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Let H a separable Hilbert space endowed with the scalar product
<,>. Usually H = L2.
We consider the following linear model

Y = µ+

p∑

k=1

< βk ,X k > +ε (1)

X k are centered stochastic processes ∈ H st E(‖X k‖4) < ∞ ;

βk are elements of H ;

ε is a centered noise independent of the X k ’s st E(‖ε‖4) < ∞.

Remark : such a model can arise for example when one wants to
define a metamodel to replace an expensive black-box.
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Our goal is to quantify the influence of X k on Y , for k = 1 . . . p.

We use as the suggested by Hoeffding decomposition the Sobol
index

S (k) :=
Var(E(Y |X k))

Var(Y )
, k = 1 . . . p.
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Our goal is to quantify the influence of X k on Y , for k = 1 . . . p.

We use as the suggested by Hoeffding decomposition the Sobol
index

S (k) :=
Var(E(Y |X k))

Var(Y )
, k = 1 . . . p.

The model : Let us restrict to p = 1 and consider

Y = µ+ < β,X > +ε (2)

In this setting, the quantity to estimate

S =
Var(E(Y |X ))

Var(Y )

is of less interest, but the computations then easily extend to the
generic model.
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A first estimation of Var(E(Y |X ))

Precisions on the framework

The observations consist in n i.i.d. copies (Xi ,Yi ) of (X ,Y ).

Since Var(Y ) is naturally estimated by the empirical variance
based on (Y1, . . . ,Yn)

1

n

n∑

i=1

(
Yi −

1

n

n∑

i=1

Yi

)2

,

the main purpose is to estimate the quantity Var(E(Y |X )).
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A first estimation of Var(E(Y |X ))

Our approach is based on the so-called Karhunen-Loève
decomposition of the processes X and β :

X =

∞∑

j=1

√
λjξjϕj and β =

∞∑

j=1

γjϕj

with ξj centered and uncorrelated random variables. Then

< X , ϕj >=
√
λjξj .
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A first estimation of Var(E(Y |X ))

Notice that

E(YX ) = E(< X , β > X ) = E

[(
∞∑

l=1

√
λlγlξl

)(
∞∑

l=1

√
λlξlϕl

)]

= E

[(
∞∑

l=1

λlγlξ
2
l ϕl

)]
=

∞∑

l=1

λlγlϕl
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A first estimation of Var(E(Y |X ))

Notice that

E(YX ) = E(< X , β > X ) = E

[(
∞∑

l=1

√
λlγlξl

)(
∞∑

l=1

√
λlξlϕl

)]

= E

[(
∞∑

l=1

λlγlξ
2
l ϕl

)]
=

∞∑

l=1

λlγlϕl

As a consequence, γj =
1
λ j

< E(YX ), ϕj > that is naturally
estimated by

γ̂j =
1

λj

1

n

n∑

i=1

< Xi , ϕj > Yi .
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A first estimation of Var(E(Y |X ))

First, we have

γ̂j =
1

λj

1

n

n∑

i=1

< Xi , ϕj > Yi .
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A first estimation of Var(E(Y |X ))

First, we have

γ̂j =
1

λj

1

n

n∑

i=1

< Xi , ϕj > Yi .

Second, expansion in the KL basis gives

Var(E(Y |X )) = E(< β,X >2) =

∞∑

j=1

λjγ
2
j .

A natural estimation of Var(E(Y |X )) is then

Ê 1
m =

m∑

l=1

1

λl

1

n(n − 1)

∑

1≤i 6=j≤n

Yi < Xi , ϕl > Yj < Xj , ϕl > .
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A second estimation of Var(E(Y |X ))

We consider another design of experiment : let ε′ be a copy of
ε, independent of X and ε and

{
Y = µ+ < X , β > +ε
Y X = µ+ < X , β > +ε′

Now the observations consist in
(1) n-sample of (X ,Y ) : (Xi ,Yi ), 1 ≤ i ≤ n.
(2) n-sample of (X ,Y X ) : (Xi ,Y

X
i ), 1 ≤ i ≤ n.
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A second estimation of Var(E(Y |X ))

We consider another design of experiment : let ε′ be a copy of
ε, independent of X and ε and

{
Y = µ+ < X , β > +ε
Y X = µ+ < X , β > +ε′

Now the observations consist in
(1) n-sample of (X ,Y ) : (Xi ,Yi ), 1 ≤ i ≤ n.
(2) n-sample of (X ,Y X ) : (Xi ,Y

X
i ), 1 ≤ i ≤ n.

Var(Y ) is naturally estimated by the empirical variance based
on (Y1, . . . ,Yn) and (Y X

1 , . . . ,Y X
n )

1

2n

n∑

i=1

[
(Yi )

2 +
(
Y X
i

)2]−
(

1

2n

n∑

i=1

[
Yi + Y X

i

]
)2

.
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A second estimation of Var(E(Y |X ))

It remains to estimate Var(E(Y |X )) that can be rewritten as

Var(E(Y |X )) = Cov(Y ,Y X ).

