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Motivation
Sequential Design of Computer Experiments ...

Estimation of the α-quantile qα of the distribution of Y � f pXq, for a

given α in p0,1q,
qα � inf tq : PpY ¤ qq ¡ αu .� f is an unknown, expensive-to-evaluate real-valued function� X is a random vector having a known distribution on a compact

subset A � R
d .

We aim at estimating qα by using as few evaluations of f as possible

... for Numerical Dosimetry

At wich level are fetuses exposed to Radio

Frequency Electromagnetic Fields ?
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Background: Gaussian Process Modelling
Assume that f is a sample of a zero-mean Gaussian process (GP)

having a covariance function k : GPp0, kp., .qq
Conditionally to yt � py1, . . . , yt q1, the mean µtpuq and covariance

kt pu, vq are given by

µt puq � ktpuq1K�1
t yt ,

kt pu, vq � kpu, vq � kt puq1K�1
t ktpvq ,

where ktpuq � rkpx1,uq . . . kpxt ,uqs1, 1 denotes the matrix

transposition, Kt � rkpxi , xjqs1¤i ,j¤t , u and v and the xi ’s are in A.

Covariance function

Since the SAR is supposed to be smooth, we shall use the square

exponential covariance function

kSEpu, vq � exp

��}u � v}2

2ℓ2



,u, v P A , ℓ ¡ 0 ,

where }u} denotes the euclidean norm of u in R
d .
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Background: Methodologies
Sequential strategies

Bayesian optimization: find the maximum of f , optimizing an

acquisition function� Expected Improvement [Vazquez et al., 2010]� Confidence Bound Criteria (GP-UCB [Srinivas et al., 2010],

Branch and Bounds [De Freitas et al., 2012])

EI has been adapted for� Contour estimation [Ranjan et al., 2009]� Estimation of PpY ¥ sq where s is a given threshold (SUR) [Bect

et al., 2012]

Quantile estimation� Non sequential approach [Oakley, 2004]� Extension of the SUR criterion [Arnaud et al., 2010]

We really need a sequential strategy, but improvement based criteria

demand Monte Carlo samplings of the GP and the conditional GPs,

which made them difficult to use for d ¡ 2
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Quantile estimation

We shall compare the quantile estimators with q̃α,m defined by

q̃α,m � inf

#
q :

1

m

m̧

i�1

1tf pxi q¤qu ¡ α

+
,

where x1, . . . , xm are m fixed points in A.

Let A � tx1, . . . , xmu � A .

Pure exploration criterion� Minimizes the global uncertainty on the estimation of f� New point xt�1 to add to the set of t observations:

xt�1 P arg max
xPA

σt pxq .� Propose methodologies more adapted to our quantile estimation

issue to realize the exploration-exploitation trade-off
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GPS� Let µU
t pxq � µt pxq �?

βtσt pxq and µL
t pxq � µt pxq � ?

βtσt pxq
with βt � 2 ln

�
π2t2

6

	� 2 ln
�

m
δ

�
where m is the cardinal of A� Let q̂U

α,t and q̂L
α,t be the estimators of the α-quantile of µU

t and µL
t

q̂U
α,t � inf

#
q :

1

m

m̧

i�1

1tµU
t pxi q¤qu ¡ α

+
q̂L
α,t � inf

#
q :

1

m

m̧

i�1

1tµL
t pxi q¤qu ¡ α

+
Proposition

For all δ in p0,1q, for all t ¥ 1, with probability greater than p1 � δq,
q̃α,m P rq̂L

α,t , q̂
U
α,t s .
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GPS (cont.)

Let Uα,t and Lα,t be the following sets :

Uα,t � !x P A : µU
t pxq ¥ q̂L

α,t

)
and Lα,t � !x P A : µL

t pxq ¤ q̂U
α,t

)
, t ¥ 1.

Proposition

With probability greater than p1 � δq, for all t ¥ 1,|q̂α,t � q̃α,m| ¤aβt sup
xPUα,t

σt pxq .
Criterion

xt�1 to add to the set of t observations is such that:

xt�1 P arg max
xPUα,t

σt pxq .
7/16



Illustration : 1D Gaussian Process sample path
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GPS+� Let Sα,t � A be the compact subset such that

Sα,t �±d
i�1rx piqmin,t , x

piq
max,t s � � � � � rx pdqmin, x

pdq
maxs. Here x

piq
min,t and

x
piq
max,t denote the smallest (resp. the largest) i th component of

the points in Ūα,t� where Ūα,t � !x P Sα,t�1 : µU
t pxq ¥ q̂L

α,t

)� where Sα,t � txt,1, . . . , xt,mt
u Y Ūα,t ,� where txt,1, . . . , xt,mt

u are mt points randomly chosen in Sα,t� By convention Sα,0 � A.

Criterion

xt�1 to add to the set of t observations is such that:

xt�1 P arg max
xPŪα,t

σt pxq .
Note: Since the size of the grid varies at each iteration of the process, we

use βt � 2 ln
�

π
2t2

6

	� 2 ln
� |Sα,t�1|

δ

	
.
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Illustration : 2D Gaussian Process sample path
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Numerical Dosimetry ?

In general

Virtually expose human 3D-models to one source of EMF in order to

evaluate the Specific Absorption Rate (the SAR, in W .kg�1)

SAR computation in our case is done through Finite Difference in

Time Domain (FDTD) method

The SAR depends on� the geometry of the models� the dielectric properties of the tissues� the type and position of the EMF source

Fetus exposure� Very few models are available� The simulations are expensive in terms of computational load� The preparation of the simulations is very complex

We focus on the fetal brain exposure
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Application I: GPS, Japanese model and plane wave� Plane wave exposure:

far field sources (base

stations antennas,

WiFi boxes)� 900 MHz vertically

polarized

electromagnetic plane

waves with a 1 Volt per

meter amplitude� Start by performing 5

randomly chosen

evaluations of the SAR

in order to have an

estimation of l

π

π

π
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Application I: GPS, Japanese model and plane wave

(cont.)
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Application II: GPS+, Victoria and Samsung Galaxy

Tab� Model Victoria is sitting

working on her

Samsung Galaxy Tab

at 3G frequency (1940

MHz)� 3 parameters: height,

nearness and slope of

the tablet� Start by performing 20

evaluations of the SAR

from a LHS in order to

have an estimation of l
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Application II: GPS+, Victoria and Samsung Galaxy

Tab (cont.)
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Conclusion

� We propose two novel sequential approaches for quantile

estimation� Successfully applied to real data coming from numerical

dosimetry
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