Sobol pick freeze (and FAST) methods in the Costa BRAVA sauce

Fabrice Gamboa

Collaboration with: G. Chastaing, S. Daveiga, B. looss, A. Janon, T. Klein, A. Lagnoux, P. Lemaitre, M. Nodet, A.L. Popelin, C.
Prieur, (some people of Costa BRAVA project) and many others

SAMO Nice

4th of July 2013

Special thanks

- COSTA BRAVA researchers
- Nice University and Organizers of Nice SAMO Conference * Very special thanks
\rightarrow French SA Guru : B. Iooss

خ. One of the most famous french designer : L. Pronzato

Special thanks

- COSTA BRAVA researchers

- Nice University and Organizers of Nice SAMO Conference

Very special thanks
\rightarrow French SA Guru: B. Iooss

*. One of the most famous french designer : L. Pronzato

Special thanks

- COSTA BRAVA researchers
- Nice University and Organizers of Nice SAMO Conference

Very special thanks

\rightarrow French SA Guru: B. looss

\rightarrow One of the most famous french designer : L. Pronzato

Special thanks

- COSTA BRAVA researchers
- Nice University and Organizers of Nice SAMO Conference
- Very special thanks
\rightarrow French SA Guru: B. looss

\rightarrow One of the most famous french designer: L. Pronzato

Agenda

1 Costa Brava project

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Two exotic COSTA BRAVA methods

6 Conclusion

Overview

1 Costa Brava project

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Two exotic COSTA BRAVA methods

6 Conclusion

Costa Brava project

- Mathematical Statistics with Industrial Partners
> \rightarrow Industrial partners : CEA, IFP
> \rightarrow Academic partners : LJK, IMT

Object of study and problematics

\rightarrow High dimensional complicated regression models modeling a computer code $F(X)$ (X is a d-dimensional vector)
\rightarrow Tell things on F by only using a small sample $\left(X_{i}, F\left(X_{i}\right)\right)$

Costa Brava project

- Mathematical Statistics with Industrial Partners
\rightarrow Industrial partners : CEA, IFP
\rightarrow Academic partners : LJK, IMT
- Object of study and problematics
\rightarrow High dimensional complicated regression models modeling a computer code $F(X)$ (X is a d-dimensional vector)
\rightarrow Tell things on F by only using a small sample (X_{i}.

Costa Brava project

- Mathematical Statistics with Industrial Partners
\rightarrow Industrial partners : CEA, IFP
\rightarrow Academic partners : LJK, IMT
- Object of study and problematics
\rightarrow High dimensional complicated regression models modeling a computer code $F(X)$ (X is a d-dimensional vector)
\rightarrow Tell things on F by only using a small sample $\left(X_{i}, F\left(X_{i}\right)\right)$

What are we dealing with?

Big computer codes= F black box

$$
Y=F(X)
$$

- Code inputs : X high dimension object (vectors or curves).
- Code outputs Y (scalar, vectorial, functional, ...).
X complex structure and/or uncertain
\Rightarrow seen as random

STOCHASTIC APPROACH

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?

\rightarrow Model Reduction

\rightarrow Comprehensive analysis of the model

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?

Model Reduction

\rightarrow Comprehensive analysis of the model

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?
\rightarrow Model Reduction
\rightarrow Comprehensive analysis of the model

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?
\rightarrow Model Reduction
\rightarrow Comprehensive analysis of the model

Overview

1 Costa Brava project

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Two exotic COSTA BRAVA methods

Preamble

Hoeffding-Antoniadis-Efron \& Morris- Sobol decomposition-FANOVA

From Barry Simon : CMV matrices : Five years after (2007) \Rightarrow The Arnold Principle : If a notion bears a personal name, then this name is not the name of the inventor.

- The Berry Principle: The Arnold Principle is applicable to itself. V.I. Arnold, On Teaching Mathematics, 1997 (Arnold says that Berry formulated these principles.)

Preamble

Hoeffding-Antoniadis-Efron \& Morris- Sobol decomposition-FANOVA

From Barry Simon : CMV matrices : Five years after (2007)

- The Arnold Principle : If a notion bears a personal name, then this name is not the name of the inventor.
- The Berry Principle : The Arnold Principle is applicable to itself. V.I. Arnold, On Teaching Mathematics, 1997 (Arnold says that Berry formulated these principles.)

Preamble

Hoeffding-Antoniadis-Efron \& Morris- Sobol decomposition-FANOVA

From Barry Simon : CMV matrices : Five years after (2007)

- The Arnold Principle : If a notion bears a personal name, then this name is not the name of the inventor.
- The Berry Principle : The Arnold Principle is applicable to itself. V.I. Arnold, On Teaching Mathematics, 1997 (Arnold says that Berry formulated these principles.)

Hoeffding decomposition in a nutshell : ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

Hoeffding decomposition in a nutshell : ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

Hoeffding decomposition in a nutshell : ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

Hoeffding decomposition in a nutshell : ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right)
$$

Hoeffding decomposition in a nutshell : ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right)
$$

$$
F_{\emptyset}=\frac{1}{l_{1} l_{2}} \sum_{i_{1}, i_{2}} F\left(i_{1}, i_{2}\right)
$$

$$
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
$$

Hoeffding decomposition in a nutshell : ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset}=\frac{1}{l_{1} l_{2}} \sum_{i_{1}, i_{2}} F\left(i_{1}, i_{2}\right) \\
F_{1}\left(X^{1}\right)=\frac{1}{l_{2}} \sum_{i_{2}} F\left(X^{1}, i_{2}\right)-F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
\end{gathered}
$$

