Asymp. Prop.

Num. Appl.

Conclusion

Estimation of the Sobol indices in a linear functional multidimensional model

J.C. Fort, T. Klein, A. Lagnoux and B. Laurent*

* Institut de Mathématiques de Toulouse TOULOUSE - FRANCE

7th International Conference on Sensitivity Analysis of Model Output Nice - July 1-4, 2013

This work has been partially supported by the French National Research Agency through COSINUS program: Costa-Brava project

Num. Appl.

Conclusion

Let \mathbb{H} a separable Hilbert space endowed with the scalar product <, >. Usually $\mathbb{H} = L^2$.

We consider the following linear model

$$Y = \mu + \sum_{k=1}^{p} < \beta^{k}, X^{k} > +\varepsilon$$
(1)

X^k are centered stochastic processes ∈ ℍ st 𝔼(||X^k||⁴) < ∞;
β^k are elements of ℍ;

• ε is a centered noise independent of the X^k 's st $\mathbb{E}(\|\varepsilon\|^4) < \infty$.

Remark : such a model can arise for example when one wants to define a metamodel to replace an expensive black-box.

Our goal is to quantify the influence of X^k on Y, for $k = 1 \dots p$.

We use as the suggested by Hoeffding decomposition the Sobol index

$$S^{(k)} := rac{\operatorname{Var}(\mathbb{E}(Y|X^k)))}{\operatorname{Var}(Y)}, \qquad k = 1 \dots p.$$

Our goal is to quantify the influence of X^k on Y, for $k = 1 \dots p$.

We use as the suggested by Hoeffding decomposition the Sobol index

$$S^{(k)} := rac{\operatorname{Var}(\mathbb{E}(Y|X^k))}{\operatorname{Var}(Y)}, \qquad k = 1 \dots p.$$

The model : Let us restrict to p = 1 and consider

$$Y = \mu + \langle \beta, X \rangle + \varepsilon \tag{2}$$

In this setting, the quantity to estimate

$$S = rac{\operatorname{Var}(\mathbb{E}(Y|X))}{\operatorname{Var}(Y)}$$

is of less interest, but the computations then easily extend to the generic model.

Asymp. Prop

Num. Appl.

Conclusion

Outline of the talk

Estimators considered

A first estimation of $Var(\mathbb{E}(Y|X))$ A second estimation of $Var(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

Num. Appl.

Conclusion

Outline of the talk

Estimators considered

A first estimation of $Var(\mathbb{E}(Y|X))$ A second estimation of $Var(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

Num. Appl.

Conclusion

A first estimation of $Var(\mathbb{E}(Y|X))$

Precisions on the framework

The observations consist in *n* i.i.d. copies (X_i, Y_i) of (X, Y).

Since Var(Y) is naturally estimated by the empirical variance based on (Y_1, \ldots, Y_n)

$$\frac{1}{n}\sum_{i=1}^n\left(Y_i-\frac{1}{n}\sum_{i=1}^nY_i\right)^2,$$

the main purpose is to estimate the quantity $\operatorname{Var}(\mathbb{E}(Y|X))$.

A first estimation of $Var(\mathbb{E}(Y|X))$

Our approach is based on the so-called Karhunen-Loève decomposition of the processes X and β :

$$X = \sum_{j=1}^{\infty} \sqrt{\lambda_j} \xi_j \varphi_j$$
 and $\beta = \sum_{j=1}^{\infty} \gamma_j \varphi_j$

with ξ_j centered and uncorrelated random variables. Then

$$< X, \varphi_j > = \sqrt{\lambda_j} \xi_j.$$

Num. Appl.

Conclusion

A first estimation of $Var(\mathbb{E}(Y|X))$

Notice that

Est.

0000

$$\mathbb{E}(YX) = \mathbb{E}(\langle X, \beta \rangle X) = \mathbb{E}\left[\left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \gamma_l \xi_l\right) \left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \xi_l \varphi_l\right)\right]$$
$$= \mathbb{E}\left[\left(\sum_{l=1}^{\infty} \lambda_l \gamma_l \xi_l^2 \varphi_l\right)\right] = \sum_{l=1}^{\infty} \lambda_l \gamma_l \varphi_l$$

Num. Appl.

