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Context

◮ µ ∈ P ⊂ R
p : input parameter.

◮ We want to compute a model output s(µ) for many values of
µ.

◮ We suppose that s is a linear functional:

s(µ) = l tu(µ),

where u(µ) is the solution of the linear system:

A(µ)u(µ) = f (µ),

where A(µ) and f (µ) are known matrix/vector.

◮ Typically, the linear system is obtained by discretizing a
(linear) PDE given by the physics, and the u(µ) 7→ s(µ)
operation is evaluation or mean.

◮ Problem: u(µ) is of dimension N ≫ 1.

◮ In a many-query context, solving the system for every
parameter of interest may be too long.
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Context (2) – Reduced basis method
◮ The idea is to project the large system onto a smaller

subspace. Given a (well-chosen) matrix Z with n cols and N
lines, we look for ũ(µ) ∈ Rn so that:

(Z tA(µ)Z )ũ(µ) = Z t f (µ).

◮ The system is of dimension n. Fine if n ≪ N .
◮ If u(µ) is in the range of Z , then the system above is

equivalent to the original one:

A(µ)u(µ) = f (µ),

and we have u(µ) = Zũ(µ).
◮ In many interesting cases, we have methods to choose Z so

that
n ≪ N and u(µ) ≈ Zũ(µ) for many µ.

and so:
s̃(µ) = l tZũ(µ) ≈ l tu(µ) = s(µ).

◮ s̃(µ): metamodel.
◮ Can we quantify the error in this approximation ? 3/ 19



Context (3) – Reduced basis error bound
◮ Under some hypotheses on the A(µ) matrix and a norm ‖·‖

(say, Euclidean norm), the reduced basis comes with an error
bound ǫu(µ):

∀µ ∈ P, ‖u(µ) − Zũ(µ)‖ ≤ ǫu(µ)

which can be numerically computed efficiently (i.e., with the
order of complexity of the computation of ũ(µ)).

◮ Question: Given this bound, can we have an error bound
ǫ(µ) on s:

∀µ ∈ P, |s(µ) − s̃(µ)| ≤ ǫ(µ)

which can be explicitly and efficiently computed ?
◮ Yes, as the “Lipschitz bound” holds:

∀µ ∈ P, |s(µ) − s̃(µ)| ≤ Lǫu(µ),

for:
L = sup

‖v‖=1
l tv .

4/ 19



Context (4) – Improved error bound

◮ Question: can we find a more precise error bound ?

◮ The Lipschitz bound is optimal amongst the bounds which
depend on (a bound on) ‖u(µ) − A(µ)ũ(µ)‖.

◮ Our improved bound has to depend on something else...

◮ Contents of the talk:
◮ Description of the proposed bound
◮ Further improvement: correction of the output
◮ Numerical examples and comparisons

Reference: Janon, Nodet, Prieur, Goal-oriented error estimation

for reduced basis method, with application to certified sensitivity

analysis, submitted (HAL, arXiv).
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Starting point
◮ Remember: A(µ)Zũ(µ) ≈ f (µ).
◮ The bound ǫu(µ) on ‖u(µ) − ũ(µ)‖ is based on the residual:

r(µ) = A(µ)Zũ(µ) − f (µ),

and that its norm is efficiently computable.
◮ We also want to exploit that the (say, Euclidean) scalar

products of the residual:

〈r(µ), φ〉

by any vector φ are also efficiently computable.
◮ Let {φi }i=1,...,N be an orthonormal basis of RN (to be

choosed later). We have:

s̃(µ) − s(µ) =
∑

i≥1

〈w(µ), φi 〉〈r(µ), φi 〉,

where w(µ) is the solution of the adjoint (or dual) problem:

w(µ) = A(µ)−t l ,

we set φi = 0 for i > N .
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Error bound – Two-part decomposition

◮ Let N ∈ N
∗. We have:

|s̃(µ) − s(µ)| =

∣∣∣∣∣
∑

i

〈w(µ), φi 〉〈r(µ), φi 〉

∣∣∣∣∣

≤

∣∣∣∣∣

N∑

i=1

〈w(µ), φi 〉〈r(µ), φi 〉

∣∣∣∣∣+

∣∣∣∣∣∣

∑

i>N

〈w(µ), φi 〉〈r(µ), φi 〉

∣∣∣∣∣∣

◮ The first term is to be bounded by a µ-dependent quantity
which can be computed efficiently.

◮ The second term will be:
◮ bounded, in probability (with respect to µ), by a

µ-independent quantity;
◮ (heuristically) minimized by the choice of {φi }i .
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Bound – Addressment of the first term
◮ Let:

τ1(µ) :=

∣∣∣∣∣∣∣

N∑

i=1

〈w(µ), φi 〉︸ ︷︷ ︸
to bound

computable︷ ︸︸ ︷
〈r(µ), φi 〉

∣∣∣∣∣∣∣
◮ We compute (once for all the values of µ):

βmin
i = min

µ∈P
Di(µ), βmax

i = max
µ∈P

Di(µ),

where:
Di(µ) = 〈w(µ), φi 〉.

