Estimation of the Sobol indices in a linear functional multidimensional model

J.C. Fort, T. Klein, A. Lagnoux and B. Laurent*

* Institut de Mathématiques de Toulouse

TOULOUSE - FRANCE

7th International Conference on Sensitivity Analysis of Model Output Nice - July 1-4, 2013

This work has been partially supported by the French National Research Agency through COSINUS program: Costa-Brava project

Let \mathbb{H} a separable Hilbert space endowed with the scalar product $<,>$. Usually $\mathbb{H}=L^{2}$.
We consider the following linear model

$$
\begin{equation*}
Y=\mu+\sum_{k=1}^{p}<\beta^{k}, X^{k}>+\varepsilon \tag{1}
\end{equation*}
$$

- X^{k} are centered stochastic processes $\in \mathbb{H}$ st $\mathbb{E}\left(\left\|X^{k}\right\|^{4}\right)<\infty$;
- β^{k} are elements of \mathbb{H};
- ε is a centered noise independent of the X^{k} 's st $\mathbb{E}\left(\|\varepsilon\|^{4}\right)<\infty$.

Remark: such a model can arise for example when one wants to define a metamodel to replace an expensive black-box.

Our goal is to quantify the influence of X^{k} on Y, for $k=1 \ldots p$.
We use as the suggested by Hoeffding decomposition the Sobol index

$$
S^{(k)}:=\frac{\operatorname{Var}\left(\mathbb{E}\left(Y \mid X^{k}\right)\right)}{\operatorname{Var}(Y)}, \quad k=1 \ldots p
$$

Our goal is to quantify the influence of X^{k} on Y, for $k=1 \ldots p$.
We use as the suggested by Hoeffding decomposition the Sobol index

$$
S^{(k)}:=\frac{\operatorname{Var}\left(\mathbb{E}\left(Y \mid X^{k}\right)\right)}{\operatorname{Var}(Y)}, \quad k=1 \ldots p
$$

The model : Let us restrict to $p=1$ and consider

$$
\begin{equation*}
Y=\mu+\langle\beta, X\rangle+\varepsilon \tag{2}
\end{equation*}
$$

In this setting, the quantity to estimate

$$
S=\frac{\operatorname{Var}(\mathbb{E}(Y \mid X))}{\operatorname{Var}(Y)}
$$

is of less interest, but the computations then easily extend to the generic model.

Outline of the talk

Estimators considered A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$ A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

Outline of the talk

Estimators considered
A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$
A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

Precisions on the framework
The observations consist in n i.i.d. copies $\left(X_{i}, Y_{i}\right)$ of (X, Y).
Since $\operatorname{Var}(Y)$ is naturally estimated by the empirical variance based on $\left(Y_{1}, \ldots, Y_{n}\right)$

$$
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)^{2}
$$

the main purpose is to estimate the quantity $\operatorname{Var}(\mathbb{E}(Y \mid X))$.

A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

Our approach is based on the so-called Karhunen-Loève decomposition of the processes X and β :

$$
X=\sum_{j=1}^{\infty} \sqrt{\lambda_{j}} \xi_{j} \varphi_{j} \quad \text { and } \quad \beta=\sum_{j=1}^{\infty} \gamma_{j} \varphi_{j}
$$

with ξ_{j} centered and uncorrelated random variables. Then

$$
<X, \varphi_{j}>=\sqrt{\lambda_{j}} \xi_{j}
$$

A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

Notice that

$$
\begin{aligned}
\mathbb{E}(Y X) & =\mathbb{E}\left(\langle X, \beta>X)=\mathbb{E}\left[\left(\sum_{l=1}^{\infty} \sqrt{\lambda_{l}} \gamma_{l} \xi_{l}\right)\left(\sum_{l=1}^{\infty} \sqrt{\lambda_{l} \xi_{\mid} \mid \varphi_{l}}\right)\right]\right. \\
& =\mathbb{E}\left[\left(\sum_{l=1}^{\infty} \lambda_{l} \gamma_{l} \xi_{l}^{2} \varphi_{l}\right)\right]=\sum_{l=1}^{\infty} \lambda_{l} \gamma_{\mid} \varphi_{l}
\end{aligned}
$$

