Revisiting Morris method:
 A polynomial algebra for design definition with increased efficiency and observability

J.-M. Fédou, G. Menez, L. Pronzato, M.-J. Rendas
I3S Laboratory, CNRS/UNS (Sophia Antipolis, France)

Partially supported by ANR DESIRE (Designs for Spatial Random Fields)

S α M ϕ, Nice, July 2012

Plan

(1) Problem formulation and summary of contributions
(2) Polynomial representation of subgraphs
(3) Generation of (d, m)-edge equitable subgraphs
4) Generation of (d, c)-cycle equitable subgraphs: H_{c}^{d}
(5) Size of designs
(6) Example
(7) Summary and further work

We'll be looking at two related problems

Problem 1

Find subgraphs $G_{m}^{d} \subset Q_{d}$ of the d-dimensional hypercube with the property:
$\forall i \in\{1, \ldots, d\}$, the number of edges joining nodes that differ only in the i-th coordinate is equal to m.

We say that graphs with this property are (d, m)-edge equitable.

(3, 2)-edge equitable

Qu

Not (3, m) -edge equitable

Problem 2

Find edge equitable subgraphs $H_{c}^{d} \subset Q_{d}$ of the d-dimensional hypercube with the property:
$\forall i \neq j \in\{1, \ldots, d\}$, the number of cycles in coordinates i, j is equal to c.
We say that graphs with this property are (d, c)-cycle equitable.

$(4,1)$-cycle equitable

$$
\begin{array}{c|ccc}
(i, j) & 2 & 3 & 4 \\
\hline 1 & 1 & 1 & 1 \\
2 & & 1 & 1 \\
3 & & & 1
\end{array}
$$

not cycle equitable

(i, j)	2	3
1	1	0
2		0

Motivation

Morris elementary effects screening method for sensitivity analysis (Technometrics, 1991)
Commonly used screening method for analysis of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

- Partitions input factors into linear, negligible and non-linear/mixed
- Makes no assumptions about f
- Simple (linear in the number of inputs), OAT global method.

Based on statistical analysis of
Elementary effect along direction $i \in\{q, \ldots, d\}$

$$
d_{i}(y) \triangleq \frac{1}{\Delta}\left[f\left(y+\Delta e_{i}\right)-f(y)\right], \quad i \in\{1, \ldots, d\}
$$

Standard Morris method

OAT method:
a complete set of d elementary effects is computed along a trajectory contained in a scaled and translated version of Q_{d}

Our work is concerned with

Morris clustered designs

Design matrices that allow computation of $m>1$ elementary effects along each direction (i.e., each evaluation of f is used to compute a larger number of d_{i} 's).
$\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$

10 points in Q_{4}
$(4,2)$-equitable subgraphs
$\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$

7 points in Q_{4}

Why coming back to the problem?

Shortcomings of Morris clustered construction

- not guided by m
- cannot yield all possible values of m
- factored version (the most efficient) defined only when d is not prime
- definition in the paper is not always equitable
- minimality of the size of the designs (efficiency) is not guaranteed.

Our contribution

Constructive algorithm for generation of the clustered designs of Morris method guided by the target value of m and the dimension d of the input space

- Handles generic values of (d, m).
- Proovably equitable designs.
- For pairs (d, m) for which Morris construction is defined, leads to designs of the same complexity.

Why studying problem 2?

Extend Morris Elementary Effects method to (cross) derivatives of second order

Elementary mixed-effects along directions $i, j \in\{1, \ldots, d\}$

$$
d_{i j}^{(2)}(y)=\frac{1}{\Delta}\left[d_{i}\left(y+\Delta e_{j}\right)-d_{i}(y)\right], \quad i \in\{1, \ldots, d\}
$$

Previous work

The new Morris Method, Campolongo \& Braddock (Reliability Engineering and System Safety, 1999) : only defined for $c=1$, less efficient designs than ours and no complete algorithmic construction.

How do we do it?

