*},m,l}^{d_{1}}\right)^{2}\right] \end{aligned}$$

• Variance due to Monte-Carlo integrations :

13/19

$$\begin{aligned} \operatorname{var}_X \left(\mathbb{E}_Z \left[\hat{\mathcal{S}}_{Z_2^*,m}^{d_1} | (X_i, \tilde{X}_i)_{i=1,...,m} \right] \right) \text{ can be estimated by } : \\ \widehat{\Sigma}_{\mathsf{MC}}^2 &= \frac{1}{N_Z} \sum_{k=1}^{N_Z} \left[\frac{1}{B-1} \sum_{l=1}^B \left(\hat{\mathcal{S}}_{Z_2^*,m,k,l}^{d_1} - \overline{\hat{\mathcal{S}}}_{Z_2^*,m,k}^{d_1} \right)^2 \right] \end{aligned}$$

• Determining the minimal number of Monte-Carlo particles m :

Considering given the cokriging model $Z_2^*(x)$, the minimal value m is the one such that $\hat{\Sigma}^2_{Z_2^*(x)}\approx\hat{\Sigma}^2_{\rm MC}$

Multi-fidelity co-kriging model

Multi-fidelity sensitivity analysis

Applications

First order Sobol index of the first input parameter when the size n of the learning sample increases.

Spherical tank under internal pressure - cokriging case

Fine code : g₂(x) is the Von Mises stress at point 1 provided by a finite elements code. x = (P, R_{int}, T_{shell}, T_{cap}, E_{shell}, E_{cap}, σ_{y,shell}, σ_{y,cap}) (d = 8)

P: value of the internal pressure. $R_{\rm int}$: length of the internal radius of the shell. $T_{\rm shell}$: thickness of the shell. $T_{\rm cap}$: thickness of the cap. $E_{\rm shell}$: Young's modulus of the shell material. $E_{\rm cap}$: Young's modulus of the cap material. $\sigma_{\rm yshell}$: yield stress of the cap material. $\sigma_{\rm ycap}$: yield stress of the cap material.

• Coarse code :

 g_1 is the 1D simplification corresponding to a perfectly spherical tank

$$g_1(x) = \frac{3}{2} \frac{(R_{int} + T_{shell})^3}{(R_{int} + T_{shell})^3 - R_{int}^3} P$$

• Multi-fidelity co-kriging model : built with $n_1 = 100$ and only $n_2 = 20$.

We estimate the efficiency E_{ff} of the metamodel of $g_2(x)$ by the coefficient of determination calculated on an external set of 7000 points. $E_{ff} \approx 86\%$

Kriging-based sensitivity analysis of the coarse code output $g_1(x)$

Cokriging-based sensitivity analysis of the fine code output $g_2(x)$

• We have proposed a Sobol index estimator which uses realizations of a predictive process (built from a multi-fidelity cokriging model) at points in a large sample.

→ we use the *conditioning kriging* [Chilès & Delfiner (1999)]

- In the computation of its variance, we distinguish among metamodel and Monte-Carlo variance contributions.
- We can also determine the minimal number of particles *m* such that the Monte-Carlo variance no longer dominates.

 \longrightarrow The value m is different for each Sobol index estimation.

Bibliography

SOBOL, I. M. (1993), Sensitivity estimates for non linear mathematical models. *Mathematical modeling and Computational Experiments* 1, 407–414.

KENNEDY, M. C. & O'HAGAN, A. (2000), Predicting the output from a complex computer code when fast approximations are available. *Biometrika* **87**, 1–13.

19/19

LE GRATIET, L. & GARNIER, J. (2012), Recursive co-kriging model for Design of Computer experiments with multiple levels of fidelity with an application to hydrodynamic, submitted to International Journal of Uncertainty Quantification.

J.E. OAKLEY & A O'HAGAN (2004), Probabilistic sensitivity analysis of complex models : A bayesian approach, Journal of the Royal Statistical Society B, **66**(3) :751–769.

A. MARREL, B. IOOSS, B. LAURENT & O. ROUSTANT (2012), Calculations of Sobol indices for the gaussian process metamodel, Reliability Engineering and System Safety, **94**:742–751.

L. LE GRATIET, C. CANNAMELA, & B.IOOSS (2013), A Bayesian approach for global sensitivity analysis of (multi-fidelity) computer codes, submitted to SIAM/ASA UQ.

R CRAN package : http://cran.r-project.org/web/packages/MuFiCokriging

Sampling from the predictive distribution

• Two issues :

- 1. How to sample from $Z_2^*(x) \sim [Z_2(x) | \mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$?
- 2. How to deal with large m?
- Sampling from $Z_2^*(x) \sim [Z_2(x)|\mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$:

 $Z_2^*(x)$ can be written by : $Z_2^*(x) = \rho Z_1^*(x) + \delta_{\rho,\beta_{\delta}}^*(x)$ where $Z_1^*(x)$ and $\delta_{\rho,\beta_{\delta}}^*(x) = [\delta(x)|\rho,\beta_{\delta}]$ are Gaussian processes and (ρ,β_{δ}) have a known distribution.

- 1. Sample a realization $z_{1,k}^*(x)$ of $Z_1^*(x)$
- 2. Sample a realization $(\rho^k, \boldsymbol{\beta}^k_{\delta})$ of $(\rho, \boldsymbol{\beta}_{\delta})$
- 3. Sample a realization $\delta_k^*(x)$ of $\delta_{a^k, B^k}^*(x)$
- 4. Set $z_{2,k}^*(x) = \rho^k \tilde{z}_{1,k}^*(x) + \delta_k^*(x)$

• Two issues :

- 1. How to sample from $Z_2^*(x) \sim [Z_2(x) | \mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$?
- 2. How to deal with large m?
- Sampling from $Z_2^*(x) \sim [Z_2(x) | \mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$:

$$\begin{split} &Z_2^*(x) \text{ can be written by } : \ Z_2^*(x) = \rho Z_1^*(x) + \delta_{\rho, \beta_\delta}^*(x) \\ &\text{where } Z_1^*(x) \text{ and } \delta_{\rho, \beta_\delta}^*(x) = [\delta(x)|\rho, \beta_\delta] \text{ are Gaussian processes} \\ &\text{and } (\rho, \beta_\delta) \text{ have a known distribution.} \end{split}$$

- 1. Sample a realization $z^*_{1,k}(x)$ of $Z^*_1(x)$
- 2. Sample a realization $(\rho^k, \boldsymbol{\beta}^k_{\delta})$ of $(\rho, \boldsymbol{\beta}_{\delta})$
- 3. Sample a realization $\delta_k^*(x)$ of $\delta_{\rho^k,\beta^k}^*(x)$
- 4. Set $z_{2,k}^*(x) = \rho^k \tilde{z}_{1,k}^*(x) + \delta_k^*(x)$

• Two issues :

- 1. How to sample from $Z_2^*(x) \sim [Z_2(x)|\mathbf{Z}_2 = \mathbf{g}_2, \mathbf{Z}_1 = \mathbf{g}_1]$?
- 2. How to deal with large m?
- $\bullet~$ Sampling with large m :

Conditioning kriging result :[Chilès & Delfiner (1999)]

We can sample from the conditional distributions of $Z_1^\ast(x)$ and $\delta^\ast(x)$ by sampling from unconditioned distributions and then by applying a linear transformation on them.

We can use efficient algorithms to compute realizations of processes with unconditioned distributions :

- Stationary kernel : spectral decomposition
- Tensorised covariance kernel : Karhunen-Loeve decomposition
 - \rightarrow sequentially adding new points to ${\bf x}$ without re-estimating the decomposition.