Goal-oriented error estimation for reduced basis method

Alexandre Janon (Univ. Paris Sud), with:
Maëlle Nodet, Clémentine Prieur (U. Grenoble 1, INRIA)

Nice, July 2013

Context

- $\mu \in \mathcal{P} \subset \mathbb{R}^{p}$: input parameter.
- We want to compute a model output $s(\mu)$ for many values of μ.
- We suppose that s is a linear functional:

$$
s(\mu)=I^{t} u(\mu)
$$

where $u(\mu)$ is the solution of the linear system:

$$
A(\mu) u(\mu)=f(\mu)
$$

where $A(\mu)$ and $f(\mu)$ are known matrix/vector.

- Typically, the linear system is obtained by discretizing a (linear) PDE given by the physics, and the $u(\mu) \mapsto s(\mu)$ operation is evaluation or mean.
- Problem: $u(\mu)$ is of dimension $\mathcal{N} \gg 1$.
- In a many-query context, solving the system for every parameter of interest may be too long.

Context (2) - Reduced basis method

- The idea is to project the large system onto a smaller subspace. Given a (well-chosen) matrix Z with n cols and \mathcal{N} lines, we look for $\widetilde{u}(\mu) \in \mathbf{R}^{n}$ so that:

$$
\left(Z^{t} A(\mu) Z\right) \widetilde{u}(\mu)=Z^{t} f(\mu)
$$

- The system is of dimension n. Fine if $n \ll \mathcal{N}$.
- If $u(\mu)$ is in the range of Z, then the system above is equivalent to the original one:

$$
A(\mu) u(\mu)=f(\mu)
$$

and we have $u(\mu)=Z \widetilde{u}(\mu)$.

- In many interesting cases, we have methods to choose Z so that

$$
n \ll \mathcal{N} \text { and } u(\mu) \approx Z \widetilde{u}(\mu) \text { for many } \mu
$$

and so:

$$
\widetilde{s}(\mu)=I^{t} Z \widetilde{u}(\mu) \approx I^{t} u(\mu)=s(\mu)
$$

- $\widetilde{s}(\mu)$: metamodel.
- Can we quantify the error in this approximation ?

Context (3) - Reduced basis error bound

- Under some hypotheses on the $A(\mu)$ matrix and a norm $\|\cdot\|$ (say, Euclidean norm), the reduced basis comes with an error bound $\epsilon^{u}(\mu)$:

$$
\forall \mu \in \mathcal{P},\|u(\mu)-Z \widetilde{u}(\mu)\| \leq \epsilon^{u}(\mu)
$$

which can be numerically computed efficiently (i.e., with the order of complexity of the computation of $\widetilde{u}(\mu))$.

- Question: Given this bound, can we have an error bound $\epsilon(\mu)$ on s :

$$
\forall \mu \in \mathcal{P},|s(\mu)-\widetilde{s}(\mu)| \leq \epsilon(\mu)
$$

which can be explicitly and efficiently computed ?

- Yes, as the "Lipschitz bound" holds:

$$
\forall \mu \in \mathcal{P},|s(\mu)-\widetilde{s}(\mu)| \leq L \epsilon^{u}(\mu)
$$

for:

$$
L=\sup _{\|v\|=1} I^{t} v
$$

Context (4) - Improved error bound

- Question: can we find a more precise error bound ?
- The Lipschitz bound is optimal amongst the bounds which depend on (a bound on) $\|u(\mu)-A(\mu) \widetilde{u}(\mu)\|$.
- Our improved bound has to depend on something else...
- Contents of the talk:
- Description of the proposed bound
- Further improvement: correction of the output
- Numerical examples and comparisons

Reference: Janon, Nodet, Prieur, Goal-oriented error estimation for reduced basis method, with application to certified sensitivity analysis, submitted (HAL, arXiv).

Starting point

- Remember: $A(\mu) Z \widetilde{u}(\mu) \approx f(\mu)$.
- The bound $\epsilon^{u}(\mu)$ on $\|u(\mu)-\widetilde{u}(\mu)\|$ is based on the residual:

$$
r(\mu)=A(\mu) Z \widetilde{u}(\mu)-f(\mu)
$$

and that its norm is efficiently computable.

- We also want to exploit that the (say, Euclidean) scalar products of the residual:

$$
\langle r(\mu), \phi\rangle
$$

by any vector ϕ are also efficiently computable.

- Let $\left\{\phi_{i}\right\}_{i=1, \ldots, \mathcal{N}}$ be an orthonormal basis of $\mathbb{R}^{\mathcal{N}}$ (to be choosed later). We have:

$$
\widetilde{s}(\mu)-s(\mu)=\sum_{i \geq 1}\left\langle w(\mu), \phi_{i}\right\rangle\left\langle r(\mu), \phi_{i}\right\rangle
$$

where $w(\mu)$ is the solution of the adjoint (or dual) problem:

$$
w(\mu)=A(\mu)^{-t} l
$$

we set $\phi_{i}=0$ for $i>\mathcal{N}$.