A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

Notice that

$$
\begin{aligned}
\mathbb{E}(Y X) & =\mathbb{E}(<X, \beta>X)=\mathbb{E}\left[\left(\sum_{l=1}^{\infty} \sqrt{\lambda_{l}} \gamma_{l} \xi_{l}\right)\left(\sum_{l=1}^{\infty} \sqrt{\lambda_{l}} \xi_{l} \varphi_{l}\right)\right] \\
& =\mathbb{E}\left[\left(\sum_{l=1}^{\infty} \lambda_{l} \gamma_{l} \xi_{l}^{2} \varphi_{l}\right)\right]=\sum_{l=1}^{\infty} \lambda_{l} \gamma_{l} \varphi_{l}
\end{aligned}
$$

As a consequence, $\gamma_{j}=\frac{1}{\lambda_{j}}<\mathbb{E}(Y X), \varphi_{j}>$ that is naturally estimated by

$$
\widehat{\gamma}_{j}=\frac{1}{\lambda_{j}} \frac{1}{n} \sum_{i=1}^{n}<X_{i}, \varphi_{j}>Y_{i}
$$

A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

- First, we have

$$
\widehat{\gamma}_{j}=\frac{1}{\lambda_{j}} \frac{1}{n} \sum_{i=1}^{n}<X_{i}, \varphi_{j}>Y_{i}
$$

A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

- First, we have

$$
\widehat{\gamma}_{j}=\frac{1}{\lambda_{j}} \frac{1}{n} \sum_{i=1}^{n}<X_{i}, \varphi_{j}>Y_{i} .
$$

- Second, expansion in the KL basis gives

$$
\operatorname{Var}(\mathbb{E}(Y \mid X))=\mathbb{E}\left(<\beta, X>^{2}\right)=\sum_{j=1}^{\infty} \lambda_{j} \gamma_{j}^{2}
$$

A natural estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$ is then

$$
\widehat{E}_{m}^{1}=\sum_{l=1}^{m} \frac{1}{\lambda_{l}} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} Y_{i}<X_{i}, \varphi_{l}>Y_{j}<X_{j}, \varphi_{I}>
$$

A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

- We consider another design of experiment : let ε^{\prime} be a copy of ε, independent of X and ε and

$$
\begin{cases}Y & =\mu+<X, \beta>+\varepsilon \\ Y^{X} & =\mu+<X, \beta>+\varepsilon^{\prime}\end{cases}
$$

- Now the observations consist in
(1) n-sample of $(X, Y):\left(X_{i}, Y_{i}\right), 1 \leq i \leq n$.
(2) n-sample of $\left(X, Y^{X}\right):\left(X_{i}, Y_{i}^{X}\right), 1 \leq i \leq n$.

A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

- We consider another design of experiment : let ε^{\prime} be a copy of ε, independent of X and ε and

$$
\begin{cases}Y & =\mu+<X, \beta>+\varepsilon \\ Y^{X} & =\mu+<X, \beta>+\varepsilon^{\prime}\end{cases}
$$

- Now the observations consist in
(1) n-sample of $(X, Y):\left(X_{i}, Y_{i}\right), 1 \leq i \leq n$.
(2) n-sample of $\left(X, Y^{X}\right):\left(X_{i}, Y_{i}^{X}\right), 1 \leq i \leq n$.
- $\operatorname{Var}(Y)$ is naturally estimated by the empirical variance based on $\left(Y_{1}, \ldots, Y_{n}\right)$ and $\left(Y_{1}^{X}, \ldots, Y_{n}^{X}\right)$

$$
\frac{1}{2 n} \sum_{i=1}^{n}\left[\left(Y_{i}\right)^{2}+\left(Y_{i}^{X}\right)^{2}\right]-\left(\frac{1}{2 n} \sum_{i=1}^{n}\left[Y_{i}+Y_{i}^{X}\right]\right)^{2}
$$