A natural estimation of Var(E(Y |X )) is then :

Ê 2 =
1

n

n∑

i=1

YiY
X
i −

(
1

2n

n∑

i=1

[
Yi + Y X

i

]
)2

.
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Straighforwardly Ê 1
m is biased and

Bm = E(Ê 1
m)−Var(E(Y |X )) =

∞∑

l=m+1

λlγ
2
l

whereas Ê 2 is unbiased.
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Straighforwardly Ê 1
m is biased and

Bm = E(Ê 1
m)−Var(E(Y |X )) =

∞∑

l=m+1

λlγ
2
l

whereas Ê 2 is unbiased.

Some statistical questions :

1 Are Ê 1
m and Ê 2 “good”estimators for Var(E(Y |X )) ?

2 Are they consistent ? If yes, what is the rate of convergence ?
Answer : Central Limit Theorem (cv in

√
n).

3 Are they asymptotically efficient ?

4 Can we measure their quality at a fixed n ?
Answer : Berry-Esseen and/or concentration inequalities.

5 Are the estimators and designs of experiment comparable ?
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Asymptotic properties of Ê 1
m

Consistency : Ê 1
m and Ê 2 P→

n→∞
are consistent.
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Asymptotic properties of Ê 1
m

Consistency : Ê 1
m and Ê 2 P→

n→∞
are consistent.

Asymptotic normality

Ê 1
m =

m∑

l=1

1

λj

1

n(n − 1)

∑

1≤i 6=j≤n

Yi < Xi , ϕl > Yj < Xj , ϕl >

= UnK + PnL− Bm +Var(E(Y |X ))

with UnK =

m∑

l=1

1

λl

1

n(n − 1)

∑

1≤i 6=j≤n

Z
c
i,l Z

c
j,l

︸︷︷︸

Yi<Xi ,ϕl>−E(Yj<Xj ,ϕl>)

and PnL =
2

n

m∑

l=1

n∑

i=1

γlZ
c
i,l .
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Asymptotic properties of Ê 1
m

We want to show

B2
m = o

(
1

n

)
, UnK = oP

(
1√
n

)
,

√
nPnL

L→
n→∞

N (0,C (β))
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Asymptotic properties of Ê 1
m

We want to show

B2
m = o

(
1

n

)
, UnK = oP

(
1√
n

)
,

√
nPnL

L→
n→∞

N (0,C (β))

Assumptions :

(A1) E(‖X‖4) < +∞ and E(ε4) < +∞.

(A2) supl≥1 E(ξ
4
l ) < +∞.

(A3) there exist C > 0 and δ > 1 such that

∀l ≥ 1, λl ≤ Cl−δ.

Now let m = m(n) =
√
nh(n), where h(n) satisfies : h(n) → 0 and

∀α > 0, nαh(n) → +∞ as n → +∞.
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Theorem (Asymptotic normality)

(i) Since Ê 1
m − Var(E(Y |X )) = UnK + PnL− Bm

and assuming (A1-3) and n1/2(δ+2s) << m <<
√
n, one gets

{
B2

m = o
(
1
n

)
E
(
(UnK )2

)
= o

(
1
n

)
√
nPnL

L→
n→∞

N (0, 4Var(Y < X , β >))

then
√
n(Ê 1

m −Var(E(Y |X )))
L→

n→∞
N (0, 4Var(Y < X , β >)).

(ii) Since E(Y 4) < ∞,

√
n(Ê 2−Var(E(Y |X )))

L→
n→∞

N (0,Var((Y−E(Y ))(Y X−E(Y X )))).
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Comments

We may assume that h(n) = 1/ log(n), and hence
m(n) =

√
n/log n, to fill the condition

∀α > 0, lim
n→∞

nαh(n) = +∞.

The estimator V̂ X
m converges at the parametric rate 1/

√
n, for any

β. We could have chosen a smaller value of m leading to the same
asymptotic efficiency, but depending on δ.
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Asymptotic properties of Ŝ1
m and Ŝ2

Using the so-called Delta method, one can extend these properties
of the numerators to the estimators of the Sobol index S :

Theorem (Asymptotic Normality)

(i) Under the same assumptions as in the previous theorem, we
have √

n
(
Ŝ1
m − S

)
L→

n→∞
N
(
0,

Var(U)

(Var(Y ))2

)

where U := 2Y < X , β > −S(Y − E(Y ))2.

