Sequential Design of Computer Experiments for Numerical Dosimetry

Marjorie Jala
(Télécom ParisTech/Orange Labs)

Ph.D. supervisors : Céline Lévy-Leduc, Éric Moulines, Emmanuelle Conil and Joe Wiart

MASCOT-SAMO 2013 * Ph.D. Students Day * July $1^{\text {st }} 2013$

Motivation

Sequential Design of Computer Experiments ...
Estimation of the α-quantile q_{α} of the distribution of $Y=f(\mathbf{X})$, for a given α in $(0,1)$,

$$
q_{\alpha}=\inf \{q: \mathbb{P}(Y \leqslant q)>\alpha\}
$$

- f is an unknown, expensive-to-evaluate real-valued function
- \mathbf{X} is a random vector having a known distribution on a compact subset $\mathcal{A} \subseteq \mathbb{R}^{d}$.
We aim at estimating q_{α} by using as few evaluations of f as possible
... for Numerical Dosimetry
At wich level are fetuses exposed to Radio
Frequency Electromagnetic Fields?

Background: Gaussian Process Modelling

Assume that f is a sample of a zero-mean Gaussian process (GP) having a covariance function k : $\operatorname{GP}(0, k(.,)$.
Conditionally to $\mathbf{y}_{t}=\left(y_{1}, \ldots, y_{t}\right)^{\prime}$, the mean $\mu_{t}(u)$ and covariance $k_{t}(u, v)$ are given by

$$
\begin{aligned}
\mu_{t}(u) & =\mathbf{k}_{t}(u)^{\prime} \mathbf{K}_{t}^{-1} \mathbf{y}_{t} \\
k_{t}(u, v) & =k(u, v)-\mathbf{k}_{t}(u)^{\prime} \mathbf{K}_{t}^{-1} \mathbf{k}_{t}(v),
\end{aligned}
$$

where $\mathbf{k}_{t}(u)=\left[k\left(x_{1}, u\right) \ldots k\left(x_{t}, u\right)\right]^{\prime},{ }^{\prime}$ denotes the matrix transposition, $\mathbf{K}_{t}=\left[k\left(x_{i}, x_{j}\right)\right]_{1 \leqslant i, j \leqslant t}, u$ and v and the x_{i} 's are in \mathcal{A}.
Covariance function
Since the SAR is supposed to be smooth, we shall use the square exponential covariance function

$$
k_{\mathrm{SE}}(u, v)=\exp \left(-\frac{\|u-v\|^{2}}{2 \ell^{2}}\right), u, v \in \mathcal{A}, \ell>0
$$

where $\|u\|$ denotes the euclidean norm of u in \mathbb{R}^{d}.

Background: Methodologies

Sequential strategies

Bayesian optimization: find the maximum of f, optimizing an acquisition function

- Expected Improvement [Vazquez et al., 2010]
- Confidence Bound Criteria (GP-UCB [Srinivas et al., 2010], Branch and Bounds [De Freitas et al., 2012])
El has been adapted for
- Contour estimation [Ranjan et al., 2009]
- Estimation of $\mathbb{P}(Y \geqslant s)$ where s is a given threshold (SUR) [Bect et al., 2012]

Quantile estimation

- Non sequential approach [Oakley, 2004]
- Extension of the SUR criterion [Arnaud et al., 2010]

We really need a sequential strategy, but improvement based criteria demand Monte Carlo samplings of the GP and the conditional GPs, which made them difficult to use for $d>2$

Quantile estimation

We shall compare the quantile estimators with $\tilde{q}_{\alpha, m}$ defined by

$$
\tilde{q}_{\alpha, m}=\inf \left\{q: \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\left\{f\left(x_{i}\right) \leqslant q\right\}}>\alpha\right\},
$$

where $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m}$ are m fixed points in \mathcal{A}.
Let $\mathrm{A}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{m}\right\} \subset \mathcal{A}$.
Pure exploration criterion

- Minimizes the global uncertainty on the estimation of f
- New point x_{t+1} to add to the set of t observations:

$$
x_{t+1} \in \underset{x \in \mathrm{~A}}{\arg \max } \sigma_{t}(x)
$$

- Propose methodologies more adapted to our quantile estimation issue to realize the exploration-exploitation trade-off

GPS

- Let $\mu_{t}^{U}(x)=\mu_{t}(x)+\sqrt{\beta_{t}} \sigma_{t}(x)$ and $\mu_{t}^{L}(x)=\mu_{t}(x)-\sqrt{\beta_{t}} \sigma_{t}(x)$ with $\beta_{t}=2 \ln \left(\frac{\pi^{2} t^{2}}{6}\right)+2 \ln \left(\frac{m}{\delta}\right)$ where m is the cardinal of A
- Let $\hat{q}_{\alpha, t}^{U}$ and $\hat{q}_{\alpha, t}^{L}$ be the estimators of the α-quantile of μ_{t}^{U} and μ_{t}^{L}

$$
\begin{aligned}
& \hat{q}_{\alpha, t}^{U}=\inf \left\{q: \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\left\{\mu_{t}^{U}\left(x_{i}\right) \leqslant q\right\}}>\alpha\right\} \\
& \hat{q}_{\alpha, t}^{L}=\inf \left\{q: \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\left\{\mu_{t}^{L}\left(x_{i}\right) \leqslant q\right\}}>\alpha\right\}
\end{aligned}
$$

Proposition

For all δ in $(0,1)$, for all $t \geqslant 1$, with probability greater than $(1-\delta)$,

$$
\tilde{q}_{\alpha, m} \in\left[\hat{q}_{\alpha, t}^{L}, \hat{q}_{\alpha, t}^{U}\right] .
$$

GPS (cont.)