Hoeffding decomposition in a nutshell : ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset}=\frac{1}{l_{1} l_{2}} \sum_{i_{1}, i_{2}} F\left(i_{1}, i_{2}\right) \\
F_{1}\left(X^{1}\right)=\frac{1}{l_{2}} \sum_{i_{2}} F\left(X^{1}, i_{2}\right)-F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
\end{gathered}
$$

Hoeffding decomposition : easy example ideal 2d-ANOVA

Ideal ANOVA d $=2$
$-F\left(X^{1}, X^{2}\right)$ depending on independent random factors X^{1}, X^{2},

- X^{1} uniform on $\left\{1, \cdots, l_{1}\right\}, X^{2}$ uniform on $\in\left\{1, \cdots, l_{2}\right\}$

Stochastic decomposition
Then unique L ${ }^{2}$ orthogonal decomposition

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset}=\mathbb{E}(F(X) \\
F_{1}\left(X^{1}\right)=\mathbb{E}\left(F(X) \mid X^{1}\right)-F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
\end{gathered}
$$

Classical Hoeffding decomposition

Functional ANOVA : pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)
$X=$ independent components (component may be anything : scalar, vector, curve...) $X \sim \bigotimes_{i=1}^{d}$

F may be written in an unique way as a sum of uncorrelated terms

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

Classical Hoeffding decomposition

Functional ANOVA : pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)

X =independent components \qquad

Theorem (decomposition in $\left.L^{2}\left(\otimes_{i=1}^{\mathrm{d}} \mathbb{P}_{X_{i}}\right)\right)$
F may be written in an unique way as a sum of uncorrelated terms Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

Classical Hoeffding decomposition

Functional ANOVA : pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)
$X=$ independent components ${ }_{\underline{\text { coomponent may be anything : scalar, vector, curve...) }}} X \sim \bigotimes_{i=1}^{d} \mathbb{P}_{X_{i}}$
\square
F may be written in an unique way as a sum of uncorrelated terms

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

Classical Hoeffding decomposition

Functional ANOVA : pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)
$X=$ independent components (component may be anything : scalar, vector, curve...) $X \sim \bigotimes_{i=1}^{d} \mathbb{P}_{X_{i}}$

Theorem (decomposition in $L^{2}\left(\otimes_{i=1}^{d} \mathbb{P}_{X_{i}}\right)$)
F may be written in an unique way as a sum of uncorrelated terms :

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right) .
$$

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

$$
\operatorname{Var} \mathrm{F}(\mathrm{X})=\sum_{\mathrm{A} \subset\{1, \ldots, \mathrm{~d}\}} \operatorname{Var} \mathrm{F}_{\mathrm{A}}\left(\mathrm{X}^{\mathrm{A}}\right) .
$$

Classical Hoeffding decomposition

Functional ANOVA : pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)
$\rightarrow X$ has independent components (component may be anything : scalar, vector, curve...)

Theorem

F may be written in an unique way as a sum of uncorrelated terms :

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right) .
$$

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

$$
1=\frac{\sum_{A \subset\{1, \ldots, d\}} \operatorname{Var} F_{A}\left(X^{A}\right)}{\operatorname{Var} F(X)} .
$$

example : $d=2$

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset}=\mathbb{E}(F(X)), \quad F_{i}\left(X^{i}\right)=\mathbb{E}\left(F(X) \mid X^{i}\right)-F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right] \\
= \\
F\left(X^{1}, X^{2}\right)-\mathbb{E}\left(F(X) \mid X^{1}\right)-\mathbb{E}\left(F(X) \mid X^{2}\right)+\mathbb{E}(F(X)) .
\end{gathered}
$$

Othogonality

$$
\begin{aligned}
\mathbb{E}\left[F_{1,2}\left(X^{1}, X^{2}\right) F_{1}\left(X^{1}\right)\right] & =\mathbb{E}\left[F_{1,2}\left(X^{1}, X^{2}\right) F_{2}\left(X^{2}\right)\right]=\mathbb{E}\left[F_{1,2}\left(X^{1}, X^{2}\right)\right]=0 \\
\mathbb{E}\left[F_{1}\left(X^{1}\right) F_{2}\left(X^{2}\right)\right] & =\mathbb{E}\left[F_{1}\left(X^{1}\right)\right]=\mathbb{E}\left[F_{2}\left(X^{2}\right)\right]=0
\end{aligned}
$$

Overview

1 Costa Brava project

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Two exotic COSTA BRAVA methods

Definition and intuition beyond

Important assumption X has independent components (component may be a anything)

\rightarrow Want to know the most influent components (having most effects on F)

Sobol indices of first order

Sobol total indices

Definition and intuition beyond

Important assumption X has independent components (component may be a anything)
\rightarrow Want to know the most influent components (having most effects on F)

Definition and intuition beyond

Important assumption X has independent components (component may be anything)
\rightarrow Want to know the most influent components (having most effects on F)

Sobol indices of first order

$$
S_{i}:=\frac{\operatorname{Var}\left(\mathbb{E}\left[F(X) \mid X_{i}\right]\right)}{\operatorname{VarF}(X)}=\frac{\operatorname{VarF}_{i}\left(X^{i}\right)}{\operatorname{VarF}(X)}
$$

Sobol total indices

Definition and intuition beyond

Important assumption X has independent components (component may be anything)
\rightarrow Want to know the most influent components (having most effects on F)

Sobol indices of first order

$$
S_{i}:=\frac{\operatorname{Var}\left(\mathbb{E}\left[F(X) \mid X_{i}\right]\right)}{\operatorname{VarF}(X)}=\frac{\operatorname{VarF}_{i}\left(X^{i}\right)}{\operatorname{VarF}(X)}
$$

Sobol total indices

$$
S_{i}^{\text {tot }}:=1-\frac{\operatorname{Var}\left(\mathbb{E}\left[F(X) \mid X^{\sim}\right]\right)}{\operatorname{VarF}(X)}=\sum_{A \subset\{1, \cdots, d\}: i \in A} \frac{\operatorname{VarF}_{A}\left(X^{A}\right)}{\operatorname{VarF}(X)}
$$