Error bound - Two-part decomposition

- Let $N \in \mathbb{N}^{*}$. We have:

$$
\begin{gathered}
|\widetilde{s}(\mu)-s(\mu)|=\left|\sum_{i}\left\langle w(\mu), \phi_{i}\right\rangle\left\langle r(\mu), \phi_{i}\right\rangle\right| \\
\leq\left|\sum_{i=1}^{N}\left\langle w(\mu), \phi_{i}\right\rangle\left\langle r(\mu), \phi_{i}\right\rangle\right|+\left|\sum_{i>N}\left\langle w(\mu), \phi_{i}\right\rangle\left\langle r(\mu), \phi_{i}\right\rangle\right|
\end{gathered}
$$

- The first term is to be bounded by a μ-dependent quantity which can be computed efficiently.
- The second term will be:
- bounded, in probability (with respect to μ), by a μ-independent quantity;
- (heuristically) minimized by the choice of $\left\{\phi_{i}\right\}_{i}$.

Bound - Addressment of the first term

- Let:

$$
\tau_{1}(\mu):=|\sum_{i=1}^{N} \underbrace{\left\langle w(\mu), \phi_{i}\right\rangle}_{\text {to bound }} \overbrace{\left\langle r(\mu), \phi_{i}\right\rangle}^{\text {computable }}|
$$

- We compute (once for all the values of μ):

$$
\beta_{i}^{\min }=\min _{\mu \in \mathcal{P}} D_{i}(\mu), \quad \beta_{i}^{\max }=\max _{\mu \in \mathcal{P}} D_{i}(\mu),
$$

where:

$$
D_{i}(\mu)=\left\langle w(\mu), \phi_{i}\right\rangle
$$

($2 N$ optimization problems to solve on \mathcal{P}.)

- We set:
$\beta_{i}^{u p}(\mu)=\left\{\begin{array}{l}\beta_{i}^{\text {max }} \text { if }\left\langle r(\mu), \phi_{i}\right\rangle>0 \\ \beta_{i}^{\text {min }} \text { else, }\end{array} \quad \beta_{i}^{\text {low }}(\mu)=\left\{\begin{array}{l}\beta_{i}^{\text {min }} \text { if }\left\langle r(\mu), \phi_{i}\right\rangle>0 \\ \beta_{i}^{\text {max }} \text { else. }\end{array}\right.\right.$
and we have:

$$
\left|\tau_{1}(\mu)\right| \leq \max \left(\left|\sum_{i=1}^{N}\left\langle r(\mu), \phi_{i}\right\rangle \beta_{i}^{\text {low }}(\mu)\right|,\left|\sum_{i=1}^{N}\left\langle r(\mu), \phi_{i}\right\rangle \beta_{i}^{\text {up }}(\mu)\right|\right)=: T_{1}(\mu)
$$

Bound - Addressment of the second term

- Let:

$$
\tau_{2}(\mu)=\left|\sum_{i>N}\left\langle w(\mu), \phi_{i}\right\rangle\left\langle r(\mu), \phi_{i}\right\rangle\right| .
$$

- Not efficiently computable.
- We assume that μ is a random variable on \mathcal{P}, with known distribution.
- We want to control $\mathbf{E}_{\mu}\left[\tau_{2}(\mu)\right]$.
- We have:

$$
\mathbf{E}_{\mu}\left[\tau_{2}(\mu)\right] \leq \frac{1}{2} \mathbf{E}_{\mu}\left(\sum_{i>N}\left\langle w(\mu), \phi_{i}\right\rangle^{2}+\sum_{i>N}\left\langle r(\mu), \phi_{i}\right\rangle^{2}\right)=\sum_{i>N}\left\langle G \phi_{i}, \phi_{i}\right\rangle
$$

where G is the positive, self-adjoint operator given by:

$$
\forall \phi \in X, \quad G \phi=\frac{1}{2} \mathbf{E}_{\mu}(\langle r(\mu), \phi\rangle r(\mu)+\langle w(\mu), \phi\rangle w(\mu)) .
$$

Bound - Addressment of the second term (2)

- Recall that:

$$
\mathbf{E}_{\mu}\left[\tau_{2}(\mu)\right] \leq \sum_{i>N}\left\langle G \phi_{i}, \phi_{i}\right\rangle .
$$

- Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{\mathcal{N}} \geq 0$ be the eigenvalues of G, and ϕ_{i}^{G} a unitary eigenvector of G with respect to λ_{i}.
- The RHS is minimized for $\phi_{i}=\phi_{i}^{G} \forall i>N$.
- This suggests to choose

$$
\phi_{i}=\phi_{i}^{G} \forall i \leq N,
$$

so have to the a priori bound on τ_{2} :

$$
\mathbf{E}_{\mu}\left[\tau_{2}(\mu)\right] \leq \sum_{i>N} \lambda_{i}^{2}
$$

- In the sequel we make this choice for $\left\{\phi_{i}\right\}$.