Conclusion

A first estimation of $Var(\mathbb{E}(Y|X))$

Notice that

Est.

$$\mathbb{E}(YX) = \mathbb{E}(\langle X, \beta \rangle X) = \mathbb{E}\left[\left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \gamma_l \xi_l\right) \left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \xi_l \varphi_l\right)\right]$$
$$= \mathbb{E}\left[\left(\sum_{l=1}^{\infty} \lambda_l \gamma_l \xi_l^2 \varphi_l\right)\right] = \sum_{l=1}^{\infty} \lambda_l \gamma_l \varphi_l$$

As a consequence, $\gamma_j = \frac{1}{\lambda_j} < \mathbb{E}(YX), \varphi_j >$ that is naturally estimated by

$$\widehat{\gamma}_j = \frac{1}{\lambda_j} \frac{1}{n} \sum_{i=1}^n \langle X_i, \varphi_j \rangle Y_i.$$

Num. Appl.

Conclusion

A first estimation of $Var(\mathbb{E}(Y|X))$

• First, we have

$$\widehat{\gamma}_j = \frac{1}{\lambda_j} \frac{1}{n} \sum_{i=1}^n \langle X_i, \varphi_j \rangle Y_i.$$

Num. Appl.

Conclusion

A first estimation of $Var(\mathbb{E}(Y|X))$

• First, we have

Est.

$$\widehat{\gamma}_j = \frac{1}{\lambda_j} \frac{1}{n} \sum_{i=1}^n \langle X_i, \varphi_j \rangle Y_i.$$

• Second, expansion in the KL basis gives

$$\operatorname{Var}(\mathbb{E}(Y|X)) = \mathbb{E}(^2) = \sum_{j=1}^{\infty} \lambda_j \gamma_j^2.$$

A natural estimation of $Var(\mathbb{E}(Y|X))$ is then

$$\widehat{E}_m^1 = \sum_{l=1}^m \frac{1}{\lambda_l} \frac{1}{n(n-1)} \sum_{1 \le i \ne j \le n} Y_i < X_i, \varphi_l > Y_j < X_j, \varphi_l > .$$

A second estimation of $Var(\mathbb{E}(Y|X))$

• We consider another design of experiment : let ε' be a copy of ε , independent of X and ε and

$$\left\{ \begin{array}{ll} Y &= \mu + < X, \beta > + \varepsilon \\ Y^X &= \mu + < X, \beta > + \varepsilon' \end{array} \right.$$

• Now the observations consist in (1) *n*-sample of $(X, Y) : (X_i, Y_i), 1 \le i \le n$. (2) *n*-sample of $(X, Y^X) : (X_i, Y_i^X), 1 \le i \le n$.

A second estimation of $Var(\mathbb{E}(Y|X))$

• We consider another design of experiment : let ε' be a copy of $\varepsilon,$ independent of X and ε and

$$\left\{ \begin{array}{ll} Y &= \mu + < X, \beta > + \varepsilon \\ Y^X &= \mu + < X, \beta > + \varepsilon' \end{array} \right.$$

- Now the observations consist in (1) *n*-sample of $(X, Y) : (X_i, Y_i), 1 \le i \le n$. (2) *n*-sample of $(X, Y^X) : (X_i, Y_i^X), 1 \le i \le n$.
- Var(Y) is naturally estimated by the empirical variance based on (Y₁,..., Y_n) and (Y^X₁,..., Y^X_n)

$$\frac{1}{2n}\sum_{i=1}^{n}\left[\left(Y_{i}\right)^{2}+\left(Y_{i}^{X}\right)^{2}\right]-\left(\frac{1}{2n}\sum_{i=1}^{n}\left[Y_{i}+Y_{i}^{X}\right]\right)^{2}.$$

Conclusion

A second estimation of $Var(\mathbb{E}(Y|X))$

• It remains to estimate $Var(\mathbb{E}(Y|X))$ that can be rewritten as

$$\operatorname{Var}(\mathbb{E}(Y|X)) = \operatorname{Cov}(Y, Y^X).$$

• A natural estimation of $\operatorname{Var}(\mathbb{E}(Y|X))$ is then :

$$\widehat{E}^2 = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^X - \left(\frac{1}{2n} \sum_{i=1}^n \left[Y_i + Y_i^X\right]\right)^2.$$

Num. Appl.

Conclusion

Straighforwardly \widehat{E}_m^1 is biased and

$$\mathbf{B}_m = \mathbb{E}(\widehat{E}_m^1) - \operatorname{Var}(\mathbb{E}(Y|X)) = \sum_{l=m+1}^{\infty} \lambda_l \gamma_l^2$$

whereas \widehat{E}^2 is unbiased.

Num. Appl.