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

A crucial question : Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion :
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random : Sobol Pick Freeze method $\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right)$,
$\rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime}, i\right) \cdot X^{\prime,-i}$ independent copy of $X^{\sim i}$.
- Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion :
- Completely random : X_{1}, \ldots, X_{N} I.I.D.
- Structured random : Sobol Pick Freeze method $\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right)$,
$\rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime},-i\right) \cdot X^{\prime},-i$ independent copy of X^{i}.
- Ergodic : FAST. Use of Weyl Theorem
$\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \ldots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$

A crucial question : Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random : Sobol Pick Freeze method $\rightarrow X_{1}, \ldots, \tilde{X}_{N}, \tilde{X}\left(\tilde{X}_{N}, X^{i}, X^{\prime}, i\right) \cdot X^{\prime}, i$ independent copy of X^{-i}.
- Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random : Sobol Pick Freeze method $\rightarrow \begin{aligned} & X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right), \\ & \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime}, \sim i\right) . X^{\prime, \sim i} \text { independent copy of } X^{\sim i} .\end{aligned}$
Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $\mathrm{Y}=\mathrm{F}(\mathrm{X})$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random : Sobol Pick Freeze method

- Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $\mathrm{Y}=\mathrm{F}(\mathrm{X})$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion :
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random : Sobol Pick Freeze method

- Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $\mathrm{Y}=\mathrm{F}(\mathrm{X})$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion :
- Completely random : $\mathrm{X}_{1}, \ldots, X_{\mathrm{N}}$ I.I.D.
- Structured random : Sobol Pick Freeze method

- Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $\mathrm{Y}=\mathrm{F}(\mathrm{X})$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion :
- Completely random : $\mathrm{X}_{1}, \ldots, X_{\mathrm{N}}$ I.I.D.
- Structured random : Sobol Pick Freeze method
$\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,
independent copy of X^{-i}
- Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $\mathrm{Y}=\mathrm{F}(\mathrm{X})$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion :
- Completely random : $\mathrm{X}_{1}, \ldots, X_{\mathrm{N}}$ I.I.D.
- Structured random : Sobol Pick Freeze method
$\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,
$\rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime, \sim i}\right) . X^{\prime, \sim i}$ independent copy of $X^{\sim i}$.
- Ergodic : FAST. Use of Weyl Theorem

A crucial question : Sampling

- How we should sample the system $\mathrm{Y}=\mathrm{F}(\mathrm{X})$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion :
- Completely random : $\mathrm{X}_{1}, \ldots, X_{\mathrm{N}}$ I.I.D.
- Structured random : Sobol Pick Freeze method
$\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,
$\rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime} \sim i\right) . X^{\prime, \sim i}$ independent copy of $X^{\sim i}$.
- Ergodic : FAST. Use of Weyl Theorem

$$
\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)
$$

Frame I.I.D. Sample

- X scalar components
- $Y=F(X), X_{1}, \cdots X_{N}$ independent copies of X and $Y_{1}, \cdots X_{N}$ at hand
- Assume that (X, Y) has a smooth probability density $g(x, y)$

$$
Y=r_{i}\left(X^{i}\right)+\varepsilon_{i}
$$

Frame I.I.D. Sample

- X scalar components
- $Y=F(X), X_{1}, \cdots X_{N}$ independent copies of X and $Y_{1}, \cdots X_{N}$ at hand
- Assume that (X, Y) has a smooth probability density $g(x, y)$

$$
Y=r_{i}\left(X^{i}\right)+\varepsilon_{i}
$$

- $r_{i}\left(X^{i}\right):=\mathbb{E}\left[F(X) \mid X^{i}\right]=F_{i}\left(X^{i}\right)+\mathbb{E}[F(X)]$ and $\varepsilon_{i}:=F(X)-\mathbb{E}\left[F(X) \mid X^{i}\right]-\mathbb{E}[F(X)]$
- We have
$r_{i}(x)=\frac{\int y g(x, y) d y}{\int g(x, y) d y} S_{i}=\frac{\operatorname{Var} r_{i}\left(X^{i}\right)}{\operatorname{Var} Y}=1-\frac{\operatorname{Var} \varepsilon_{i}}{\operatorname{Var} Y}=1-\frac{\mathbb{E}\left[\mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}\right)\right]}{\operatorname{Var} Y}$

Plugging approach

- Plugging approach developped in S. Daveiga, F. Wahl and FG Technometrics, 2009
- Plugging estimators based on nonparametric estimates of $r_{i}(x)$ or of $\mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}=\chi\right)$ (local polynomial) and a second sample X_{1},
- Convenient plugging method. Drawback not the optimal rate!

Plugging approach

- Plugging approach developped in S. Daveiga, F. Wahl and FG Technometrics, 2009
- Plugging estimators based on nonparametric estimates of $r_{i}(x)$ or of $\mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}=x\right)$ (local polynomial) and a second sample $X_{1}, \cdots, X_{N^{\prime}}$

$$
\begin{aligned}
& \widehat{S}_{i}=\frac{\operatorname{Var}_{N^{\prime}} \widehat{r}_{i}\left(X^{i}\right)}{\operatorname{Var}_{N^{\prime}} Y} \\
& \widehat{\widehat{S}}_{i}=1-\frac{\mathbb{E}_{N^{\prime}} \mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}\right)}{\operatorname{Var}_{N^{\prime}} Y}
\end{aligned}
$$

- Convenient plugging method. Drawback not the optimal rate !!