Let $U_{\alpha, t}$ and $L_{\alpha, t}$ be the following sets :

$$
U_{\alpha, t}=\left\{x \in \mathrm{~A}: \mu_{t}^{U}(x) \geqslant \hat{q}_{\alpha, t}^{L}\right\} \text { and } L_{\alpha, t}=\left\{x \in \mathrm{~A}: \mu_{t}^{L}(x) \leqslant \hat{q}_{\alpha, t}^{U}\right\}, t \geqslant 1 .
$$

Proposition

With probability greater than $(1-\delta)$, for all $t \geqslant 1$,

$$
\left|\hat{q}_{\alpha, t}-\tilde{q}_{\alpha, m}\right| \leqslant \sqrt{\beta_{t}} \sup _{x \in U_{\alpha, t}} \sigma_{t}(\mathrm{x}) .
$$

Criterion
x_{t+1} to add to the set of t observations is such that:

$$
x_{t+1} \in \underset{x \in U_{\alpha, t}}{\arg \max } \sigma_{t}(x)
$$

Illustration : 1D Gaussian Process sample path

$t=3$

$t=8$

$t=4$

$t=10$

$t=6$

$t=12$

GPS+

- Let $\mathcal{S}_{\alpha, t} \subseteq \mathcal{A}$ be the compact subset such that $\mathcal{S}_{\alpha, t}=\prod_{i=1}^{d}\left[x_{\min , t}^{(i)}, x_{\max , t}^{(i)}\right] \times \cdots \times\left[x_{\min }^{(d)}, x_{\max }^{(d)}\right]$. Here $x_{\min , t}^{(i)}$ and $x_{\max , t}^{(i)}$ denote the smallest (resp. the largest) ith component of the points in $\bar{U}_{\alpha, t}$
- where $\bar{U}_{\alpha, t}=\left\{x \in \mathrm{~S}_{\alpha, t-1}: \mu_{t}^{U}(x) \geqslant \hat{q}_{\alpha, t}^{L}\right\}$
- where $\mathrm{S}_{\alpha, t}=\left\{\mathrm{x}_{t, 1}, \ldots, \mathrm{x}_{t, m_{t}}\right\} \cup \bar{U}_{\alpha, t}$,
- where $\left\{\mathrm{x}_{t, 1}, \ldots, \mathrm{x}_{t, m_{t}}\right\}$ are m_{t} points randomly chosen in $\mathcal{S}_{\alpha, t}$
- By convention $\mathrm{S}_{\alpha, 0}=\mathrm{A}$.

Criterion

x_{t+1} to add to the set of t observations is such that:

$$
x_{t+1} \in \underset{x \in \bar{U}_{\alpha, t}}{\arg \max } \sigma_{t}(x)
$$

Note: Since the size of the grid varies at each iteration of the process, we use $\beta_{t}=2 \ln \left(\frac{\pi^{2} t^{2}}{6}\right)+2 \ln \left(\frac{\left|S_{\alpha, t-1 \mid}\right|}{\delta}\right)$.

Illustration : 2D Gaussian Process sample path

$t=2$

$t=102$

$$
t=62
$$

$t=162$

Numerical Dosimetry?

In general

Virtually expose human 3D-models to one source of EMF in order to evaluate the Specific Absorption Rate (the SAR, in W. kg^{-1})
SAR computation in our case is done through Finite Difference in
Time Domain (FDTD) method
The SAR depends on

- the geometry of the models
- the dielectric properties of the tissues
- the type and position of the EMF source

Fetus exposure

- Very few models are available
- The simulations are expensive in terms of computational load
- The preparation of the simulations is very complex

We focus on the fetal brain exposure

Application I: GPS, Japanese model and plane wave

- Plane wave exposure: far field sources (base stations antennas, WiFi boxes)
- 900 MHz vertically polarized electromagnetic plane waves with a 1 Volt per meter amplitude
- Start by performing 5 randomly chosen evaluations of the SAR in order to have an
 estimation of I

Application I: GPS, Japanese model and plane wave

 (cont.)

3D-plot

Relative errors

Contour plot and observations

Quantile convergence

Application II: GPS+, Victoria and Samsung Galaxy Tab

- Model Victoria is sitting working on her Samsung Galaxy Tab at 3G frequency (1940 MHz)
- 3 parameters: height, nearness and slope of the tablet
- Start by performing 20 evaluations of the SAR from a LHS in order to have an estimation of $/$

Application II: GPS+, Victoria and Samsung Galaxy Tab (cont.)

Quantile convergence

ℓ convergence

Conclusion

- We propose two novel sequential approaches for quantile estimation
- Successfully applied to real data coming from numerical dosimetry

