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Linear regression model

Common linear regression model

y(x) = θ1f1(x) + . . .+ θmfm(x) + ε(x) ,

f1, . . . , fm are linearly independent, continuous (regression)
functions

θ1, . . . , θm are unknown parameters

N observations

y1 = y(x1), . . . , yN = y(xN)

at experimental conditions x1, . . . , xN ∈ X ⊂ R
d
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Correlation

Correlation structure

E[ε(xi )] = 0, E[ε(xi )ε(xj)] = K (xi , xj) ; xi , xj ∈ X

Here K is a kernel representing the covariance structure,
which satisifies

positive definite

K (u, v) 6= 0 for all (u, v) ∈ X × X
continuous at all points (u, v) ∈ X × X except possibly at the
diagonal points (u, u)

Design problem: optimal allocation of x1, . . . , xN for most
efficient estimation of θ1, . . . , θm
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Estimation

Least squares estimation (LSE)

θ̃ = (XTX)−1XTY

where

X = (fi (xj))
i=1,...,m
j=1,...,N

Y = (y1, . . . , yN)
T

Covariance matrix of θ̃

Var(θ̃) = (XTX)−1XTΣX (XTX)−1

where
Σ = (K (xi , xj))i ,j=1,...,N
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Least squares versus weighted least squares estimation

Weighted versus unweighted least squares

Weighted least squares estimation (BLUE)

θ̂ = (XTΣ−1X)−1XTΣ−1Y

Covariance matrix of θ̂

Var(θ̂) = (XTΣ−1X)−1 ≤ Var(θ̃)

where
Σ = (K (xi , xj))i ,j=1,...,N

Note: We focus on ordinary least squares estimation (LSE)
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Least squares versus weighted least squares estimation

Weighted versus unweighted least squares

Note: We focus on ordinary least squares estimation (LSE)
because

(1) BLUE is often sensitive with respect to misspecification of Σ
(LSE is more robust)

(2) The difference between BLUE and LSE is often surprisingly
small [Rao (1967), Kruskal (1968)]

(3) We will give a heuristic explanation of this phenomenon and
will additionally derive conditions such that

LSE + optimal design = BLUE + optimal design

Holger Dette Optimal design for linear models with correlated observations 5 / 35



Linear models with correlated observations Optimal designs Universally optimal designs Examples g -optimal designs

Approximate (continuous) designs

Motivation (one dimensional case)

a : X → [0, 1] distribution function on X ⊂ R

Design points are quantiles of a, that is

xi = a−1((i − 1)/(N − 1)), i = 1, . . . ,N,

If ξN is the probability measure with masses 1/N at xi , then

Var(θ̃) = D(ξN) = M−1(ξN)B(ξN , ξN)M
−1(ξN)

where

M(ξN) =

∫

X

f (u)f T (u)ξN(du)

B(ξN , ξN) =

∫ ∫

K (u, v)f (u)f T (v)ξN(du)ξN(dv)

and f = (f1, . . . , fm)
T is the vector of regression functions.
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Approximate (continuous) designs

Approximate (continuous) designs

For a probability measure ξ on X (more precisely on its Borel
field) the matrix

D(ξ) = M−1(ξ)B(ξ, ξ)M−1(ξ)

is called the information matrix (for LSE) of the design ξ,
where

M(ξ) =

∫

X

f (u)f T (u)ξ(du)

B(ξ, ξ) =

∫ ∫

K (u, v)f (u)f T (v)ξ(du)ξ(dv)
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Admissible designs

Admissible designs

Define
X1 = X\X0 = {x ∈ X : f (x) 6= 0}

Assume that designs ξ0 and ξ1 are concentrated on X0 and X1

correspondingly.