Bound - Estimation

- In practice, we estimate

$$
G \phi=\frac{1}{2} \mathbf{E}_{\mu}(\langle r(\mu), \phi\rangle r(\mu)+\langle w(\mu), \phi\rangle w(\mu)) .
$$

by:

$$
\widehat{G} \phi=\frac{1}{2 \# \equiv} \sum_{\mu \in \equiv}(\langle r(\mu), \phi\rangle r(\mu)+\langle w(\mu), \phi\rangle w(\mu))
$$

where $\equiv \subset \mathcal{P}$ is a sample of the distribution of μ.

- Matricially, the problem of finding ϕ_{i} is an eigenproblem in dimension $\min (\mathcal{N}, 2 \# \equiv)$.

Bound - Majoration in probability

- We can estimate $\mathbf{E}_{\mu}\left[\tau_{2}(\mu)\right]$ by:

$$
\widehat{T}_{2}=\frac{1}{2 \# \equiv} \sum_{\mu \in \equiv}\left|\widetilde{s}(\mu)-s(\mu)-\sum_{i=1}^{N}\left\langle w(\mu), \phi_{i}\right\rangle\left\langle r(\mu), \phi_{i}\right\rangle\right|,
$$

once for all the values of μ.

- Then, for a risk level $\alpha \in] 0,1[$, we use Markov inequality:

$$
P_{\mu}\left(\tau_{2}(\mu)>\mathbf{E}_{\mu}\left[\tau_{2}(\mu)\right] / \alpha\right)<\alpha
$$

leading to an empirical threshold:

$$
\widehat{T}_{2} / \alpha
$$

- And we have the final error bound estimate (with risk $<\alpha$):

$$
T_{1}(\mu)+\frac{\widehat{T}_{2}}{\alpha}
$$

where (remember!) $T_{1}(\mu)$ is a majorant of
$\left|\sum_{i=1}^{N}\left\langle r(\mu), \phi_{i}\right\rangle\left\langle w(\mu), \phi_{i}\right\rangle\right|$.

Correction of output

- The adjoint (dual) problem:

$$
A(\mu)^{t} w(\mu)=I
$$

can also be projected by using a matrix Z_{d} :

$$
\left[Z_{d}^{t} A(\mu)^{t} Z_{d}\right] \widetilde{w}(\mu)=Z_{d}^{t} I
$$

so as to given an approximation $Z_{d} \widetilde{w}(\mu) \approx w(\mu)$.

- Computation of $\widetilde{w}(\mu)$ generally doubles the computational time, but allows to compute a corrected output approximation for $s(\mu)$:

$$
\widetilde{s}_{c}(\mu)=\widetilde{s}(\mu)-\left\langle Z_{d} \widetilde{w}(\mu), r(\mu)\right\rangle,
$$

which is known to be more precise than $\widetilde{s}(\mu)$.

Correction of output (2)

- More specifically, we can show that

$$
\left|\widetilde{s}_{c}(\mu)-s(\mu)\right| \leq \epsilon_{u}(\mu) \epsilon_{u}^{d}(\mu),
$$

where $\left\|w(\mu)-Z_{d} \widetilde{w}(\mu)\right\| \leq \epsilon_{u}^{d}(\mu)$.

- Our error bound can be readily extended so as to provide a bound $\epsilon_{c}(\mu)$ on the corrected output:

$$
\left|\widetilde{s}_{c}(\mu)-s(\mu)\right| \leq \epsilon_{c}(\mu),
$$

in probability (with respect to μ), by changing every $w(\mu)$ by $w(\mu)-Z_{d} \widetilde{w}(\mu)$.

Summary

There are four error bounds:

- on the non-corrected output:
- Lipschitz bound: simple, deterministic but pessimistic;
- our proposed bound on the non-corrected output: in probability, hopefully more accurate.
- on the corrected output (more expensive to compute, known to be more precise):
- the existing bound in the literature;
- our proposed bound on the corrected output.

Numerical result 1

Discretized PDE: diffusion.
Parametrisation of the geometry of the domain (3 parameters); risk 10^{-5}.

Numerical result 2

Discretized PDE: transport (space-time formulation). 1 parameter (transport speed); risk 10^{-5}.

Concluding remarks and perspectives

- Application to certified Sobol sensitivity analysis OK, thanks to the possibility of taking very small risks, avoiding the "multiple tests problem".
- Main perspective: application to non-linear models and/or non-linear outputs.

MICHAEL JACKSON'S THIS IS IT