(2N optimization problems to solve on P.)
◮ We set:

βup
i (µ) =

{
βmax

i if 〈r(µ), φi 〉 > 0
βmin

i else,
βlow

i (µ) =

{
βmin

i if 〈r(µ), φi 〉 > 0
βmax

i else.

and we have:

|τ1(µ)| ≤ max

(∣∣∣∣∣

N∑

i=1

〈r(µ), φi 〉β
low
i (µ)

∣∣∣∣∣ ,
∣∣∣∣∣

N∑

i=1

〈r(µ), φi 〉β
up
i (µ)

∣∣∣∣∣

)
=: T1(µ).
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Bound – Addressment of the second term

◮ Let:

τ2(µ) =

∣∣∣∣∣∣

∑

i>N

〈w(µ), φi 〉〈r(µ), φi 〉

∣∣∣∣∣∣
.

◮ Not efficiently computable.

◮ We assume that µ is a random variable on P, with known
distribution.

◮ We want to control Eµ [τ2(µ)].

◮ We have:

Eµ [τ2(µ)] ≤
1

2
Eµ


∑

i>N

〈w(µ), φi 〉
2 +

∑

i>N

〈r(µ), φi 〉
2


 =

∑

i>N

〈Gφi , φi 〉

where G is the positive, self-adjoint operator given by:

∀φ ∈ X , Gφ =
1

2
Eµ (〈r(µ), φ〉r(µ) + 〈w(µ), φ〉w(µ)) .
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Bound – Addressment of the second term (2)

◮ Recall that:
Eµ [τ2(µ)] ≤

∑

i>N

〈Gφi , φi〉.

◮ Let λ1 ≥ λ2 ≥ . . . λN ≥ 0 be the eigenvalues of G , and φG
i a

unitary eigenvector of G with respect to λi .

◮ The RHS is minimized for φi = φG
i ∀i > N.

◮ This suggests to choose

φi = φG
i ∀i≤N,

so have to the a priori bound on τ2:

Eµ [τ2(µ)] ≤
∑

i>N

λ2
i .

◮ In the sequel we make this choice for {φi }.
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Bound – Estimation

◮ In practice, we estimate

Gφ =
1

2
Eµ (〈r(µ), φ〉r(µ) + 〈w(µ), φ〉w(µ)) .

by:

Ĝφ =
1

2#Ξ

∑

µ∈Ξ

(〈r(µ), φ〉r(µ) + 〈w(µ), φ〉w(µ))

where Ξ ⊂ P is a sample of the distribution of µ.

◮ Matricially, the problem of finding φi is an eigenproblem in
dimension min(N , 2#Ξ).
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Bound – Majoration in probability
◮ We can estimate Eµ [τ2(µ)] by:

T̂2 =
1

2#Ξ

∑

µ∈Ξ

∣∣∣∣∣s̃(µ) − s(µ) −
N∑

i=1

〈w(µ), φi 〉〈r(µ), φi 〉

∣∣∣∣∣ ,

once for all the values of µ.
◮ Then, for a risk level α ∈]0, 1[, we use Markov inequality:

Pµ(τ2(µ) > Eµ [τ2(µ)] /α) < α,

leading to an empirical threshold:

T̂2/α.

◮ And we have the final error bound estimate (with risk < α):

T1(µ) +
T̂2

α
,

where (remember!) T1(µ) is a majorant of∣∣∣
∑N

i=1〈r(µ), φi 〉〈w(µ), φi 〉
∣∣∣.
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Correction of output

◮ The adjoint (dual) problem:

A(µ)tw(µ) = l ,

can also be projected by using a matrix Zd :

[Z t
dA(µ)tZd ]w̃(µ) = Z t

d l ,

so as to given an approximation Zd w̃(µ) ≈ w(µ).

◮ Computation of w̃(µ) generally doubles the computational
time, but allows to compute a corrected output approximation
for s(µ):

s̃c(µ) = s̃(µ) − 〈Zd w̃(µ), r(µ)〉,

which is known to be more precise than s̃(µ).
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Correction of output (2)

◮ More specifically, we can show that

|s̃c(µ) − s(µ)| ≤ ǫu(µ)ǫ
d
u(µ),

where ‖w(µ) − Zd w̃(µ)‖ ≤ ǫd
u(µ).

◮ Our error bound can be readily extended so as to provide a
bound ǫc(µ) on the corrected output:

|s̃c(µ) − s(µ)| ≤ ǫc(µ),

in probability (with respect to µ), by changing every w(µ) by
w(µ) − Zd w̃(µ).
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Summary

There are four error bounds:

◮ on the non-corrected output:
◮ Lipschitz bound: simple, deterministic but pessimistic;
◮ our proposed bound on the non-corrected output: in

probability, hopefully more accurate.

◮ on the corrected output (more expensive to compute, known
to be more precise):

◮ the existing bound in the literature;
◮ our proposed bound on the corrected output.
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Numerical result 1

Discretized PDE: diffusion.
Parametrisation of the geometry of the domain (3 parameters);
risk 10−5.
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Numerical result 2

Discretized PDE: transport (space-time formulation).
1 parameter (transport speed); risk 10−5.
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Concluding remarks and perspectives

◮ Application to certified Sobol sensitivity analysis OK, thanks
to the possibility of taking very small risks, avoiding the
“multiple tests problem”.

◮ Main perspective: application to non-linear models and/or
non-linear outputs.
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