A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

- It remains to estimate $\operatorname{Var}(\mathbb{E}(Y \mid X))$ that can be rewritten as

$$
\operatorname{Var}(\mathbb{E}(Y \mid X))=\operatorname{Cov}\left(Y, Y^{X}\right) .
$$

- A natural estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$ is then :

$$
\widehat{E}^{2}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{X}-\left(\frac{1}{2 n} \sum_{i=1}^{n}\left[Y_{i}+Y_{i}^{X}\right]\right)^{2} .
$$

Straighforwardly \widehat{E}_{m}^{1} is biased and

$$
\mathbf{B}_{m}=\mathbb{E}\left(\widehat{E}_{m}^{1}\right)-\operatorname{Var}(\mathbb{E}(Y \mid X))=\sum_{l=m+1}^{\infty} \lambda_{l} \gamma_{l}^{2}
$$

whereas \widehat{E}^{2} is unbiased.

Straighforwardly \widehat{E}_{m}^{1} is biased and

$$
\mathbf{B}_{m}=\mathbb{E}\left(\widehat{E}_{m}^{1}\right)-\operatorname{Var}(\mathbb{E}(Y \mid X))=\sum_{l=m+1}^{\infty} \lambda_{l} \gamma_{l}^{2}
$$

whereas \widehat{E}^{2} is unbiased.

Some statistical questions :

(1) Are \widehat{E}_{m}^{1} and \widehat{E}^{2} "good" estimators for $\operatorname{Var}(\mathbb{E}(Y \mid X))$?
(2) Are they consistent? If yes, what is the rate of convergence? Answer: Central Limit Theorem (cv in \sqrt{n}).
(3) Are they asymptotically efficient?
(9) Can we measure their quality at a fixed n ?

Answer: Berry-Esseen and/or concentration inequalities.
(0) Are the estimators and designs of experiment comparable?

Outline of the talk

Estimators considered A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$ A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

Asymptotic properties of \widehat{E}_{m}^{1}

Consistency : \widehat{E}_{m}^{1} and $\widehat{E}^{2} \underset{n \rightarrow \infty}{\mathbb{P}}$ are consistent.

Asymptotic properties of \widehat{E}_{m}^{1}

Consistency : \widehat{E}_{m}^{1} and $\widehat{E}^{2} \underset{n \rightarrow \infty}{\mathbb{P}}$ are consistent.
Asymptotic normality

$$
\begin{aligned}
\widehat{E}_{m}^{1} & =\sum_{l=1}^{m} \frac{1}{\lambda_{j}} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} Y_{i}\left\langle X_{i}, \varphi_{l}\right\rangle Y_{j}\left\langle X_{j}, \varphi_{I}\right\rangle \\
& =U_{n} K+P_{n} L-\mathbf{B}_{m}+\operatorname{Var}(\mathbb{E}(Y \mid X))
\end{aligned}
$$

with $U_{n} K=\sum_{l=1}^{m} \frac{1}{\lambda} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} Z_{i, 1}^{c} \underbrace{Z_{j, 1}^{c}}_{y_{i}\left\langle x_{i, \varphi}, \varphi\right\rangle-\mathbb{E}\left(\gamma_{j}\left\langle x_{j, \varphi}, \varphi\right\rangle\right)}$
and $P_{n} L=\frac{2}{n} \sum_{l=1}^{m} \sum_{i=1}^{n} \gamma_{i} Z_{i, l}^{c}$.