The design ξα = αξ0 + (1− α)ξ1 satisfies

D(ξα) = M−1(ξα)B(ξα, ξα)M
−1(ξα) = D(ξ1)

(for all 0 ≤ α < 1)

For the theoretical part of this talk we assume f (x) 6=0 for all
x ∈ X
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Necessary condition

Optimal design

Let Φ(·) be a monotone, convex real valued functional defined
on the space of symmetric m ×m matrices

The design ξ is Φ-optimal, if it minimizes the function

Φ(D(ξ)) = Φ(M−1(ξ)B(ξ, ξ)M−1(ξ))

among all designs on the design space X , where

M(ξ) =

∫

X

f (u)f T (u)ξ(du)

B(ξ, ξ) =

∫ ∫

K (u, v)f (u)f T (v)ξ(du)ξ(dv)

A further definition:

B(ξ, ν) =

∫

X

∫

X

K (u, v)f (u)f T (v)ξ(du)ν(dv),
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Necessary condition

A necessary condition

Theorem

If the matrix of derivatives

C =
∂Φ(D)

∂D
=

(
∂Φ(D)

∂Dij

)

i,j=1,...,m

exists and ξ∗ minimizes Φ(D(ξ)), then the inequality

f T (x)D(ξ∗)C (ξ∗)M−1(ξ∗)f (x) ≤ tr(C (ξ∗)M−1(ξ∗)B(ξ∗, ξx)M
−1(ξ∗))

(1)

holds for all x ∈ X , where

B(ξ∗, ξx) =

∫

X

K (u, x)f (u)ξ∗(du)f T (x).

Moreover, there is equality in (1) for ξ∗-almost all x
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D- and c-optimality

Two examples:

The necessary condition is of the form

d(x , ξ∗) ≤ b(x , ξ∗) for all x ∈ X

D-optimality; Φ(D(ξ)) = − log det(D(ξ))

f T (x)M−1(ξ∗)f (x) ≤ f T (x)B−1(ξ∗, ξ∗)

∫

K (u, x)f (u)ξ∗(du)

c-optimality (for a given c ∈ R
m); Φ(D(ξ)) = cTD(ξ)c

f T (x)M−1(ξ∗)ccTM−1(ξ∗)

×
(∫

K (x , u)f (u)ξ∗(du)− B(ξ∗, ξ∗)M−1(ξ∗)f (x)
)

≥ 0
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D- and c-optimality

Quadratic regression on the interval [−1, 1]
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Figure: The functions b(x , ξ) and d(x , ξ) in the necessary condition

d(x , ξ∗) ≤ b(x , ξ∗)

for the covariance kernels K (u, v) = e−|u−v | , K (u, v) = − log(u − v)2

and K (u, v) = max(0, 1− |u − v |) . ξ∗ is arcsine design, i.e.
dξ∗

dx
=

1

π
√
1− x2
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D- and c-optimality

Comments: the lack of convexity

Note: The conditions are ”only” necessary. This means:

The arcsine design is not D-optimal for quadratic regression
with a covariance kernel

K (u, v) = e−|u−v | or K (u, v) = max(0, 1− |u − v |)

For the logarithmic kernel

K (u, v) = − log(u − v)2

we observe equality in the necessary condition for all x .

→ The arcsine design might be D-optimal for quadratic
regression with logarithmic kernel
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D- and c-optimality

Comments: the lack of convexity

Optimality results are only available for the location model

y(x) = θ + ε(x)

(in this case the criterion is fact convex).

In the following discussion we propose a method for deriving
optimality results for more general models:

regression models with more than one regression function and
an associated covariance kernel

universally optimal designs
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Integral operators

Universally optimal designs

A design ξ∗ is universally optimal if and only if

D(ξ∗) ≤ D(ξ)

in the sense of the Loewner ordering for any design ξ ∈ Ξ,
that is

cTD(ξ∗)c ≤ cTD(ξ)c

for all c ∈ R
m.

A design ξ∗ is universally optimal if and only if it is c-optimal
for all c ∈ R

m.
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Integral operators

A crucial representation

For any design ξ we have the representation

∫

K (x , u)f (u)ξ(du) = Λf (x) + gξ(x) , x ∈ X ,

where Λ = B(ξ, ξ)M−1(ξ) and the function gξ satisfies.