Two basic ideas

(1) (d, m)-edge and (d, c)-cycle equitable subgraphs are recursively generated, by combining smaller equitable solutions (for smaller values of d, and m or c)
(2) use a polynomial representation to manipulate subgraphs and prove their properties

Plan

(1) Problem formulation and summary of contributions
(2) Polynomial representation of subgraphs
(3) Generation of (d, m)-edge equitable subgraphs
(4) Generation of (d, c)-cycle equitable subgraphs: H_{c}^{d}
(5) Size of designs
(6) Example
(7) Summary and further work

Polynomial representation of subgraphs of Q_{d}

Coding points of Q_{d} by monomials

$$
s=\left\{s_{1}, s_{2}, \ldots, s_{d}\right\} \longrightarrow \mathcal{P}_{s}\left(X_{1}, X_{2}, \ldots, X_{d}\right)=X_{1}^{s_{1}} X_{2}^{s_{2}} \ldots X_{d}^{s_{d}}
$$

Example

$$
\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
1
\end{array}\right] \in Q_{5} \rightarrow X_{2} X_{3} X_{5} \in K\left(X_{1}, \ldots, X_{5}\right)=K_{5}
$$

Coding subgraphs of Q_{d} by polynomials

$$
G \subset Q_{d} \rightarrow \mathcal{P}_{G}=\sum_{s \in G} \mathcal{P}_{s}
$$

\mathcal{P}_{G} : degree at most one in each variable, coefficients in $\{0,1\}$.

Polynomial representation of subgraphs of Q_{d}

Example

$$
P=1+x_{1}+x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \subset Q_{3}
$$

Edge coloring of Q_{3} :

$$
\begin{aligned}
& : x_{1} \\
& \\
& : x_{2} \\
& \\
& : x_{3}
\end{aligned}
$$

Polynomial representation of subgraphs of Q_{d}

Scalar product and structure

Definition of $\langle\cdot, \cdot\rangle$

$\mathcal{P}_{s}, \mathcal{P}_{s^{\prime}}$ two monomials $\left(s, s^{\prime} \in Q_{d}\right)$
Define the scalar product

$$
\left\langle\mathcal{P}_{s}, \mathcal{P}_{s^{\prime}}\right\rangle=1_{s=s^{\prime}} .
$$

Extension to polynomials $\left(G, G^{\prime} \subset Q_{d}\right)$

$$
\left\langle\mathcal{P}_{G}, \mathcal{P}_{G^{\prime}}\right\rangle=\sum_{s \in G, s \in G^{\prime}}\left\langle\mathcal{P}_{s}, \mathcal{P}_{s^{\prime}}\right\rangle .
$$

Example

$$
\begin{gathered}
\left\langle X_{1} X_{2}, X_{1} X_{2}\right\rangle=1, \quad\left\langle X_{1} X_{2}, X_{1} X_{2} X_{3}\right\rangle=0 \\
\left\langle 1+X_{1}+X_{2}+X_{1} X_{2}, 1+X_{1} X_{2}+X_{3}\right\rangle=2
\end{gathered}
$$

Properties

- $\left\langle P_{G}, P_{G^{\prime}}\right\rangle=\left|G \cap G^{\prime}\right|$
- $\left\langle P_{G}, P_{G}\right\rangle=|G|$

Algebra over the polynomials

- Addition $+\Leftrightarrow$ graph sum (nodes multiplicity may be >1)
- Multiplication is defined modulo $X_{i}^{2}=1, i \in\{1, \ldots, d\}$ Multiplication of P_{G} by monomial $s=X_{i} \Leftrightarrow$ reflection of G along direction i

Example (X_{1} corresponds to red edges)

$$
\begin{array}{rlrr}
X_{1}\left(1+X_{1}+X_{2}+X_{1} X_{3}+X_{2} X_{3}\right) & =X_{1}+ & X_{1}^{2}+X_{1} X_{2}+ & X_{1}^{2} X_{3}+X_{1} X_{2} X_{3} \\
& =X_{1}+ & 1+X_{1} X_{2}+ & X_{3}+X_{1} X_{2} X_{3}
\end{array}
$$