Asymptotic properties of \widehat{E}_{m}^{1}

We want to show

$$
\mathbf{B}_{m}^{2}=o\left(\frac{1}{n}\right), \quad U_{n} K=o_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right), \quad \sqrt{n} P_{n} L \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0, C(\beta))
$$

Asymptotic properties of \widehat{E}_{m}^{1}

We want to show

$$
\mathbf{B}_{m}^{2}=o\left(\frac{1}{n}\right), \quad U_{n} K=o_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right), \quad \sqrt{n} P_{n} L \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0, C(\beta))
$$

Assumptions:

- (A1) $\mathbb{E}\left(\|X\|^{4}\right)<+\infty$ and $\mathbb{E}\left(\varepsilon^{4}\right)<+\infty$.
- (A2) $\sup _{l \geq 1} \mathbb{E}\left(\xi_{l}^{4}\right)<+\infty$.
- (A3) there exist $C>0$ and $\delta>1$ such that

$$
\forall I \geq 1, \quad \lambda_{I} \leq C I^{-\delta} .
$$

Now let $m=m(n)=\sqrt{n} h(n)$, where $h(n)$ satisfies : $h(n) \rightarrow 0$ and $\forall \alpha>0, n^{\alpha} h(n) \rightarrow+\infty$ as $n \rightarrow+\infty$.

Theorem (Asymptotic normality)

(i) Since $\widehat{E}_{m}^{1}-\operatorname{Var}(\mathbb{E}(Y \mid X))=U_{n} K+P_{n} L-\mathbf{B}_{m}$ and assuming (A1-3) and $n^{1 / 2(\delta+2 s)} \ll m \ll \sqrt{n}$, one gets

$$
\left\{\begin{array}{l}
\mathbf{B}_{m}^{2}=o\left(\frac{1}{n}\right) \quad \mathbb{E}\left(\left(U_{n} K\right)^{2}\right)=o\left(\frac{1}{n}\right) \\
\sqrt{n} P_{n} L \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0,4 \operatorname{Var}(Y<X, \beta>))
\end{array}\right.
$$

then $\sqrt{n}\left(\widehat{E}_{m}^{1}-\operatorname{Var}(\mathbb{E}(Y \mid X))\right) \underset{n \rightarrow \infty}{\stackrel{\mathcal{L}}{\rightarrow}} \mathcal{N}(0,4 \operatorname{Var}(Y<X, \beta>))$.
(ii) Since $\mathbb{E}\left(Y^{4}\right)<\infty$,
$\sqrt{n}\left(\widehat{E}^{2}-\operatorname{Var}(\mathbb{E}(Y \mid X))\right) \underset{n \rightarrow \infty}{\stackrel{\mathcal{L}}{\rightarrow}} \mathcal{N}\left(0, \operatorname{Var}\left((Y-\mathbb{E}(Y))\left(Y^{X}-\mathbb{E}\left(Y^{X}\right)\right)\right)\right)$.

Comments

We may assume that $h(n)=1 / \log (n)$, and hence $m(n)=\sqrt{n} / \log n$, to fill the condition

$$
\forall \alpha>0, \lim _{n \rightarrow \infty} n^{\alpha} h(n)=+\infty
$$

The estimator \widehat{V}_{m}^{X} converges at the parametric rate $1 / \sqrt{n}$, for any β. We could have chosen a smaller value of m leading to the same asymptotic efficiency, but depending on δ.

Asymptotic properties of \widehat{S}_{m}^{1} and \widehat{S}^{2}

Using the so-called Delta method, one can extend these properties of the numerators to the estimators of the Sobol index S :

Theorem (Asymptotic Normality)

(i) Under the same assumptions as in the previous theorem, we have

$$
\sqrt{n}\left(\hat{S}_{m}^{1}-S\right) \underset{n \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, \frac{\operatorname{Var}(U)}{(\operatorname{Var}(Y))^{2}}\right)
$$

where $U:=2 Y<X, \beta>-S(Y-\mathbb{E}(Y))^{2}$.
(ii) Since $\mathbb{E}\left(Y^{4}\right)<\infty$,

$$
\sqrt{n}\left(\widehat{S}^{2}-S\right) \underset{n \rightarrow \infty}{\stackrel{\mathcal{L}}{\rightarrow}} \mathcal{N}\left(0, \frac{\operatorname{Var}(V)}{(\operatorname{Var}(Y))^{2}}\right)
$$

where $V:=$

$$
(Y-\mathbb{E}(Y))\left(Y^{X}-\mathbb{E}(Y)\right)-S^{X} / 2\left((Y-\mathbb{E}(Y))^{2}+\left(Y^{X}-\mathbb{E}(Y)\right)^{2}\right)
$$