Conclusion

Straighforwardly \widehat{E}_m^1 is biased and

$$\mathbf{B}_m = \mathbb{E}(\widehat{E}_m^1) - \operatorname{Var}(\mathbb{E}(Y|X)) = \sum_{l=m+1}^{\infty} \lambda_l \gamma_l^2$$

whereas \widehat{E}^2 is unbiased.

Some statistical questions :

- Are \widehat{E}_m^1 and \widehat{E}^2 "good" estimators for $\operatorname{Var}(\mathbb{E}(Y|X))$?
- ② Are they consistent? If yes, what is the rate of convergence? Answer : Central Limit Theorem (cv in √n).
- In they asymptotically efficient?
- Can we measure their quality at a fixed n?
 Answer : Berry-Esseen and/or concentration inequalities.
- Solution Are the estimators and designs of experiment comparable?

Asymp. Prop.

Num. Appl.

Conclusion

Outline of the talk

Estimators considered

A first estimation of $Var(\mathbb{E}(Y|X))$ A second estimation of $Var(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

Conclusion

Asymptotic properties of \widehat{E}_m^1

Consistency : \widehat{E}_m^1 and $\widehat{E}^2 \xrightarrow[n \to \infty]{\mathbb{P}}$ are consistent.

Num. Appl.

Conclusion

Est 00 00

Asymptotic properties of \widehat{E}_m^1

 $\begin{array}{l} \text{Consistency}: \widehat{E}_m^1 \text{ and } \widehat{E}^2 \xrightarrow[n \to \infty]{\mathbb{P}} \\ \text{Asymptotic normality} \end{array} \text{ are consistent.} \end{array}$

$$\widehat{E}_m^1 = \sum_{l=1}^m \frac{1}{\lambda_j} \frac{1}{n(n-1)} \sum_{1 \le i \ne j \le n} Y_i < X_i, \varphi_l > Y_j < X_j, \varphi_l >$$

= $U_n K + P_n L - \mathbf{B}_m + \operatorname{Var}(\mathbb{E}(Y|X))$

with
$$U_n K = \sum_{l=1}^m \frac{1}{\lambda_l} \frac{1}{n(n-1)} \sum_{1 \le i \ne j \le n} Z_{i,l}^c \underbrace{Z_{j,l}^c}_{Y_i < X_i, \varphi_l > -\mathbb{E}(Y_j < X_j, \varphi_l >)}$$

and $P_n L = \frac{2}{n} \sum_{l=1}^m \sum_{i=1}^n \gamma_l Z_{i,l}^c$.

Asymp. Prop.

Num. Appl.

Conclusion

Asymptotic properties of \widehat{E}_m^1

We want to show

$$\mathbf{B}_m^2 = o\left(\frac{1}{n}\right), \quad U_n K = o_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right), \quad \sqrt{n} P_n L \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, C(\beta))$$

Asymp. Prop.

Num. Appl.

Conclusion

Asymptotic properties of \widehat{E}_m^1

We want to show

$$\mathbf{B}_m^2 = o\left(\frac{1}{n}\right), \quad U_n K = o_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right), \quad \sqrt{n} P_n L \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, C(\beta))$$

Assumptions :

- (A1) $\mathbb{E}(\|X\|^4) < +\infty$ and $\mathbb{E}(\varepsilon^4) < +\infty$.
- (A2) $\sup_{l\geq 1}\mathbb{E}(\xi_l^4)<+\infty.$
- (A3) there exist C>0 and $\delta>1$ such that

$$\forall l\geq 1, \quad \lambda_l\leq Cl^{-\delta}.$$

Now let $m = m(n) = \sqrt{n}h(n)$, where h(n) satisfies : $h(n) \to 0$ and $\forall \alpha > 0$, $n^{\alpha}h(n) \to +\infty$ as $n \to +\infty$.

Theorem (Asymptotic normality)

(i) Since $\widehat{E}_m^1 - Var(\mathbb{E}(Y|X)) = U_n K + P_n L - \mathbf{B}_m$ and assuming (A1-3) and $n^{1/2(\delta+2s)} \ll m \ll \sqrt{n}$, one gets

$$\begin{cases} \mathbf{B}_m^2 = o\left(\frac{1}{n}\right) & \mathbb{E}\left((U_n K)^2\right) = o\left(\frac{1}{n}\right) \\ \sqrt{n} P_n L \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 4 \operatorname{Var}(Y < X, \beta >)) \end{cases}$$

then
$$\sqrt{n}(\widehat{E}_m^1 - \operatorname{Var}(\mathbb{E}(Y|X))) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 4\operatorname{Var}(Y < X, \beta >)).$$

(ii) Since
$$\mathbb{E}(Y^4) < \infty$$
,
 $\sqrt{n}(\widehat{E}^2 - \operatorname{Var}(\mathbb{E}(Y|X))) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \operatorname{Var}((Y - \mathbb{E}(Y))(Y^X - \mathbb{E}(Y^X)))).$

Num. Appl.