Efficient estimation of non linear functional

S. Daveiga and FG Journal of nonparametric statistics 2013

One wish to estimate

$$
\operatorname{Var}\left(\mathbb{E}\left(Y \mid X^{i}\right)\right)=\mathbb{E}\left(\mathbb{E}\left(Y \mid X^{i}\right)^{2}\right)-(\mathbb{E}(Y))^{2}
$$

One wish to estimate

$$
T(g)=\mathbb{E}\left(\mathbb{E}\left(Y \mid X^{i}\right)^{2}\right)=\iint\left(\frac{\int y g(x, y) d y}{\int g(x, y) d y}\right)^{2} g(x, y) d x d y
$$

We follow a method developed by B. Laurent in Annals of Stats 1996 : expansion of $\mathrm{T}(\mathrm{g})$ around a preliminary estimator \hat{g} and optimal estimation of a quadratic functional

Expansion of $\mathrm{T}(\mathrm{g})$

$$
\begin{aligned}
& T(g)=\iint\left[2 y \widehat{r}_{i}(x)-\widehat{r}_{i}(x)^{2}\right] g(x, y) d x d y \\
+ & \iiint \frac{1}{\left(\int \hat{g}(x, y) d y\right)}\left[y z+\widehat{r}_{i}(x)^{2}-(y+z) \widehat{r}_{i}(x)\right] g(x, y) g(x, z) d x d y d z \\
+ & \Gamma_{n} \\
= & \iiint_{n} H(\hat{g}, x, y) g(x, y) d x d y+\iiint K(\hat{g}, x, y, z) g(x, y) g(x, z) d x d y d z \\
+ & \Gamma_{n}
\end{aligned}
$$

Here

$$
\begin{aligned}
H(\hat{g}, x, y) & =2 y \widehat{r}_{i}(x)-\widehat{r}_{i}(x)^{2} \\
K(\hat{g}, x, y, z) & =\frac{1}{\left(\int \hat{g}(x, y) d y\right)}\left[y z+\widehat{r}_{i}(x)^{2}-(y+z) \widehat{r}_{i}(x)\right] .
\end{aligned}
$$

$\left.\widehat{T(g)}==\iint H(\hat{g}, x, y) g(x, y) d x d y+\iiint K(\hat{g}, x, y, z) \widehat{g(x, y}\right) g(x, z) d x d y d z$

Theorem

$\widehat{\mathrm{T}(\mathrm{g})}$ is convergent and asymptotically Gaussian. Its asymptotic variance is

$$
C(f)=4 \mathbb{E}\left(\operatorname{Var}\left(Y \mid X^{i}\right) \mathbb{E}\left(Y \mid X^{i}\right)^{2}\right)+\operatorname{Var}\left(\mathbb{E}\left(Y \mid X^{i}\right)^{2}\right) .
$$

This is the optimal variance (semiparametric efficiency !!)

Analytical example

$$
\begin{aligned}
Y= & 0.2 \exp \left(X^{1}-3\right)+2.2\left|X^{2}\right|+1.3\left(X^{2}\right)^{6}-2\left(X^{2}\right)^{2}-0.5\left(X^{2}\right)^{4}-0.5\left(X^{1}\right)^{4} \\
& +2.5\left(X^{1}\right)^{2}+0.7\left(X^{1}\right)^{3}+\frac{3}{\left(8 X^{1}-2\right)^{2}+\left(5 X^{2}-3\right)^{2}+1}+\sin \left(5 X^{1}\right) \cos \left(3\left(X^{1}\right)^{2}\right)
\end{aligned}
$$

Kriging (theoretical curve, approximation)

$$
\mathbb{E}\left(\mathrm{Y} \mid \mathrm{X}^{1}\right)
$$

$\mathbb{E}\left(\mathrm{Y} \mid \mathrm{X}^{2}\right)$

Local polynomial (theoretical curve, approximation)

Marginal samples

$$
\mathbb{E}\left(\mathrm{Y} \mid \mathrm{X}^{1}\right)
$$

$\mathbb{E}\left(\mathrm{Y} \mid \mathrm{X}^{2}\right)$

Analytical example

		Kriging	Loc poly	Eff. est
		100 pts	100 pts	100 pts
$\operatorname{Var}\left(\mathbb{E}\left(Y \mid \mathrm{X}^{1}\right)\right)$	1.0932	1.0539	1.0643	1.1701
$\operatorname{Var}\left(\mathbb{E}\left(Y \mid \mathrm{X}^{2}\right)\right)$	0.0729	0.1121	0.0527	0.0939

X^{1} : quite identical results
X^{2} : marginal approximations are better

Sobol Pick freeze sampling scheme

Sobol Pick freeze sampling scheme

- $X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,

Sobol Pick freeze sampling scheme

- $X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,
- $\tilde{X}_{1}, \ldots, \tilde{X}_{N} F\left(\tilde{X}_{1}\right), \ldots, F\left(\tilde{X}_{N}\right)$. With $\tilde{X}=\left(X^{i}, X^{\prime, \sim i}\right) . X^{\prime, \sim i}$ is an independent copy of $X^{\sim i}$.

Why this sampling scheme?

Intuition beyond. Example d=2

- In hand : $\left(\left(X_{1}^{1}, X_{N}^{2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{2}\right)\right)$ and $\left(\left(X_{1}^{1}, X_{N}^{\prime 2}\right)\right.$
- Hoeffding decomposition

$$
\begin{aligned}
& \rightarrow \mathrm{F}\left(X^{1}, X^{2}\right)=\mathrm{F}_{\emptyset}+\mathrm{F}_{1}\left(X^{1}\right)+\mathrm{F}_{2}\left(X^{2}\right)+\mathrm{F}_{1,2}\left(X^{1}, X^{2}\right) \\
& \rightarrow \mathrm{F}\left(X^{1}, X^{1,2}\right)=\mathrm{F}_{\emptyset}+\mathrm{F}_{1}\left(X^{1}\right)+\mathrm{F}_{2}\left(X^{1,2}\right)+\mathrm{F}_{1,2}\left(X^{1}, X^{1,2}\right)
\end{aligned}
$$

- Obviously

Why this sampling scheme?

