UASA of complex models: Coping with dynamic and static inputs

F. Collin, J. Goffart, T. Mara, L. Denis-Vidal

Université de Lorraine - Research Centre for Automatic Control

- 4 同 6 4 日 6 4 日 6

F.Collin

Introduction

Building energy model

Uncertainties on:

- thermophysical materials
- weather data
- user behavior, …
- \Rightarrow Uncertainties on energy consumption

SAMO Conference - July 4th, 2013

2/18

- How are the uncertainties propagated through the model ?
- Which inputs are responsible for these uncertainties ?

 \Rightarrow Need to analyze the uncertainties to better understand the energy consumption

F.Collin

Contents

Energy building model

Proposed approach

Results

Conclusion

F.Collin

<ロ> <同> <同> < 同> < 同>

SAMO Conference - July 4th, 2013

- 2

Contents

Energy building model

Proposed approach

Results

Conclusion

SAMO Conference - July 4th, 2013 4/18

æ

<ロ> <同> <同> < 同> < 同>

Model

Energy building model

$$\mathbf{y}(t, heta) = g(\boldsymbol{\omega}^{\mathbf{d}}(t, heta), \boldsymbol{\omega}^{\mathbf{s}}(heta), t)$$

- $\boldsymbol{\omega}^{\mathbf{d}}(t, \theta)$: uncertain weather data depending on t
- $\omega^{s}(\theta)$: uncertain thermophysical properties of materials
- y: energy consumption
- t: time (spatio/temporal variable)
- g: PDE

Model

Energy building model

$$\mathbf{y}(t,\theta) = g(\boldsymbol{\omega}^{\mathbf{d}}(t,\theta),\boldsymbol{\omega}^{\mathbf{s}}(\theta),t)$$

• Thermophysical properties $\omega_i^s(\theta)$ (static inputs)

- Random variable
- Marginal distribution
- Random sampling methods
- Weather data $\omega_i^d(t,\theta)$ (dynamic inputs)
 - Random processes
 - Mean value $\bar{\omega_i}^d(t)$
 - Covariance function $C_i(t_1, t_2)$

Problem: how to generate consistent samples of dynamic inputs?

Contents

F.Collin

Energy building model

Proposed approach

Results

Conclusion

SAMO Conference - July 4th, 2013

<ロ> <同> <同> < 同> < 同>

া▶ ≣ ৩৭৫ h,2013 6/18

Generation of dynamic inputs samples

Weather data $\omega_i^d(t,\theta)$

- Random processes
- Mean value $\bar{\omega}_i^{d}(t)$
- Covariance function $C_i(t_1, t_2)$

`<mark>?</mark>-Series expansion

Complete set of deterministic functions with corresponding random coefficients `₽

Karhunen Loève decomposition

- Eigen-decomposition of the covariance function
- Orthogonal deterministic basis functions
- Uncorrelated random coefficients
- Optimal encapsulation of information contained in the random process into a set of discrete uncorrelated random variables

Generation of dynamic inputs samples

Weather data $\omega_i^d(t,\theta)$

- Random processes
- mean value $\bar{\omega_i}^d(t)$
- covariance function $C_i(t_1, t_2)$

Karhunen-Loève decomposition

$$\omega_i^d(t,\theta) \approx \bar{\omega}_i^d(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta) f_k(t)$$

- λ_k : eigenvalues of $C_i(t_1, t_2)$
- f_k : eigenfunctions of $C_i(t_1, t_2)$
- *M_i* : number of modes
- ξ_k : independent normally distributed random variables

Generation of dynamic inputs samples

Weather data $\omega_i^d(t,\theta)$

- Random processes
- mean value $\bar{\omega_i}^d(t)$
- covariance function $C_i(t_1, t_2)$

Karhunen-Loève decomposition

$$\omega_i^d(t,\theta) \approx \bar{\omega}_i^d(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta) f_k(t)$$

• λ_k and $f_k(t)$ solutions of Fredholm integral:

$$\int_{\mathcal{D}} C_i(t_1, t_2) f_k(t_1) \mathsf{d} t_1 = \lambda_k f_k(t_2)$$

• Resolution based on wavelet transform of $\mathcal{L}_i(t_1, t_2)$ I [Phoon] and

SAMO Conference - July 4th, 2013 8/ 18

Generation of dynamic inputs samples

Karhunen-Loève decomposition

$$\omega_i^d(t,\theta) \approx \bar{\omega}_i^d(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta) f_k(t)$$

