Comparison of Sensitivity Analysis methods applied on a groundwater flow and mass transport model The case of Andra Meuse/Haute-Marne site

G. Deman¹, J. Kerrou¹, H. Benabderrahmane², P. Perrochet¹

CHYN - Centre of Hydrogeology and Geothermics, University of Neuchâtel - Emile-Argand 11, CH-2000 Neuchâtel - Switzerland ²Andra - Agence Nationale pour la gestion des Dechets Radioactifs - 1/7 rue Jean Monnet, 92298 Châtenay-Malabry - France

contact: gregory.deman@unine.ch

FLOW MODEL AND LIFETIME EXPECTANCY CALCULAT

The Model

Top Model

The Problem

The Parameters

	Layer name	ID	Porosity "n" [-]	Hydraulic Conductivity "K" [m/s]
	Top of upper Sequanian	14	0.1585	4.66 E-07
Oxfordian	Base of upper Sequanian	13	0.1615	1.16 E-06
	Lower Sequanian	12	0.1756	4.14 E-08
	2 Upper Rauracian	11	0.1867	2.96 E-07
	Lower Rauracian	10	0.2068	1.05 E-07
	Upper Argovian	9	0.2103	4.64 E-11

Assess Model's Response sensitivity to correlated Hydraulic conductivities (K) and porosities (n) of 14 hydrogeological layers

> Apply multiplicative factors to correlated inputs : **sample**

Model Statistics : Finite Element - 16 Millions Elements - 16 Layers **Problem Definition** : Steady State Flow & Mass Transport : 1 Million years Simulation time **Observed Response** : Lifetime Expectancy from ZIRA Zone

Inputs $n \& \log(K)$ correlated within each layer : **2** by **2** correlations C = 0.8

Sampling based upon Gaussian distribution centred on 1

Multiplicative Factors				
n_mult	log(K_mult)			
[0.85 ; 1.15]	[-1;1]			

COX	Lower Argovian	8	0.1705	8.00 E-13
	Argilleous Callovian	7	0.1681	1.92 E-15
lger	Dalle nacrée	6	0.2043	3.90 E-08
	Mid-upper Bathonian	5	0.2043	7.81 E-06
	Lower Bathonian	4	0.1999	3.90 E-06
bo	Marnes de Longwy	3	0.1878	4.64 E-11
	Upper Bajocian	2	0.1878	1.95 E-06
	Lower Bajocian	1	0.2089	5.79 E-08

SENSITIVITY ANALYSIS

Polynomial Regression + Student t-test

Negative 1st order effect of K_1 , $K_{3, \dots, 5}$, K_7 , K_{11} , K_{12} , n_{10} , n_{12} and n_{14} **Positive 1st order** effect of K_2 , K_9 , K_{14} , n_1 , n_3 , n_4 , n_7 and n_{11} Strong **positive 2cd order** effect of K_5 , K_2 and K_{14} Many two-ways interactions

DISCUSSION

	Correlated sampling techniques avoid unrealistic parameters combinations that could possibly give misleading Sensitivity Analysis results					
		ELEMENTARY EFFECTS METHODOLOGY (MORRIS, 1991)	KENDALL RCC	STUDENT T-TEST ON POLYNOMIAL REGRESSION		
Methods	Advantages	Gives reliable qualitative assessment of the sensitivity of the response to model's parameters	Allows the selection of a subset of unimportant parameters	Allows the detection of high-order and interactions effects Allows the selection of a subset of unimportant parameters		
	Disadvantages	Does not allow the selection of a subset of unimportant parameters	Does not detect high-order effects or interactions	Uses an approximation of the true response		
Results	Layer Mid-u Layers Lowe	pper Bathonian (n°5) strongly reduces the tran r Bathonian (n°3), Dalle Nacrée (n°6), Rauracia	sit time of solute throughout the model because of n (n°10 - 11) and Sequanian (n°12 - 13 - 14) also reduc e	its high Hydraulic conductivity (<i>K</i> ₅). e the Lifetime Expectancy to a lesser degree		

Layers Lower Bathonian (n°3), Dalle Nacrée (n°6), Rauracian (n°10 - 11) and Sequanian (n°12 - 13 - 14) also reduce the Lifetime Expectancy to a lesser degree because of their **high Hydraulic conductivities**.

Porosities have little direct effects on the response ; except for layer **Marnes de Longwy** (*n*₂) where **strong interactions** or **high-order effects** take place.

References

Campolongo, F., Saltelli, A. and Cariboni, J., "From Screening to Quantitative Sensitivity Analysis. A Unified Approach.", Computer Physics Communications 182: 978-988 (2011). Cornaton, F. J., "GroundWater: A 3-D Ground Water and Surface Water Flow, Mass Transport and Heat Transfer Finite Element Simulator. Reference Manual.", University of Neuchâtel, 398 pp. 2007 Morris, M. D., "Factorial sampling plans for preliminary computational experiments.", Technometrics 33: 161-174 (1991). Iman, R. L. and Conover, W. J., "A Distribution- Free Approach to Inducing Rank Correlation Among Input Variables." Communications in Statistics-Simulation and Computation 11: 311-334 (1982).

Acknowledgment

The work presented here is part of the Andra Simulation Program - Hydrogeological Modelling of Meuse/Haute-Marne site for a Deep Geological Repository. The authors want to thank F. Cornaton who provided the computer code «GroundWater» (Cornaton, 2007) used to solve the Lifetime Expectancy equations.