Conclusion

Comments

We may assume that $h(n) = 1/\log(n)$, and hence $m(n) = \sqrt{n}/\log n$, to fill the condition

$$\forall \alpha > 0, \lim_{n \to \infty} n^{\alpha} h(n) = +\infty.$$

The estimator \widehat{V}_m^X converges at the parametric rate $1/\sqrt{n}$, for any β . We could have chosen a smaller value of *m* leading to the same asymptotic efficiency, but depending on δ .

0000

Asymptotic properties of \widehat{S}_m^1 and \widehat{S}^2

Using the so-called Delta method, one can extend these properties of the numerators to the estimators of the Sobol index S:

Theorem (Asymptotic Normality)

(i) Under the same assumptions as in the previous theorem, we have

$$\sqrt{n}\left(\widehat{S}_m^1-S
ight) \stackrel{\mathcal{L}}{\underset{n \to \infty}{\rightarrow}} \mathcal{N}\left(0, \frac{\operatorname{Var}(U)}{(\operatorname{Var}(Y))^2}
ight)$$

where $U := 2Y < X, \beta > -S(Y - \mathbb{E}(Y))^2$.

(ii) Since $\mathbb{E}(Y^4) < \infty$,

$$\sqrt{n}\left(\widehat{S}^2-S
ight)\stackrel{\mathcal{L}}{\underset{n
ightarrow\infty}{
ightarrow}}\mathcal{N}\left(0,rac{\mathrm{Var}(\mathcal{V})}{(\mathrm{Var}(\mathcal{Y}))^2}
ight)$$

where V := $(Y - \mathbb{E}(Y))(Y^X - \mathbb{E}(Y)) - S^X/2((Y - \mathbb{E}(Y))^2 + (Y^X - \mathbb{E}(Y))^2).$

Remark

- For independent inputs, we establish more generally in the product space
 - the consistency
 - the asymptotic normality
 - the asymptotic efficiency

of $\widehat{S}_m^1 := (\widehat{S}_m^{(1,1)}, \dots, \widehat{S}_m^{(1,p)})$ and $\widehat{S}^2 := (\widehat{S}^{(2,1)}, \dots, \widehat{S}^{(2,p)})$ to the vector of Sobol indices

$$S:=(S^{(1)},\ldots,S^{(p)}),$$

the indices 1 and 2 refer to the first and second estimators.

 One can also generalize these results to Sobol indices defined for subsets I ⊂ {1,..., p}.

Asymp. Prop

Num. Appl.

Conclusion

Outline of the talk

Estimators considered

A first estimation of $Var(\mathbb{E}(Y|X))$ A second estimation of $Var(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

Asymp. Prop.

Num. Appl.

Conclusion

We consider the model with $p=2,\ \mu=0$ and $\varepsilon=0$:

$$Y = <\beta^1, X^1 > + <\beta^2, X^2 >$$

• First Model : $\gamma^i = (\gamma_1^i, \gamma_2^i, \gamma_3^i, ...)$ for i = 1, ..., 2 $\gamma_I^i = I^{\delta_i}$ for $1 \le I \le L$ and $\gamma_I^i = 0$ for I > L;

with i = 1...2 and $\delta_i = (-1/2 - 1/100)$.

Second Model : γⁱ = (0, γⁱ₂, γⁱ₃, ...) for i = 1,...,2.
 Third Model : γⁱ = (γⁱ₃, γⁱ₄, γⁱ₅, ...) for i = 1,...,2.

We perform $N_{sim} = 5000$ simulations and we study the influence of the parameter *n*, where 3n observations are used for both methods. We set L = 500 and $m = \lfloor \sqrt{3n} / \log(3n) \rfloor$.