Intuition beyond. Example d=2

- In hand : $\left(\left(X_{1}^{1}, X_{N}^{2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{2}\right)\right)$ and $\left(\left(X_{1}^{1}, X_{N}^{\prime 2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{\prime, 2}\right)\right)$
- Hoeffding decomposition

$$
\begin{aligned}
& \rightarrow F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
& \rightarrow F\left(X^{1}, X^{\prime, 2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{\prime, 2}\right)+F_{1,2}\left(X^{1}, X^{\prime, 2}\right)
\end{aligned}
$$

- Obviously

Why this sampling scheme?

Intuition beyond. Example d=2
$-\operatorname{In}$ hand : $\left(\left(X_{1}^{1}, X_{N}^{2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{2}\right)\right)$ and $\left(\left(X_{1}^{1}, X_{N}^{\prime 2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{\prime, 2}\right)\right)$

- Hoeffding decomposition

$$
\begin{aligned}
& \rightarrow \mathrm{F}\left(X^{1}, X^{2}\right)=\mathrm{F}_{\emptyset}+\mathrm{F}_{1}\left(X^{1}\right)+\mathrm{F}_{2}\left(\mathrm{X}^{2}\right)+\mathrm{F}_{1,2}\left(X^{1}, X^{2}\right) \\
& \rightarrow \mathrm{F}\left(\mathrm{X}^{1}, \mathrm{X}^{\prime, 2}\right)=\mathrm{F}_{\emptyset}+\mathrm{F}_{1}\left(\mathrm{X}^{1}\right)+\mathrm{F}_{2}\left(X^{1,2}\right)+\mathrm{F}_{1,2}\left(X^{1}, X^{\prime, 2}\right)
\end{aligned}
$$

- Obviously

$$
\begin{aligned}
\operatorname{Cov}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right) & =\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right) \\
& \left.+\operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right)\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right)\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right)= \\
& \iiint \\
& \left.F_{1,2}\left(x^{1}, x^{2}\right)\right) F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)
\end{aligned}
$$

Why this sampling scheme?

Continuation Obviously

$$
\begin{aligned}
& \operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right) \\
& =\iint\left(\int F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)\right) F_{1,2}\left(x^{1}, x^{2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right)=0
\end{aligned}
$$

Hence,

So that,

$$
\operatorname{Cov}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)=\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right)
$$

Why this sampling scheme?

Continuation Obviously

$$
\begin{aligned}
& \operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right) \\
& =\iint\left(\int F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)\right) F_{1,2}\left(x^{1}, x^{2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right)=0
\end{aligned}
$$

So that,

Why this sampling scheme?

Continuation Obviously

$$
\begin{aligned}
& \operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right) \\
& =\iint\left(\int F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)\right) F_{1,2}\left(x^{1}, x^{2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right)=0
\end{aligned}
$$

Hence,

$$
\operatorname{Cov}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)=\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right)
$$

So that,

$$
\operatorname{Var}\left(\widehat{F_{1}\left(X^{1}\right)}\right)=\operatorname{Cov}_{N}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)
$$

Sobol pick freeze estimator of S_{i}

$$
S_{i}=\frac{\operatorname{Cov}(F(X), F(\tilde{X}))}{\operatorname{Var}\left(\frac{F(X)+F(\tilde{X})}{\sqrt{2}}\right)}
$$

$$
\widehat{S}_{i}=\frac{\operatorname{Cov}_{N}(F(X), F(\tilde{X}))}{\operatorname{Var}_{N}\left(\frac{F(X)+F(\tilde{X})}{\sqrt{2}}\right)}
$$

Theorem (A. Janon, T. Klein, A. Lagnoux, C. Prieur, M. Nodet

 ESAIM P\&S to appear(2013)\widehat{S}_{i} is an efficient estimator of the Sobol indice S_{i}. That is, this estimator is asymptotically Gaussian and asymptotically reaches the semi-parametric Cramér-Rao Bound.

Sobol pick freeze estimator of S_{i}

$$
\begin{aligned}
S_{i} & =\frac{\operatorname{Cov}(F(X), F(\tilde{X}))}{\operatorname{Var}\left(\frac{F(X)+F(\tilde{X})}{\sqrt{2}}\right)} \\
\widehat{S}_{i} & =\frac{\operatorname{Cov}_{N}(F(X), F(\tilde{X}))}{\operatorname{Var}_{N}\left(\frac{F(X)+F(\tilde{X})}{\sqrt{2}}\right)}
\end{aligned}
$$

Theorem (A. Janon, T. Klein, A. Lagnoux, C. Prieur, M. Nodet

 ESAIM P\&S to appear(2013)\widehat{S}_{i} is an efficient estimator of the Sobol indice S_{i}. That is, this estimator is asymptotically Gaussian and asymptotically reaches the semi-parametric Cramér-Rao Bound.

Sobol pick freeze estimator of S_{i}

$$
\begin{aligned}
S_{i} & =\frac{\operatorname{Cov}(F(X), F(\tilde{X}))}{\operatorname{Var}\left(\frac{F(X)+F(\tilde{X})}{\sqrt{2}}\right)} \\
\widehat{S}_{i} & =\frac{\operatorname{Cov}_{N}(F(X), F(\tilde{X}))}{\operatorname{Var}_{N}\left(\frac{F(X)+F(\tilde{X})}{\sqrt{2}}\right)}
\end{aligned}
$$

Theorem (A. Janon, T. Klein, A. Lagnoux, C. Prieur, M. Nodet ESAIM P\&S to appear(2013))
\widehat{S}_{i} is an efficient estimator of the Sobol indice S_{i}. That is, this estimator is asymptotically Gaussian and asymptotically reaches the semi-parametric Cramér-Rao Bound.