Problem reformulation in terms of polynomials

Facts:

(1) edges of color i are preserved by multiplication by X_{i}. All other edges are moved elsewhere in Q_{d}
(2) (remember that $\left|G \cap G^{\prime}\right|=\left\langle P_{G}, P_{G^{\prime}}\right\rangle$)
(3) \Rightarrow the number of edges of G of color i is exactly $2\left\langle P_{G}, X_{i} P_{G}\right\rangle$
(4) \Rightarrow the number of cycles in G in colors i, j is exactly
$4\left|P_{G} \cap X_{i} P_{G} \cap X_{j} P_{G} \cap X_{i} X_{j} P_{G}\right|$

Problem 1 reformulation

Optimal (d, m)-edge equitable designs are the solutions of

$$
P^{\star}=\underset{P \in K_{d}}{\arg \min }\langle P, P\rangle
$$

$$
\text { s.t. }\left\langle P^{\star}, X_{i} P^{\star}\right\rangle=2 m, \quad i \in\{1,2, \ldots, d\} .
$$

We drop minimality, and assess the simpler problem of finding small (d, m)-edge equitable designs (not necessarily minimal).

Problem reformulation in terms of polynomials

Facts:

(1) edges of color i are preserved by multiplication by X_{i}. All other edges are moved elsewhere in Q_{d}
(2) (remember that $\left|G \cap G^{\prime}\right|=\left\langle P_{G}, P_{G^{\prime}}\right\rangle$)
(\Rightarrow the number of edges of G of color i is exactly $2\left\langle P_{G}, X_{i} P_{G}\right\rangle$
($) \Rightarrow$ the number of cycles in G in colors i, j is exactly $4\left|P_{G} \cap X_{i} P_{G} \cap X_{j} P_{G} \cap X_{i} X_{j} P_{G}\right|$

Problem 2 reformulation

Optimal (d, c)-cycle edge equitable designs are the solutions of

$$
P^{\star}=\underset{P \in K_{d}}{\arg \min }\langle P, P\rangle
$$

$$
\text { s.t. }\left|P_{G} \cap X_{i} P_{G} \cap X_{j} P_{G} \cap X_{i} X_{j} P_{G}\right|=4 c, \quad i \neq j \in\{1,2, \ldots, d\} .
$$

As for Problem 1, we relax the minimality constraint.

Plan

(1) Problem formulation and summary of contributions
(2) Polynomial representation of subgraphs
(3) Generation of (d, m)-edge equitable subgraphs - Factored (d, m)-edge equitable designs
(4) Generation of (d, c)-cycle equitable subgraphs: H_{c}^{d}
(5) Size of designs
6) Example
(7) Summary and further work

Generation of (d, m)-edge equitable subgraphs of Q_{d}
Recursive (in m) algorithm

Initialisation

- $m=1$, generic d

$$
G_{d}^{1}=1+\sum_{i=1}^{d} X_{1} \cdots X_{i}
$$

$1 \quad X_{1} \quad X_{1} X_{2} \quad \cdots \quad X_{1} \cdots X_{d}$

Generation of (d, m)-edge equitable subgraphs of Q_{d} Induction

- m even

$$
G_{d}^{m}=G_{d-1}^{\frac{m}{2}}+X_{1} X_{d} G_{d-1}^{\frac{m}{2}}
$$

Example: $\quad G_{4}^{4}=G_{3}^{2}+X_{1} X_{4} G_{3}^{2}$

Generation of (d, m)-edge equitable subgraphs of Q_{d} Induction

- m odd

$$
G_{d}^{m}=G_{d-1}^{\frac{m-1}{2}}+X_{1} X_{d} G_{d-1}^{\frac{m+1}{2}}
$$

Example: $\quad G_{4}^{5}=G_{3}^{2}+X_{1} X_{4} G_{3}^{3}$

Theorem

G_{d}^{m} are (d, m)-edge equitable

Proof: use properties of scalar product (requires a condition on the solutions for consecutive values of m that is guaranteed by the initialisation of the recursion)