- M_i modes containing 95% of $V(\omega_i^d(t,\theta))$
- Influence of the inputs $\{\omega_1^d(t_1,\theta),\ldots,\omega_1^d(t_f,\theta),\omega_2^d(t_1,\theta),\ldots,\omega_2^d(t_f,\theta),\ldots\}$
- Influence of the modes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SAMO Conference - July 4th, 2013

Sensitivity analysis of the dynamic inputs

- N_d dynamic inputs $\omega_i^d(t,\theta)$
- M_i modes for each input $\omega_i^d(t, \theta)$
- In all: $n = \sum_{i=1}^{N_d} M_i$ modes to analyze
- SA of the inputs through $\{\underline{\xi_1,\cdots,\xi_n}, \omega^s\}$
- Sensitivity indices

. . .

$$\{\underbrace{\xi_1,\cdots,\xi_{n_1}}_{M_1 \text{ modes of } \omega_1^d},\underbrace{\xi_{n_1+1},\cdots,\xi_{n_2}}_{M_2 \text{ modes of } \omega_2^d},\cdots,\xi_n,\omega_1^s,\ldots,\omega_{N_s}^s\}$$

Sensitivity index of ω_i^d (grouped modes) Sen $S_1 = \frac{V(E(y|\xi_1, \cdots, \xi_{n_1}))}{V(y)}, \qquad S_l$

Sensitivity index of ω_i^s $S_l = \frac{V(E(y|\omega_1^s))}{V(y)},$

(日) (同) (目) (日)

Contents

Energy building model

Proposed approach

Results

Conclusion

SAMO Conference - July 4th, 2013 11/ 18

- 2

・ロト ・回ト ・モト ・モト

Results

Initial problem

 $\mathbf{y}(\theta) = g(\boldsymbol{\omega}^{\mathbf{d}}(t, \theta), t)$

6 dynamic inputs		2 outputs	
Temperature T	ω_1^d	Heat consumption grnd floor	<i>y</i> 1
Direct solar radiation D	ω_2^d	Heat consumption 1st floor	<i>y</i> ₂
Diffuse solar radiation d	ω_3^d		
Wind speed V	ω_4^d		
Wind direction V_d	ω_5^d		
Relative humidity H	ω_6^d		

- Daily consumption summed over one month
- Data for representative month of january

Results

Procedure

- 1. Generation of the dynamic inputs
 - 1.1 Perform a 2D wavelet transform of $C_i(t_1, t_2)$, i = 1, ..., 6Fast Haar wavelet transform algorithm Here 3072 modes in all $\Rightarrow \lambda_k$, $f_k(t)$
 - 1.2 Generate the independent random variables ξ_k

1.3 Generate the $N_d = 6$ dynamic inputs ω_i^d

$$\frac{\omega_i^d \approx \bar{\omega}_i^d(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta) f_k(t)}{\text{SAMO Conference - July 4th, 2013}} \xrightarrow{M_i} \mathcal{O} \subset \mathcal{O}$$

Results

Procedure

2 Sensitivity analysis

2.1 Simulate the model with the dynamic inputs

 $\mathbf{y}(heta) = g(\boldsymbol{\omega}^{\mathbf{d}}(t, heta), t)$

- Higher consumption at the 1st floor
- More glass surface at the ground floor
- Solar gain more important at the ground floor
- Sensitivity indices to check this assumption

Results

2.2 Sensitivity indices of the grouped modes

$$S_i = rac{V(E(y|\xi_i,\cdots,\xi_{n_i}))}{V(y)}$$

- Direct solar radiation more influent at the ground floor
- Temperature more influent at the 1st floor
- Importance of solar gain during winter time

< ロ > < 同 > < 回 > < 回 >

SAMO Conference - July 4th, 2013

3

Contents

Energy building model

Proposed approach

Results

Conclusion

SAMO Conference - July 4th, 2013 16/ 18

- 2

・ロト ・回ト ・モト ・モト

Conclusion

In prospect

- Study the influence of the individual modes
- Include the thermophysical properties of the materials ω^{s} (static inputs)
- Consider the dynamic output $\mathbf{y}(\mathbf{t}, \boldsymbol{\theta})$ (thermal comfort)
- Work done in the context of the french project ASenDyn granted by the CNRS

イロト イポト イヨト イヨト

Thank you for your attention Questions ?

イロン イロン イヨン イヨン

SAMO Conference - July 4th, 2013

3