∫

gξ(x)f
T (x)ξ(dx) = 0

Note:

The function gξ depends on the design ξ and the kernel K

If gξ ≡ 0 and Λ is diagonal, then the regression functions
f = (f1, . . . , fm)

T are eigenfunctions of the integral operator
associated with the kernel K and the design ξ
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Neccessary and sufficient conditions for universal optimality

gξ ≡ 0 is sufficient for universal optimality

Theorem

Consider the linear regression model with a covariance kernel K , a

design ξ ∈ Ξ and the corresponding the vector-function gξ(·)
defined by

gξ(x) =

∫

K (x , u)f (u)ξ(du)− Λf (x) , x ∈ X ,

If gξ(x) = 0 for all x ∈ X , then the design ξ is universally optimal.
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Proof (ideas)

Proof (first idea)

Check c-optimality for any c ∈ R
m

Necessary condition:

f T (x)M−1(ξ)ccTM−1(ξ)
(
∫

K (x , u)f (u)ξ(du)− B(ξ, ξ)M−1(ξ)f (x)

︸ ︷︷ ︸

gξ(x)≡0

)
≥ 0

ξ is a candidate for universal optimality!

However, the criterion is not convex!
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Proof (ideas)

Proof (idea)

Idea of a rigorous proof: simultaneous optimal estimation
and optimization of the design in the model

y(x) = θT f (x) + ε(x)

where the full trajectory {y(x)|x ∈ X} can be observed.

Arbitrary (linear) estimate: if µ = (µ1, . . . , µm)
T is a vector

of signed measures

θ̂(µ) =

∫

y(x)µ(dx)

Unbiasedness means here
∫

µ(dx)f T (x) =

∫

f (x)µT (dx) = Im ,

E.g. µξ(dx) = M−1(ξ)f (x)ξ(dx) gives LSE for the design ξ
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Proof (ideas)

Proof (idea)

Note: The variance of cT θ̂(µ) is given by

Var(cT θ̂(µ)) = cT
∫ ∫

E[ε(x)ε(u)]µ(dx)µT (du)c

= cT
∫ ∫

K (x , u)µ(dx)µT (du)c =: Φc(µ)

This function is convex with respect to µ!
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Proof (ideas)

Proof (idea)

Standard equivalence theory (convex optimization) is
applicable!

A vector of signed measures µ∗ minimizes

Φc(µ) = cT
∫ ∫

K (x , u)µ(dx)µT (du)c

if and only if the inequality

cT
∫ ∫

K (x , u)µ∗(dx)νT (du)c ≥ Φc(µ
∗)

holds for all vector valued signed measures ν corresponding
to unbiased estimates.
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Proof (ideas)

Proof (idea)

We use
µ∗(dx) = M−1(ξ)f (x)ξ(dx), (2)

which yields an unbiased estimator
Note that (gξ ≡ 0, by assumption of the Theorem)

∫

K (x , u)f (x)ξ∗(dx) = Λf (u) (3)

Left hand side of equivalence theorem

cT
∫ ∫

K (x , u)µ∗(dx)νT (du)c

(2)
= cTM−1(ξ)

∫ ∫

K (x , u)f (x)ξ(dx)νT (du)c

(3)
= cTM−1(ξ)

∫

Λf (u)νT (du)c
unbiased

= cTM−1(ξ)Λc
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Proof (ideas)

Proof (idea)

We use
µ∗(dx) = M−1(ξ∗)f (x)ξ∗(dx), (4)

Right hand side of equivalence theorem (with similar
arguments)

Φc(µ
∗) = cTM−1(ξ)Λc

= cTM−1(ξ)B(ξ, ξ)M−1(ξ)c = D(ξ)

µ∗ minimizes Φc in the class of all vector valued signed
measures corresponding to unbiased estimates!
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Proof (ideas)

Proof (idea)

Now return to the minimization of D(η) in the class of all
designs η ∈ Ξ.

For any η ∈ Ξ consider the corresponding vector-valued signed
measure µη(dx) = M−1(η)f (x)η(dx), then

cTD(η)c = cTM−1(η)B(η, η)M−1(η)c = Φc(µη)

≥ min
µ

Φc(µ) = Φc(µ
∗) = cTD(ξ)c .

Since the design ξ does not depend on the particular vector c ,
it follows that ξ is universally optimal.
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Proof (ideas)

gξ ≡ 0 is ”necessary” for universal optimality

Theorem

Consider the linear regression model with a covariance kernel K , a

design ξ ∈ Ξ and the corresponding function gξ(·) defined by

gξ(x) =

∫

K (x , u)f (u)ξ(du)− Λf (x) , x ∈ X ,

If the design ξ is universally optimal, then the function gξ(·) can
be represented in the form

gξ(x) = γ(x)f (x),

where γ(x) is a non-negative function such that γ(x) = 0 for all x

in the support of the design ξ.
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Remarks:

Note: If gξ ≡ 0 then LSE with the optimal design can not be
improved by any BLUE!