Generation of (d, m)-edge equitable subgraphs of Q_{d}

Topology and Initalisation

Other families of solutions can be obtained, by changing the initialization for small values of m
This has an impact on the topology (and on the complexity) of the resulting designs

G_{5}^{5}, Init $m=1$ only

G_{5}^{5}, Init $m=2,3$

Factored (d, m)-equitable designs

Direct application of our algorithm leads to less efficient designs than Morris when they are defined.

Factored application of our generic solution

$$
\begin{gathered}
q_{\text {min }}(m) \triangleq\left\lceil\log _{2}(m)\right\rceil+1, \\
d=(c-1) q_{\text {min }}(m)+r, \quad r \in\left\{q_{\text {min }}(m), \ldots, 2 q_{\text {min }}(m)-1\right\} \\
G_{\text {Morris }(d, m)=G\left(q_{\text {min }}, m\right)+\sum_{j=1}^{c-2}\left(\operatorname{Shift}_{j_{\text {min }}} G\left(q_{\text {min }}, m\right)-1\right)+\operatorname{Shift}_{(c-1) q_{\text {min }}} G(r, m)} .
\end{gathered}
$$

Fully-defined and provably edge-equitable version of the basic idea of Morris factored designs.

Factored (d, m)-edge equitable designs

Example

$\mathrm{G}_{17}^{4}: 4$ complete $Q_{3}\left(X_{1} \cdots X_{3}, X_{4} \cdots X_{6}, X_{7} \cdots X_{9}, X_{10} \cdots X_{12}\right)$, together with G_{5}^{4} (over $X_{13} \cdots X_{17}$)

Plan

(1) Problem formulation and summary of contributions
(2) Polynomial representation of subgraphs
(3) Generation of (d, m)-edge equitable subgraphs
4) Generation of (d, c)-cycle equitable subgraphs: H_{c}^{d}
(5) Size of designs
(6) Example
(7) Summary and further work

Some notation

$$
\begin{aligned}
\operatorname{Line}\left(X_{1}, \ldots, X_{d}\right) & =\sum_{i=1}^{d} \prod_{j \leq i} X_{j} \\
\operatorname{Circle}\left(X_{1}, \ldots, X_{d}\right) & =\operatorname{Line}\left(X_{1}, \ldots, X_{d}\right)+\left(\prod_{j=1}^{d} X_{j}\right) \operatorname{Line}\left(X_{1}, \ldots, X_{d}\right)
\end{aligned}
$$

Bubble $\left(\left(X_{1}, \ldots, X_{d}\right)=\right.$ Polynomial in the d variables with 3 edges of each colour

$(d, 1)$-cycle equitable subgraphs

Initialisation

For $d=2$ and $c=1$, define $H_{2}^{1}=Q_{2}$

Induction

For $d>2$ and $c=1$, define $H_{d}^{1}=H_{d-1}^{1}+X_{d}\left(1+\operatorname{Line}\left(X_{1}, \ldots, X_{d-1}\right)\right)$

$(d, 2)$-cycle and ($d, 3$)-cycle equitable subgraphs $\left(H_{2}^{d}, H_{3}^{d}\right)$

Initialisation

For $d=3$ and $c=2$, define $H_{2}^{3}=Q_{3}$
For $d=4$ and $c=3$, define $H_{3}^{4}=Q_{4}-X_{2} X_{4}$

Induction

For $d>3$ and $c=2$, define $H_{2}^{d}=H_{2}^{d-1}+X_{d} \operatorname{Circle}\left(X_{1}, \ldots, X_{d-1}\right)$
For $d>4$ and $c=3$, define $H_{3}^{d}=H_{3}^{d-1}+X_{d} \operatorname{Bubble}\left(X_{1}, \ldots, X_{d-1}\right)$