First Model : $S = (0.5107, 0.4893)$			
n	$RMSE(\hat{S}_m)$	$RMSE(\hat{S}_{SPF})$	
10 ²	10^{-2} [7.17, 7.21]	$10^{-2}[8.95, 9.14]$	
10 ³	$10^{-2}[2.26, 2.20]$	$10^{-2}[2.79, 2.83]$	
Second Model : <i>S</i> = (0.7535, 0.2465)			
n	$RMSE(\hat{S}_m)$	$RMSE(\hat{S}_{SPF})$	
10 ²	10 ⁻² [8.07, <mark>5.45</mark>]	10^{-2} [7.80, 9.90]	
10 ³	$10^{-2}[2.52, 1.71]$	10 ⁻² [2.41, 3.13]	
Third Model : $S = (0.8655, 0.1345)$			
n	$RMSE(\hat{S}_m)$	$RMSE(\hat{S}_{SPF})$	
10 ²	10 ⁻¹ [3.01, <mark>0.48</mark>]	10^{-2} [7.12, 9.97]	
10 ³	$10^{-2}[4.67, 1.28]$	10 ⁻² [2.24, 3.17]	

Num. Appl.

Conclusion

We consider the model with p = 4, $\mu = 0$ and $\varepsilon = 0$:

$$Y = \sum_{k=1}^4 < \beta^k, X^k >$$

• First Model :
$$\gamma^i = (\gamma_1^i, \gamma_2^i, \gamma_3^i, \ldots)$$
 for $i = 1, \ldots, 4$

$$\gamma_l^i = (l+1)^{\delta_i} \quad \text{for} \quad 1 \le l \le L \quad \text{and} \quad \gamma_l^i = 0 \quad \text{for} \quad l > L;$$

with i = 1...4 and $\delta_i = (-1/2 - 1/100, -1, -2, 3/2)$.

Second Model : $\gamma^i = (0, \gamma_2^i, \gamma_3^i, \ldots)$ for $i = 1, \ldots, 4$.

Solution Third Model : $\gamma^i = (\gamma_3^i, \gamma_4^i, \gamma_5^i, \ldots)$ for $i = 1, \ldots, 4$.

We perform $N_{sim} = 5000$ simulations and we study the influence of the parameter *n*, where 5*n* observations are used for both methods. We set L = 500 and $m = \lfloor \sqrt{5n} / \log(5n) \rfloor$.

First Model : $S = (0.5438, 0.2639, 0.0635, 0.1288)$				
n	$RMSE(\hat{S}_m)$	$RMSE(\hat{S}_{SPF})$		
	$10^{-2}[5.55, 4.29, 2.35, 3.22]$	$10^{-2}[9.92, 9.80, 9.75, 9.63]$		
10 ³	$10^{-2}[1.82, 1.36, 0.72, 0.99]$	$10^{-2}[3.13, 3.12, 3.11, 3.06]$		

Second Model : $S = (0.7080, 0.2085, 0.0200, 0.0635])$				
n	$RMSE(\hat{S}_m)$	$RMSE(\hat{S}_{SPF})$		
	$10^{-2}[6.35, 3.92, 1.47, 2.31]$			
10 ³	$10^{-2}[1.92, 1.22, 0.41, 0.73]$	$10^{-2}[3.29, 3.15, 3.19, 3.14]$		

Third Model : $S = (0.7561, 0.1871, 0.0112, 0.0456)$				
n	$RMSE(\hat{S}_m)$	$RMSE(\hat{S}_{SPF})$		
	$10^{-2}[6.14, 3.72, 1.22, 2.01]$			
10 ³	$10^{-2}[1.97, 1.17, 0.33, 0.60]$	$10^{-2}[3.36, 3.16, 3.14, 3.13]$		

Asymp. Prop

Num. Appl.

Conclusion

Outline of the talk

Estimators considered

A first estimation of $Var(\mathbb{E}(Y|X))$ A second estimation of $Var(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion

Asymp. Prop.

Num. Appl.

Conclusion

We construct two different estimators of

$$S := (S^{(1)}, \ldots, S^{(p)}),$$

based on two different designs of experiment for the functional linear regression.

- On the first one S¹_m is based on the Karhunen-Loève expansion of the covariance operator Γ(f) = E(< X, f > X) and performs better for large values of p.
- Overtheless, it is more complex and requires the knowledge of the λ_i and φ_i that can be estimated in a future work.
- The second is more general and applies whatever the context but is performing as well.

Num. Appl.

Conclusion

Bibliography

J .C. Fort, T. Klein, A. Lagnoux, B. Laurent. "Estimation of the Sobol indices in a linear functional multidimensional model", *JSPI*, 2013.

N. Hilgert, A. Mas, N. Verzelen. "Minimax adaptive tests for the functional linear model", *Annals of Statistics*, in press, Arxiv : 1206.1094.

A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur. "Asymptotic normality and efficiency of a Sobol index estimator", *ESAIM P&S*, 2013.

I.M. Sobol. "Sensitivity estimates for nonlinear mathematical models", *Math. Mod. Comput. Exp.*, 1993.