Further results : sharp asymptotic

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux, C. Prieur Arxiv

 (2013))S_{i} satisfies both exponential inequalities and a Berry-Esseen Theorem .

- Exponential inequality $\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.
- Berry-Esseen Theorem : precise bound on the error made when using CLT.

Further results : sharp asymptotic

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux, C. Prieur Arxiv (2013))
\widehat{S}_{i} satisfies both exponential inequalities and a Berry-Esseen Theorem .

- Exponential inequality $\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.

Berry-Esseen Theorem : precise bound on the error made when using CLT.

Further results : sharp asymptotic

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux, C. Prieur Arxiv (2013))
\widehat{S}_{i} satisfies both exponential inequalities and a Berry-Esseen Theorem .

- Exponential inequality $\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.
- Berry-Esseen Theorem : precise bound on the error made when using CLT.

Further results : sharp asymptotic

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux, C. Prieur Arxiv (2013))
\widehat{S}_{i} satisfies both exponential inequalities and a Berry-Esseen Theorem .

- Exponential inequality $\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.
- Berry-Esseen Theorem : precise bound on the error made when using CLT.

Concentration inequalities for \hat{S}_{i}

Proposition

Let $\mathbb{P}=\mu_{1} \otimes \ldots \otimes \mu_{N}$ be a proability measure on the cartesian product $\chi=\chi_{1} \times \ldots \times \chi_{N}$ of metric spaces $\left(\chi_{i}, \mathrm{~d}_{\mathrm{i}}\right)$ with finite diameters D_{i}, $\mathfrak{i}=1 \ldots \mathrm{~N}$, equipped with the l^{1}-metric $\mathrm{d}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{d}_{\mathrm{i}}$. Then if G is a 1 -Lipschitz function on (X, d), for every $r \geqslant 0$,

$$
\mathbb{P}\left(G \geqslant \int G d P+r\right) \leqslant \exp \left\{-\frac{r^{2}}{2 D^{2}}\right\}
$$

where $\mathrm{D}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{D}_{\mathrm{i}}^{2}$.
see M. Ledoux, The concentration of measure phenomenon,Mathematical Surveys and Monographs, Vol 89, 2001.

Concentration inequalities for \widehat{S}_{i}

We consider

- $\chi_{i}=[-1,1] \times[-1,1]$ (bounded input variables) equipped with the metric d_{i} defined by

$$
d_{\mathfrak{i}}\left(z, z^{\prime}\right):=\left\|x-x^{\prime}\right\|_{2}+\left\|y-y^{\prime}\right\|_{2}
$$

$$
\text { for } z=(x, y), z^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in X_{i} \text {, and } x, x^{\prime}, y, y^{\prime} \in[-1,1]
$$

- $F / L: X \rightarrow \mathbb{R}$ 1-Lipschitz where $L:=\frac{2}{N}\left(S_{i}+t+1\right)$ and

$$
F(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i} y_{i}-\left(S_{i}+t\right) \frac{x_{i}^{2}+y_{i}^{2}}{2}\right)+\frac{S_{i}+t-1}{2} \overline{x+y_{N}}
$$

- $\mathrm{r}=\frac{\mathrm{V}}{\mathrm{L}}\left(\mathrm{t}-\frac{1}{2 \mathrm{~N}}\left(\mathrm{~S}_{\mathrm{i}}+\mathrm{t}-1\right)\left(\mathrm{S}_{\mathrm{i}}+1\right)\right)$.

Then

Concentration inequalities for \widehat{S}_{i}

We consider

- $\chi_{i}=[-1,1] \times[-1,1]$ (bounded input variables) equipped with the metric d_{i} defined by

$$
d_{i}\left(z, z^{\prime}\right):=\left\|x-x^{\prime}\right\|_{2}+\left\|y-y^{\prime}\right\|_{2}
$$

$$
\text { for } z=(x, y), z^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in X_{i} \text {, and } x, x^{\prime}, y, y^{\prime} \in[-1,1]
$$

- $F / L: X \rightarrow \mathbb{R}$ 1-Lipschitz where $L:=\frac{2}{N}\left(S_{i}+t+1\right)$ and

$$
F(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i} y_{i}-\left(S_{i}+t\right) \frac{x_{i}^{2}+y_{i}^{2}}{2}\right)+\frac{S_{i}+t-1}{2} \overline{x+y_{N}}
$$

- $r=\frac{V}{L}\left(t-\frac{1}{2 N}\left(S_{i}+t-1\right)\left(S_{i}+1\right)\right)$.

Then

$$
\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant 2 \exp \left\{-\frac{N V^{2}}{2}\left(\frac{t-\frac{1}{2 N}\left(S_{i}+t-1\right)\left(S_{i}+1\right)}{8\left(S_{i}+t+1\right)}\right)^{2}\right\}
$$

S_{i} being unknown, we are looking for a bound independent of S_{i} which is given in the following corollary

Corollary
Since $0 \leqslant S_{i} \leqslant 1$,

$$
\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant 2 \exp \left\{-\frac{N}{128 d}\left(1-\frac{1}{N}\right)^{2}\left(\frac{t}{t+2} \sum_{l=1}^{d} v_{l}\right)^{2}\right\}
$$

As a consequence, let t and an error α be fixed, one has

$$
\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \alpha \Longleftrightarrow 2 N \geqslant \beta+2+\sqrt{\beta(\beta+4)}
$$

where $\beta:=128 d \log \left(\frac{2}{\alpha}\right)\left(\frac{t}{t+2} \sum_{l=1}^{k} v_{l}\right)^{-2}$.