Circle(4)

Bubble(6)

Plan

(1) Problem formulation and summary of contributions
(2) Polynomial representation of subgraphs
(3) Generation of (d, m)-edge equitable subgraphs
(4) Generation of (d, c)-cycle equitable subgraphs: H_{c}^{d}
(5) Size of designs
(6) Example
(7) Summary and further work

Size of the design

- If initialization for $m=1$,

$$
\left|G_{m}^{d}\right|=m(d-\kappa)+2^{\kappa+1}-m
$$

where $\kappa=\left\lfloor\log _{2}(m)\right\rfloor$.

- We derived a closed formula $\left|G_{m}^{d}\right|$ for initialization at $m=2,3$

$$
\left|G_{m}^{d}\right|=c(m)+\alpha(m) d
$$

Size of factored solution is also known exactly.

- We also have a closed formula for $\left|H_{c}^{d}\right|$.

Economy

Definition

Morris index, ($\left|G_{d}^{m}\right|$ should be small $\Leftrightarrow \chi$ large)

$$
\text { Economy: } \chi=\frac{\text { total \# elementary effects }}{\left|G_{m}^{d}\right|}=\frac{m d}{\left|G_{m}^{d}\right|}
$$

Economy of the (d, m)-edge equitable designs

Evolution of χ as d grows, $m=10$.
Factored designs, designs with init G_{1}^{d}, and with init G_{2}^{d}, G_{3}^{d}.

Size of the (d, c)-cycle equitable designs

We obtain :

c	Nb Edges	Nb Points
1	d	$\frac{d^{2}+d+2}{2}$
2	$2 d-4$	$d^{2}-d+2$
3	$3 d-5$	$\frac{3 d^{2}-7 d+10}{2}$

For random designs and New Morris designs

c	Nb Edges	Nb Points
1	$2\binom{d}{2}$	$4\binom{d}{2}$
2	$4\binom{d}{2}$	$8\binom{d}{2}$
3	$6\binom{d}{2}$	$12\binom{d}{2}$

c	Nb Edges	Nb Points
1	not edge equitable	$4 d^{2}-d+2$
2	\star	\star
3	\star	\star

Plan

(1) Problem formulation and summary of contributions
(2) Polynomial representation of subgraphs
(3) Generation of (d, m)-edge equitable subgraphs
(4) Generation of (d, c)-cycle equitable subgraphs: H_{c}^{d}
(5) Size of designs
(6) Example
(7) Summary and further work

Morris example function

$$
\begin{gathered}
f(x)=\beta_{0}+\sum_{i=1}^{20} \beta_{i} w_{i}+\sum_{i<j}^{20} \beta_{i j} w_{i} w_{j}+\sum_{i<j<l}^{5} \beta_{i j l} w_{i} w_{j} w_{l}+\sum_{i<j<l<s}^{4} \beta_{i j l s} w_{i} w_{j} w_{l} w_{s} \\
w_{i}=2 X_{i}-1, i \in\{1,2,4,6,8, \ldots, 20\}, w_{i}=2.2 X_{i} /\left(X_{i}+0.1\right)-1, i \in\{3,5,7\} . \\
\beta_{i}=20, \quad i \in\{1, \ldots, 10\}, \quad \quad \beta_{i j}=-15, \quad \quad i, j \in\{1, \ldots, 6\} \\
\beta_{i j l}=-10, \quad i, j, I \in\{1, \ldots, 5\}, \quad \beta_{i j l s}=5, \quad i, j, I, s \in\{1, \ldots, 4\} .
\end{gathered}
$$

Remaining $1^{\text {st }}$ and $2^{\text {nd }}$ order coefficients are independent realisations of a standard normal distribution, $\beta_{i} \sim \mathcal{N}(0,1), i \notin\{1, \ldots, 10\}, \beta_{i j} \sim \mathcal{N}(0,1), i, j \notin\{1, \ldots, 6\}$. For this function the relevant classes of input factors are

$$
\mathcal{C}_{\text {irrelevant }}=\{11, \ldots, 20\}, \quad \mathcal{C}_{\text {linear }}=\{8,9,10\}, \quad \mathcal{C}_{\text {other }}=\{1, \ldots, 7\}
$$

Note: X_{7} is a purely non-linear term, while X_{6} is an interaction factor.

