

Reliable Based Design Optimization using k-sigma method and local sensitivity

Benoit Delinchant - Grenoble Electrical Engineering Lab G2ELab - ENSE3, 38402 Grenoble, France, Benoit.Delinchant@g2elab.gren

Abstract- This paper presents a method and a tool for solving the reliability-based design optimization (RBDO). The RBDO aims to mi cost function by changing the value of design parameters while ensuring a level of reliability. Uncertainties propagation is a key concept in reliable studies and it can be associated with a sensitivity analysis in order to sort parameter influences. Global and local sensitivities are compared in this study in order to keep a reasonable cost versus accuracy ratio. A software tool has been also developed to automate reliable studies. It is applied to the reliable optimization of a magnetic nano switch with SQP algorithm using Jacobian calculated by composition of automatic and symbolic differentiation.

Ŧ

Moving magnet

X₄

Reliable Based Design Optimization

MEMS Modeling and Design

RBDO Results

Table 2. Optimizatio	X ₂ Equivalent reliabliability							
	Initial	Non reliable	Reliable optimization solutions					
	value	optimale solution	k _g =2	k _o =3	k _o =4			
Reliability		50%	97,7%	99,87%	99,997%	Optimal non robust		
Iterations		13	13	16	14	solution (2) solution		
Optimization time		24,4[s]	219[s]	280[s]	262[s]	Solution Solution		
Ym [nm]	500	330,01	529,80	690,73	927,34	Contraction of the second second		
Zf [nm]	500	208,95	276,01	314,11	359,40			
Zm [nm]	500	208,24	274,64	312,24	356,75].		
Y_offset [nm]	3000	3500	3500	3500	3500]X_1 + + + + + + + + + + + + + + + + + + +		
Contact length [nm] (≥300)		300	[300 , 398.52]	[300 , 438.3]	[300 , 474.4]			
Contact force [10-8N] (≥2)		2.115	[2.87, 4.618]	[3.27, 6.672]	[3.71, 9.71]	Reliable / / / / / / / / / / / / / / / / / /		
V_magnet [1E-20 m3] (to minimize)	25,0	6,884	14,59	21,63	33,21	solutions		
Table 3. Optimal solution validated with Monte Carlo simulation								
	MC	μΜCσ	k_=2 (based or	MC) k _a =2 (1	rom optim)			
Contact length [nm] (≥300)	347.	6 25.06	[297.48, 397.7.	2] [300, 3	98.52]	Reliable path		
Contact force [10-8N] (≥2)	3.6	0.42	[2.76, 4.44]	[2.87, 4	1.618]			

Ontimization specifications

Objective	V_magnet	Magnet volumes	To minimize
Constraints	Lcontact	Contact length	≥300 nm
	Fcontact	Contact force	≥1E-8 N
Design	Ym	Fixed and moving magnet length	[100 : 1000] nm
variables	Zf	Fixed magnet high	[100 : 1000] nm
	Zm	Moving magnet high	[100 : 1000] nm
	Y_offset	Magnet position on the beam	[2500 : 3500] nm
	Mzm	Mobile magnet magnetization	1
	Myf	Fixed magnet magnetization	1
	Airgap	Air gap	50
	Zsup	Substrat between fixed magnet and contact surface	10
	E1	Magnet Young modulus (Ru-FeMn-FeCo)	4.47x1011
	E2	Beam Young modulus (Pt)	2.1x1011
	B1,B2,	Beams sizes B1(x1, y1, z1), B2(x2, y2, z2),	

Local sensitivity

local standard deviation is approached by local sensitivity

local approximation gives results close to global analysis

Conclusions

- We have proposed an implementation RBDO based on k, constraints and a local sensitivity approximation. It allows compute standard deviation as well as its
- Jacobian to perform gradient based RBDO.
- Our methodology and tool has been successfully applied on the reliable design of a magnetic MEMS switch.