Quality at a fixed N - Berry-Esseen results

First result (Using Pineli's Theorem) : Assume that the random variable Y has finite moments up to order 6 and $k=1$. Then, for all $z \in \mathbb{R}$,

$$
\left|\mathbb{P}\left(\frac{\sqrt{N}}{\sigma}\left[\widehat{S}_{i}-S_{i}\right] \leqslant z\right)-\Phi(z)\right| \leqslant \frac{\kappa}{\sqrt{N}} .
$$

Here σ^{2} is the asymptotic variance of $\sqrt{N S_{i}}$ and κ a generic constant.

Second result

Here assume $\mathbb{E}(Y)=0$ and let $\widehat{S}_{i}=\frac{\frac{1}{N} \sum F\left(X_{j}\right) F\left(\tilde{X}_{j}\right)}{\frac{1}{N} \sum F\left(X_{j}\right)}$.
Assume that the random variable $\mathrm{F}(\mathrm{X})$ has finite moment up to order 6 . Then, for all $t \in \mathbb{R}$,

$$
\left|\mathbb{P}\left(\frac{\sqrt{N}}{\sigma}\left(\widehat{S}_{i}-S_{i}\right) \leqslant t\right)-\Phi(t)\right| \leqslant \frac{\kappa \mu_{3, N}}{\sqrt{N}}+\left|\Phi(t)-\Phi\left(\frac{t}{\sqrt{1+\frac{t v_{N}}{\sigma \sqrt{N} V^{2}}}}\right)\right|
$$

- σ^{2} is the asymptotic variance
- Φ the Gaussian cdf
- $\mu_{3, \mathrm{~N}}$ is a third order deviation moment
- v_{N} is a bias term

Numerical applications for the centered case

We study the Ishigami function recentered by its true mean $7 / 2$ defined by

$$
F\left(X_{1}, X_{2}, X_{3}\right)=\sin X_{1}+7 \sin ^{2} X_{2}+0.1 X_{3}^{4} \sin X_{1}-\frac{7}{2}
$$

For y, we choose $y=1.96 \frac{\widehat{\sigma^{2}}}{\sqrt{N}}$, where $\widehat{\sigma^{2}}$ is an empirical estimate of σ^{2}, so as to compute (estimators of) upper and lower bounds of the actual level of the 95%-level confidence interval.

We present the numerical results, as functions of N, and for $i=1$ in the following figure (for $i=2$ or $i=3$), the results are very similar.

Numerical applications for the centered case

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux CRAS (2013)

- Sobol indice mav be generalized in an Euclidean and Hilbertian context, imposing isometric invariance
Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.
- $F(X) \in \mathbb{H}$. \mathbb{H} being Euclidean or Hilbert space $\left(\mathbb{R}^{k}, L^{2}, \ldots\right.$) - Hoeffding still holds (one dimensional by duality)

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux CRAS (2013))

- Sobol indice may be generalized in an Euclidean and Hilbertian context, imposing isometric invariance
- Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux CRAS (2013))

- Sobol indice may be generalized in an Euclidean and Hilbertian context, imposing isometric invariance
- Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.
- $F(X) \in \mathbb{H}$. \mathbb{H} being Euclidean or Hilbert space $\left(\mathbb{R}^{k}, L^{2}, \ldots.\right)$

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux CRAS (2013))

- Sobol indice may be generalized in an Euclidean and Hilbertian context, imposing isometric invariance
- Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.
- $F(X) \in \mathbb{H}$. \mathbb{H} being Euclidean or Hilbert space $\left(\mathbb{R}^{k}, L^{2}, \ldots.\right)$
- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$
- Isometric invariance+ sum to 1 again !! $1=\sum_{A C\{1, \ldots, d\}} S_{A}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski (2011)

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), \quad F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$
- Isometric invariance+ sum to 1 again !! $1=\sum_{A \subset\{1, \ldots, d\}} S_{A}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski (2011)

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$

$$
S_{i}:=\frac{\operatorname{Tr}\left[\operatorname{Var} F_{A}\left(X^{A}\right)\right]}{\operatorname{Tr}[\operatorname{Var} F(X)]}
$$

- Isometric invariance + sum to 1 again !! $1=\sum_{A \subset\{1, \ldots, d\}} S_{A}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski (2011)

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), \quad F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$

$$
S_{i}:=\frac{\operatorname{Tr}\left[\operatorname{Var} F_{A}\left(X^{A}\right)\right]}{\operatorname{Tr}[\operatorname{Var} F(X)]}
$$

- Isometric invariance+ sum to 1 again !! $1=\sum_{A \subset\{1, \ldots, \mathrm{~d}\}} \mathrm{S}_{\mathrm{A}}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski (2011)

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), \quad F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$

$$
S_{i}:=\frac{\operatorname{Tr}\left[\operatorname{Var} F_{A}\left(X^{A}\right)\right]}{\operatorname{Tr}[\operatorname{Var} F(X)]}
$$

- Isometric invariance+ sum to 1 again !! $1=\sum_{A \subset\{1, \ldots, \mathrm{~d}\}} \mathrm{S}_{\mathrm{A}}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski (2011)

A very fast COSTA BRAVA journey on FAST

Very nice work using Weyl Theorem and harmonic analysis

- $X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$
- Tissot, J.-Y. and Prieur, C. (2012) Bias correction method for the estimation of sensitivity indices based on random balanced designs. Reliabilty Engineering and System Safety 107, 205-213
- Tissot, J.-Y. and Prieur, C. (submitted) Global sensitivity analysis based on harmonic analysis