Screening of Morris example function $(m=4, r=3)$

Total number of derivatives per direction: 12

About half the number of function evaluations compared to $m=1$.

Study of cross derivatives

Analysis concentrated on smaller class $\mathcal{C}_{\text {other }}$

（Zoom）

We detect that X_{7} as a non－linear factor with no interaction with the other factors as well as the bilinear term $X_{2} X_{6}$ ．

Plan

(1) Problem formulation and summary of contributions
(2) Polynomial representation of subgraphs
(3) Generation of (d, m)-edge equitable subgraphs
(4) Generation of (d, c)-cycle equitable subgraphs: H_{c}^{d}
(5) Size of designs
(6) Example
(7) Summary and further work

Up to now

(1) Recursive algorithm for (d, m)-edge equitable graphs that completes the definition of clustered Morris designs
(2) Recursive algorithm for (d, c)-cycle equitable graphs for $c=1,2,3$ (can be exploited to build the skeleton of the FANOVA graph)
(Explicit formulas for the size of the designs

- Uses polynomial representation of subgraphs of Q_{d} and an appropriate definition of inner product as formal tools.
- Polynomial representation enables direct identification of pairs of design points involved in the derivatives along each direction (or pairs of directions, for mixed effects).

Further work

Open issues ...

- minimality (of factored designs) ?
- effect of initialization
- relation to other classes of subgraphs of the hypercube (median graphs, mesh graphs,...)
- Generalize to subgraphs of $\{0,1, \ldots, k\}^{d}$ for detection of higher order effects in each input factor

Generation of (d, m)-equitable subgraphs of Q_{d}

Demonstration (equitable designs)

m even. Assume $G_{d-1}^{m / 2}$ is $(d-1, m)$-equitable.

$$
\left\langle G_{m}^{d}, X_{i} G_{m}^{d}\right\rangle= \begin{cases}\left\langle G_{d-1}^{\frac{m}{2}}, X_{i} G_{d-1}^{\frac{m}{2}}\right\rangle+ \\ \left\langle X_{1} X_{d} G_{d}^{m}, X_{i} X_{1} X_{d} G_{d-1}^{\frac{m}{2}}\right\rangle=2 m, & \text { if } i<d \\ \left\langle G_{d-1}^{\frac{m}{2}}, X_{1} G_{d-1}^{\frac{m}{2}}\right\rangle+ & \\ \left\langle X_{1} X_{d} G_{d-1}^{m}, X_{1} G_{d-1}^{\frac{m}{2}}\right\rangle=2 m, & \text { if } i=d\end{cases}
$$

Generation of (d, m)-equitable subgraphs of Q_{d}

Proof (equitable designs $)_{1}$
m odd. Assume $G_{d-1}^{\frac{m-1}{2}}$ and $G_{d-1}^{\frac{m+1}{2}}$ equitable

$$
\begin{aligned}
\left\langle G_{d}^{m}, X_{i} G_{d}^{m}\right\rangle & =\left\{\begin{array}{cc}
\left\langle G_{d-1}^{\frac{m-1}{2}}, X_{i} G_{d-1}^{\frac{m-1}{2}}\right\rangle+ \\
+\left\langle G_{d-1}^{\frac{m+1}{2}}, X_{i} G_{d-1}^{\frac{m+1}{2}}\right\rangle, & \text { if } i<d \\
2\left\langle G_{d-1}^{\frac{m-1}{2}}, X_{1} G_{d-1}^{\frac{m+1}{2}}\right\rangle, & \text { if } i=d
\end{array}\right. \\
& =\left\{\begin{array}{lc}
(m-1)+(m+1)=2 m, & \text { if } i<d \\
2\left\langle G_{d-1}^{\frac{m-1}{2}}, X_{1} G_{d-1}^{\frac{m+1}{2}}\right\rangle, & \text { if } i=d
\end{array}\right.
\end{aligned}
$$