(ii) Since E(Y 4) < ∞,

√
n
(
Ŝ2 − S

)
L→

n→∞
N
(
0,

Var(V )

(Var(Y ))2

)

where V :=
(Y −E(Y ))(Y X −E(Y ))−SX/2

(
(Y − E(Y ))2 + (Y X − E(Y ))2

)
.
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Remark

For independent inputs, we establish more generally in the
product space

• the consistency
• the asymptotic normality
• the asymptotic efficiency

of Ŝ1
m := (Ŝ

(1,1)
m , . . . , Ŝ

(1,p)
m ) and Ŝ2 := (Ŝ (2,1), . . . , Ŝ (2,p)) to

the vector of Sobol indices

S := (S (1), . . . , S (p)),

the indices 1 and 2 refer to the first and second estimators.

One can also generalize these results to Sobol indices defined
for subsets I ⊂ {1, . . . , p}.
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We consider the model with p = 2, µ = 0 and ε = 0 :

Y =< β1,X 1 > + < β2,X 2 >

1 First Model : γ i = (γ i1, γ
i
2, γ

i
3, . . .) for i = 1, . . . , 2

γ il = lδi for 1 ≤ l ≤ L and γ il = 0 for l > L;

with i = 1 . . . 2 and δi = (−1/2− 1/100).

2 Second Model : γ i = (0, γ i2, γ
i
3, . . .) for i = 1, . . . , 2.

3 Third Model : γ i = (γ i3, γ
i
4, γ

i
5, . . .) for i = 1, . . . , 2.

We perform Nsim = 5000 simulations and we study the influence of
the parameter n, where 3n observations are used for both methods.
We set L = 500 and m = ⌊

√
3n/ log(3n)⌋.
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First Model : S = (0.5107, 0.4893)

n RMSE(Ŝm) RMSE(ŜSPF )

102 10−2[7.17, 7.21] 10−2[8.95, 9.14]

103 10−2[2.26, 2.20] 10−2[2.79, 2.83]

Second Model : S = (0.7535, 0.2465)

n RMSE(Ŝm) RMSE(ŜSPF )

102 10−2[8.07, 5.45] 10−2[7.80, 9.90]

103 10−2[2.52, 1.71] 10−2[2.41, 3.13]

Third Model : S = (0.8655, 0.1345)

n RMSE(Ŝm) RMSE(ŜSPF )

102 10−1[3.01, 0.48] 10−2[7.12, 9.97]

103 10−2[4.67, 1.28] 10−2[2.24, 3.17]
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We consider the model with p = 4, µ = 0 and ε = 0 :

Y =

4∑

k=1

< βk ,X k >

1 First Model : γ i = (γ i1, γ
i
2, γ

i
3, . . .) for i = 1, . . . , 4

γ il = (l + 1)δi for 1 ≤ l ≤ L and γ il = 0 for l > L;

with i = 1 . . . 4 and δi = (−1/2− 1/100,−1,−2, 3/2).

2 Second Model : γ i = (0, γ i2, γ
i
3, . . .) for i = 1, . . . , 4.

3 Third Model : γ i = (γ i3, γ
i
4, γ

i
5, . . .) for i = 1, . . . , 4.

We perform Nsim = 5000 simulations and we study the influence of
the parameter n, where 5n observations are used for both methods.
We set L = 500 and m = ⌊

√
5n/ log(5n)⌋.
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First Model : S = (0.5438, 0.2639, 0.0635, 0.1288)

n RMSE(Ŝm) RMSE(ŜSPF )

102 10−2[5.55, 4.29, 2.35, 3.22] 10−2[9.92, 9.80, 9.75, 9.63]

103 10−2[1.82, 1.36, 0.72, 0.99] 10−2[3.13, 3.12, 3.11, 3.06]

Second Model : S = (0.7080, 0.2085, 0.0200, 0.0635])

n RMSE(Ŝm) RMSE(ŜSPF )

102 10−2[6.35, 3.92, 1.47, 2.31] 10−1[1.04, 0.99, 0.99, 0.99]

103 10−2[1.92, 1.22, 0.41, 0.73] 10−2[3.29, 3.15, 3.19, 3.14]

Third Model : S = (0.7561, 0.1871, 0.0112, 0.0456)

n RMSE(Ŝm) RMSE(ŜSPF )

102 10−2[6.14, 3.72, 1.22, 2.01] 10−1[1.07, 1.00, 1.01, 0.99]

103 10−2[1.97, 1.17, 0.33, 0.60] 10−2[3.36, 3.16, 3.14, 3.13]
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1 We construct two different estimators of

S := (S (1), . . . , S (p)),

based on two different designs of experiment for the functional
linear regression.

2 The first one Ŝ1
m is based on the Karhunen-Loève expansion of

the covariance operator Γ(f ) = E(< X , f > X ) and performs
better for large values of p.

3 Nevertheless, it is more complex and requires the knowledge
of the λj and ϕj that can be estimated in a future work.

4 The second is more general and applies whatever the context
but is performing as well.
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