LSE + optimal design = BLUE + optimal design

Mercer’s theorem provides numerous models for which
universally optimal designs can be identified explicitly
[see e.g. Kanwal (1997)]
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Remarks:

Integral operator on L2(ξ)

TK (f )(·) =
∫

X

K (·, u)f (u)ξ(du)

Under certain assumptions on the kernel TK defines a
symmetric, compact self-adjoint operator.

Mercer’s theorem: there exist a countable number of
eigenfunctions

ϕ1, ϕ2, . . .

with positive eigenvalues

λ1, λ2, . . .

of the operator K
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Optimal designs for kernels corresponding to integral
operators

Theorem

Assume that the covariance kernel K (x , u) defines an integral

operator TK with corresponding eigenfunctions ϕ1, ϕ2, . . .

For any non-singular matrix L ∈ R
m×m consider the linear

regression model

θT f (x) = θTL(ϕi1(x), . . . , ϕim(x))
T

with covariance kernel K (x , u).

Then the design ξ is universally optimal!
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Example: series estimation/nonparametric regression

Consider the regression functions

fj(x) =

{
1 if j = 1√
2 cos(2π(j − 1)x) if j ≥ 2

(5)

on the design space X = [0, 1].

Note: Linear models with regression functions (5) are widely
applied in series estimation in nonparametric regression [see
e.g. Efromovich (1999), Tsybakov (2009)].

If K (x , y) = ρ(x − y) (stationarity) where ρ is periodic with
period 1
→ the uniform design is universally optimal!
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Example: polynomial regression

Consider the regression functions

fj(x) = x j−1 , j = 1, . . . ,m + 1 (6)

on the design space X = [−1, 1].

If K (x , y) = − log |x − y | (stationarity)

→ the arcsine design is universally optimal!

dξ∗

dx
=

1

π
√
1− x2
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Example: spherical descriptors

For n = 0, 1, . . . ; m = −n,−n + 2, . . . , n − 2, n define

Ym
n (ϕ, φ) =

√

2n + 1

4π

n − |m|
n + |m|P

|m|
n (cosϕ) exp(imψ)

where ϕ ∈ [0, π], ψ ∈ [0, 2π],

Pm
n (x) = (−1)m(1− x2)m/2 dm

dmx
Pn(x)

and Pn is the nth Legendre polynomial.

The uniform distribution on [0, π]× [0, 2π] is universally

optimal for the kernels

K (u, v) = exp(−||u − v ||2) , K (u, v) = (1 + 〈u, v〉)d (d ∈ N)
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Future research: g -Optimal Designs

Recall: the condition

gξ(x) =

∫

X

K (x , u)f (u)ξ(du)− B(ξ, ξ)M−1(ξ)f (x) ≡ 0

is ”necessary and sufficient” for universal optimality

A g-optimal design minimizes

||gξ||22 =
∫

X

|gξ(x)|2dξ(x)

Note: This criterion seeks for designs ”close” to universal optimality

A multiplicative algorithm is available, which yields g -optimal
designs.

We expect that these designs have ”good” with respect to many
optimality criteria
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g -optimal designs for quadratic regression

Quadratic regression model with correlation function

K (x , y) = exp(−λ|x − y ])

X = [−1, 1]

g−optimal designs for λ = 1 (left), λ = 4 (middle) and λ = 8
(right).
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g -optimal designs for quadratic regression

Quadratic regression model with correlation function

K (x , y) = exp(−λ|x − y ])

X = [−1, 1]

D-, A-efficiency of the g -optimal and uniform design.

λ = 1 λ = 4 λ = 8

ξ EffD(ξ) EffA(ξ) EffD(ξ) EffA(ξ) EffD(ξ) EffA(ξ)

ξ∗g 0.996 0.993 0.998 0.996 0.999 0.998
ξu 0.821 0.832 0.851 0.822 0.910 0.881
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