Thus

$$
G_{d}^{m} \text { is }(d, m) \text {-equitable } \Leftrightarrow\left\langle G_{d-1}^{\frac{m-1}{2}}, X_{1} G_{d-1}^{\frac{m+1}{2}}\right\rangle=m
$$

It can be shown that

$$
\begin{aligned}
& \left\langle G_{d-1}^{k-1}, X_{1} G_{d-1}^{k}\right\rangle=2 k-1 \Rightarrow\left\langle G_{d}^{2 k-1}, X_{1} G_{d}^{2 k}\right\rangle=4 k-1 \\
& \left\langle G_{d-1}^{k}, X_{1} G_{d-1}^{k+1}\right\rangle=2 k+1 \Rightarrow\left\langle G_{d}^{2 k}, X_{1} G_{d}^{2 k+1}\right\rangle=4 k+1
\end{aligned}
$$

Generation of (d, m)-equitable subgraphs of Q_{d}

Demonstration

$$
\left\langle G_{d-1}^{k}, X_{1} G_{d-1}^{k+1}\right\rangle=2 k+1
$$

Check that is true for $k=1$, using the construction G_{d}^{2}.

$$
\begin{aligned}
\left\langle G_{d}^{1}, X_{1} G_{d}^{2}\right\rangle & =\left\langle\left(1+\sum_{i=1}^{d} X_{1} \cdots X_{i}\right),\left(X_{1}+X_{d}\right)\left(1+\sum_{j=1}^{d-1} X_{1} \cdots X_{j}\right)\right\rangle \\
& =\langle 1,1\rangle+\left\langle X_{1}, X_{1}\right\rangle+\left\langle X_{1} \cdots X_{d}, X_{1} \cdots X_{d}\right\rangle \\
& =3
\end{aligned}
$$

The identity is thus valid for all k, completing the proof that our algorithm generates (d, m)-equitable subgraphs of Q_{d}.

Morris designs

$$
\mathbb{R}^{d}=\prod_{j=1}^{t} \mathbb{R}^{q}, \quad d=t q \quad Y=\bigcup_{j=1}^{t} Y^{j}
$$

where

$$
Y^{j}=v_{j}+C[\underbrace{O_{q} \cdots O_{q}}_{j-1 \text { blocks }} I_{q} \underbrace{O_{q} \cdots O_{q}}_{t-j \text { blocks }}], \quad j=1, \ldots, t
$$

$$
B_{M}=\left[\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
C & O & O & \cdots & O \\
J & C & O & \cdots & O \\
J & J & C & \cdots & O \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
J & J & J & \cdots & C
\end{array}\right]
$$

0 : q-element (row) vector of zeros, $J: n_{C} \times q$ matrix of ones.

Morris designs

$$
d=9=3 \times 3
$$

Morris designs

Choice of C

Chose $\mathcal{I} \subset\{1, \ldots, q\}$. Let the rows of C (of dimension $n_{C} \times q$) be the set of all binary vectors with ℓ entries equal to one, $\forall \ell \in \mathcal{I}$.

$$
\begin{aligned}
n_{C} & =\sum_{\ell \in \mathcal{I}} C_{\ell}^{q} \\
m(\mathcal{I}) & =I(1) I(q)+\sum_{j=2}^{q} I(j-1) I(j) C_{j-1}^{q-1}
\end{aligned}
$$

Size of Morris designs

$$
n_{M}=t n_{C}+1=\frac{d}{q} \sum_{\ell \in \mathcal{I}} C_{\ell}^{q}+1
$$

Initialisation

$$
m=2 d \text { odd }
$$

$$
m=2, d \text { even }
$$

Initialisation

$m=3$