A very fast COSTA BRAVA journey on FAST

Very nice work using Weyl Theorem and harmonic analysis

- $X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$
\Rightarrow Tissot, J.-Y. and Prieur, C. (2012) Bias correction method for the estimation of sensitivity indices based on random balanced designs. Reliabilty Engineering and System Safety 107, 205-213
- Tissot, J.-Y. and Prieur, C. (subrnitted) Global sensitivity analysis based on harmonic analysis

A very fast COSTA BRAVA journey on FAST

Very nice work using Weyl Theorem and harmonic analysis

- $X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$
- Tissot, J.-Y. and Prieur, C. (2012) Bias correction method for the estimation of sensitivity indices based on random balanced designs. Reliabilty Engineering and System Safety 107, 205-213
- Tissot, J.-Y. and Prieur, C. (submitted) Global sensitivity analysis based on harmonic analysis

Overview

1 Costa Brava project

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Two exotic COSTA BRAVA methods

Hoeffding decomposition revisited

Functional ANOVA : case of dependent inputs (pioneering works : Stone-Hooker)
\rightarrow Assume that X has a lower/upper bounded density with
respect to the product of its marginals

example : $\mathrm{d}=2$

$F_{\emptyset} \perp F_{i}, F_{1,2} \perp F_{i}, F_{1,2} \perp F_{\emptyset}$

Hoeffding decomposition revisited

Functional ANOVA : case of dependent inputs (pioneering works :

Stone-Hooker)

\rightarrow Assume that X has a lower/upper bounded density with respect to the product of its marginals

example : $\mathrm{d}=2$

$F_{\emptyset} \perp F_{i}, F_{1,2} \perp F_{i}, F_{1,2} \perp F_{\emptyset}$

Hoeffding decomposition revisited

Functional ANOVA : case of dependent inputs (pioneering works : Stone-Hooker)
\rightarrow Assume that X has a lower/upper bounded density with respect to the product of its marginals

Theorem (G. Chasaing, F. G, C. Prieur Electronic Journal of Statistics(2013))

F may be written in an unique way as a sum :

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right) .
$$

Where, X^{A} is uncorellated with X^{B} as soon as $\mathrm{A} \subset \mathrm{B}$.
example : $\mathrm{d}=2$

$$
\begin{gathered}
\mathrm{F}\left(\mathrm{X}^{1}, \mathrm{X}^{2}\right)=\mathrm{F}_{\emptyset}+\mathrm{F}_{1}\left(\mathrm{X}^{1}\right)+\mathrm{F}_{2}\left(\mathrm{X}^{2}\right)+\mathrm{F}_{1,2}\left(\mathrm{X}^{1}, \mathrm{X}^{2}\right) \\
\mathrm{F}_{\emptyset} \perp \mathrm{F}_{i}, \mathrm{~F}_{1,2} \perp \mathrm{~F}_{i}, \mathrm{~F}_{1,2} \perp \mathrm{~F}_{\emptyset}
\end{gathered}
$$

Overview

1 Costa Brava project

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Two exotic COSTA BRAVA methods

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.
- Density modification based reliability sensitivity analysis (P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. G, B. looss Submitted 2012)
\rightarrow Following : The pioneering work of A. Arnaud (EDF) in the Gaussian case
\rightarrow Sensitivity analysis for a small probability
\rightarrow Entropic perturbation of the true probability
\rightarrow Inverse preferential sampling

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.
ا Density modification based reliability sensitivity analysis (P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. G, B. looss Submitted 2012)

Following : The pioneering work of A. Arnaud (EDF) in the Gaussian case
\rightarrow Sensitivity analysis for a small probability
\rightarrow Entropic perturbation of the true probability
\rightarrow Inverse preferential sampling

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.
- Density modification based reliability sensitivity analysis (P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. G, B. looss Submitted 2012) Following : The pioneering work of A. Arnaud (EDF) in the Gaussian case
\leftrightarrows Sensitivity analysis for a small probability
\rightarrow Entropic perturbation of the true probability
\rightarrow Inverse preferential sampling

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.
- Density modification based reliability sensitivity analysis (P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. G, B. looss Submitted 2012)
\rightarrow Following : The pioneering work of A. Arnaud (EDF) in the Gaussian case
\rightarrow Sensitivity analysis for a small probability
\rightarrow Entropic perturbation of the true probability
\rightarrow Inverse preferential sampling

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.
- Density modification based reliability sensitivity analysis (P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. G, B. looss Submitted 2012)
\rightarrow Following : The pioneering work of A. Arnaud (EDF) in the Gaussian case
\rightarrow Sensitivity analysis for a small probability
\rightarrow Entropic perturbation of the true probability
\rightarrow Inverse preferential sampling

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.
- Density modification based reliability sensitivity analysis (P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. G, B. looss Submitted 2012)
\rightarrow Following : The pioneering work of A. Arnaud (EDF) in the Gaussian case
\rightarrow Sensitivity analysis for a small probability
\rightarrow Entropic perturbation of the true probability Inverse preferential sampling

Two exotic COSTA BRAVA methods

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MSC 2013)
\rightarrow Following : I. Sobol, A. Gresham (1995) and I. Sobol, S. Kucherenko (2010) (Gaussian and uniform cases)
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities.
\rightarrow Bound on Sobol global index by using Poincaré inequality.
- Density modification based reliability sensitivity analysis (P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. G, B. looss Submitted 2012)
\rightarrow Following : The pioneering work of A. Arnaud (EDF) in the Gaussian case
\rightarrow Sensitivity analysis for a small probability
\rightarrow Entropic perturbation of the true probability
\rightarrow Inverse preferential sampling

Overview

1 Costa Brava project

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Two exotic COSTA BRAVA methods

6 Conclusion

Conclusion

Costa Brava a Winner winner game between Applied researchers and Academic statisticians

This is the end

CAM ON

 Thank you Gracias MERCI Obrigado Grazie