Remark

- For independent inputs, we establish more generally in the product space
- the consistency
- the asymptotic normality
- the asymptotic efficiency
of $\widehat{S}_{m}^{1}:=\left(\widehat{S}_{m}^{(1,1)}, \ldots, \widehat{S}_{m}^{(1, p)}\right)$ and $\widehat{S}^{2}:=\left(\widehat{S}^{(2,1)}, \ldots, \widehat{S}^{(2, p)}\right)$ to the vector of Sobol indices

$$
S:=\left(S^{(1)}, \ldots, S^{(p)}\right)
$$

the indices 1 and 2 refer to the first and second estimators.

- One can also generalize these results to Sobol indices defined for subsets $I \subset\{1, \ldots, p\}$.

Outline of the talk

Estimators considered A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$ A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$
 Asymptotic properties of the estimators

Numerical Applications

Conclusion

We consider the model with $p=2, \mu=0$ and $\varepsilon=0$:

$$
Y=<\beta^{1}, X^{1}>+<\beta^{2}, X^{2}>
$$

(1) First Model : $\gamma^{i}=\left(\gamma_{1}^{i}, \gamma_{2}^{i}, \gamma_{3}^{i}, \ldots\right)$ for $i=1, \ldots, 2$

$$
\gamma_{I}^{i}=I^{\delta_{i}} \quad \text { for } \quad 1 \leq I \leq L \quad \text { and } \quad \gamma_{I}^{i}=0 \quad \text { for } \quad I>L ;
$$

with $i=1 \ldots 2$ and $\delta_{i}=(-1 / 2-1 / 100)$.
(2) Second Model : $\gamma^{i}=\left(0, \gamma_{2}^{i}, \gamma_{3}^{i}, \ldots\right)$ for $i=1, \ldots, 2$.
(3) Third Model : $\gamma^{i}=\left(\gamma_{3}^{i}, \gamma_{4}^{i}, \gamma_{5}^{i}, \ldots\right)$ for $i=1, \ldots, 2$.

We perform $N_{\text {sim }}=5000$ simulations and we study the influence of the parameter n, where $3 n$ observations are used for both methods. We set $L=500$ and $m=\lfloor\sqrt{3 n} / \log (3 n)\rfloor$.

First Model : $S=(0.5107,0.4893)$		
n	$\operatorname{RMSE}\left(\hat{S}_{m}\right)$	$\operatorname{RMSE}\left(\hat{S}_{S P F}\right)$
10^{2}	$10^{-2}[7.17,7.21]$	$10^{-2}[8.95,9.14]$
10^{3}	$10^{-2}[2.26,2.20]$	$10^{-2}[2.79,2.83]$
Second Model : $S=(0.7535,0.2465)$		
n	$\operatorname{RMSE}\left(\hat{S}_{m}\right)$	$\operatorname{RMSE}\left(\hat{S}_{S P F}\right)$
10^{2}	$10^{-2}[8.07,5.45]$	$10^{-2}[7.80,9.90]$
10^{3}	$10^{-2}[2.52,1.71]$	$10^{-2}[2.41,3.13]$
Third Model $: S=(0.8655,0.1345)$		
n	$\operatorname{RMSE}\left(\hat{S}_{m}\right)$	
10^{2}	$10^{-1}[3.01,0.48]$	$10^{-2}[7.12,9.97]$
10^{3}	$10^{-2}[4.67,1.28]$	$10^{-2}[2.24,3.17]$

We consider the model with $p=4, \mu=0$ and $\varepsilon=0$:

$$
Y=\sum_{k=1}^{4}<\beta^{k}, X^{k}>
$$

(1) First Model : $\gamma^{i}=\left(\gamma_{1}^{i}, \gamma_{2}^{i}, \gamma_{3}^{i}, \ldots\right)$ for $i=1, \ldots, 4$

$$
\gamma_{I}^{i}=(I+1)^{\delta_{i}} \quad \text { for } \quad 1 \leq I \leq L \quad \text { and } \quad \gamma_{I}^{i}=0 \quad \text { for } \quad I>L
$$

$$
\text { with } i=1 \ldots 4 \text { and } \delta_{i}=(-1 / 2-1 / 100,-1,-2,3 / 2)
$$

(2) Second Model : $\gamma^{i}=\left(0, \gamma_{2}^{i}, \gamma_{3}^{i}, \ldots\right)$ for $i=1, \ldots, 4$.
(3) Third Model : $\gamma^{i}=\left(\gamma_{3}^{i}, \gamma_{4}^{i}, \gamma_{5}^{i}, \ldots\right)$ for $i=1, \ldots, 4$.

We perform $N_{\text {sim }}=5000$ simulations and we study the influence of the parameter n, where $5 n$ observations are used for both methods.
We set $L=500$ and $m=\lfloor\sqrt{5 n} / \log (5 n)\rfloor$.

First Model : $S=(0.5438,0.2639,0.0635,0.1288)$

First Model $: S=(0.5438,0.2639,0.0635,0.1288)$		
n	$\operatorname{RMSE}\left(\hat{S}_{m}\right)$	$\operatorname{RMSE}\left(\hat{S}_{S P F}\right)$
10^{2}	$10^{-2}[5.55,4.29,2.35,3.22]$	$10^{-2}[9.92,9.80,9.75,9.63]$
10^{3}	$10^{-2}[1.82,1.36,0.72,0.99]$	$10^{-2}[3.13,3.12,3.11,3.06]$

Second Model $: S=(0.7080,0.2085,0.0200,0.0635])$		
n	$\operatorname{RMSE}\left(\hat{S}_{m}\right)$	$\operatorname{RMSE}\left(\hat{S}_{\text {SPF }}\right)$
10^{2}	$10^{-2}[6.35,3.92,1.47,2.31]$	$10^{-1}[1.04,0.99,0.99,0.99]$
10^{3}	$10^{-2}[1.92,1.22,0.41,0.73]$	$10^{-2}[3.29,3.15,3.19,3.14]$

Third Model $: S=(0.7561,0.1871,0.0112,0.0456)$		
n	$\operatorname{RMSE}\left(\hat{S}_{m}\right)$	$\operatorname{RMSE}\left(\hat{S}_{S P F}\right)$
10^{2}	$10^{-2}[6.14,3.72,1.22,2.01]$	$10^{-1}[1.07,1.00,1.01,0.99]$
10^{3}	$10^{-2}[1.97,1.17,0.33,0.60]$	$10^{-2}[3.36,3.16,3.14,3.13]$

Outline of the talk

Estimators considered A first estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$ A second estimation of $\operatorname{Var}(\mathbb{E}(Y \mid X))$
 Asymptotic properties of the estimators

Numerical Applications

Conclusion
(1) We construct two different estimators of

$$
S:=\left(S^{(1)}, \ldots, S^{(p)}\right)
$$

based on two different designs of experiment for the functional linear regression.
(2) The first one \widehat{S}_{m}^{1} is based on the Karhunen-Loève expansion of the covariance operator $\Gamma(f)=\mathbb{E}(<X, f\rangle X)$ and performs better for large values of p.
(3) Nevertheless, it is more complex and requires the knowledge of the λ_{j} and φ_{j} that can be estimated in a future work.
(9) The second is more general and applies whatever the context but is performing as well.

Bibliography

J.C. Fort, T. Klein, A. Lagnoux, B. Laurent. "Estimation of the Sobol indices in a linear functional multidimensional model", JSPI, 2013.
N. Hilgert, A. Mas, N. Verzelen. "Minimax adaptive tests for the functional linear model", Annals of Statistics, in press, Arxiv : 1206.1094.
A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur. " Asymptotic normality and efficiency of a Sobol index estimator", ESAIM P\&S, 2013.
I.M. Sobol. "Sensitivity estimates for nonlinear mathematical models", Math. Mod. Comput. Exp., 1993.

