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Aircraft IRS

- Context: optimization of a multispectral optronics sensor
sensor must detect aircraft far ahead

Computer program CRIRA => aircraft IRS according to aircraft properties
weather conditions

attack profiles
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Uncertainty on input data for a given scel

- Several data types:

Fixed data or
parameters defined by
scenario \
Uncertain data:
IRS integrated in

IR optical properties of surfaces .
S up to 20

flight conditions - aspect angles k /
atmospheric conditions L Black Box elementary bands

Take IRS dispersion into account to estimate optronics sensor properties

Dispersion on
vectorial outputs:

) Sensitivity Analysis: most important input variables

to acquire as a priority
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26 input variables: 23 continuous — 3 categorical

Four constraints: 1. Number of simulation runs must be small (<1000)

2. Some qualitative inputs: MODEL, CLOUDS, IHAZE
3. Some correlated quantitative inputs: RH, TA, HBASE
4. Correlated multidimensional outputs (5 up to 20)

=Use of a metamodel based on a small computer experimental design => estimation of
sensitivity indices

Many input variables + correlations + multidimensional outputs
=> Choice of PLS regression for this study
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Metamodel

Constraints 2-3-4 are taken into account by the use of a PLS regression metamodel

Here we assume that the outputs Y can be approximated by an incomplete polynomial model of
degree 3 M, with well chosen monomials:

26 variables — 381 monomials specified by the infrared signature expert

the 23 original continuous inputs,

their 23 squared terms,

their 23 cubic terms,

all the 253 two-input interaction terms between continuous inputs

the 3 categorical inputs coded with their (0/1)-indicator variables

54 two-input interactions terms between categorical and continuous inputs

— for a simulation run i with input variables X; = (X,;Jl, . X,;126): Y=M(X;) + y;
Y; 1s a metamodel error

ONERA



PLS Regression

PLS regression = bilinear method for relating d inputs to N outputs (Tenenhaus, Gauchi, Menardo 1995)
Yixn = XixaBaxn + €1xn

. / - Coeffici Error terms
Multlvarla.te Input matrix Coe 1c.1ents matrix
output matrix matrix

Principle: carry out a PCA of the set of inputs X, j=1..d subject to the constraint that the
orthogonal principal components ¢, are as explanatory as possible of the set of outputs variables

=>NIPALS iterative algorithm (Tenenhaus 1998)

The significant number H of principal components is obtained thanks to a specific cross-
validation test (Lazrag, Cléroux, Gauchi 2003)

= We obtain | ¥; = XixaPaxn -

Y

PLS estimation

Andthus V=M (X;) + & + ¥;

of B
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computer experimental design P

Step 1: We consider a large ~ 20000 network of candidate simulations (space filling desing):

- LHS for all quantitative variables except for meteorological ones
- non parametric reconstruction for the distribution of VIS and CLOUDS
- discrete distribution for the qualitative variables MODEL and IHAZE

- RH, TA and HBASE correlated => distribution estimation from 3200 measured data
Non parametric kernel reconstruction of marginal distributions + dependence modeling based
on a Normal copula C (Nelsen 2006) using OpenTURNS

Cumulative distribution fonction C (F1 (X RH ) ,F ) (X TA ) ) F3 (X HBASE ))

F,, F,, F; marginal distributions estimated by Kernel Smoothing

C(uy,u,,uy) = Py ((I)_l(ul)’q)_l(u2)’q)_l(u3))

u; uniform law on [0,1]
® normal CDF — dim 1
&, multivariate normal CDF
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DOE Choice

Step 2: We build a sequence of D-optimal designs with size N, increasing from 381
(monomials nb) up to 1000

D-optimal design: max det(X7X)/N P381 - obtained thanks to Fedorov exchange algorithm
The size of the final design P is chosen as a trade off between a moderate size, and a good
value of the normalized determinant of the information matrix X’X associated to M

— Final size = 400

We perform the 400 simulations, collect the multivariate outputs

Q, ~0.7 for the different outputs — ok for Sensitivity Analysis
to improve for estimation of IRS dispersion

=> Estimation of sensitivity indices
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SIVIP sensitivity indices

VIP (Variable Importance Projection) statistics (Tenenhaus 1998):
1
RA(Y,tp) = ~ Xi=1 cor?(Yy, tp)

H . N
RA(Y,tq, ..., ty) = z Nz cor?(Yy, t)
h=1 k=1

For H crossvalidated components a VIP is defined for each monomial X,
It represents the monomial contribution to Y variance

/2
38

ViPuj = RA(Y,tq, ..., ty) Z RA(Y, tn)w,*

\

j component of the
w,, eigenvector

Interesting property: 2381 VIPy * j- =381
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SIVIP sensitivity indices

1. ISIVIP (Individual Sensitivity Indices VIP) for each monomial X;

VIP, 2 &
Hj
ISIVIP; = —_ z ISIVIP; = 1
= 7381 L J
]=

2. TSIVIP Total Sensitivity Indices for each original input variable:

J
TSIVIP; = Z ISIVIPg,,

u=1

u'h index set where the i index is
present (total number of such set = J)
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NN,

Results: integrated and multispectral
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M percentage bll

M percentage multispectral

Integrated IRS: About 10 really important variables — 7 first associated to meteorological conditions
The 4 most important are meteorological ones
Multispectral IRS: Same 7 most important variables

some differences / integrated IRS for the 2 over important ones (SALB — E_ver)

=> If we want to reduce IRS uncertainty, we can combine the optics sensor with some detectors
that can measure these atmospheric data
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Results: 2 elementary bands
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M percentage bll
M percentage elementary band 2

1 percentage elementary band 5
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REGIME

Same 7 most important variables in all configurations, but the rankings are different for the 2
elementary bands

© Very easy to consider different selections and merging of bands
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Concluding remarks

- Simple and effective approach well-adapted to our 4 constraints, when the computer
simulation can be approximated by a polynomial of degree < 3 (no large nonlinearity)
R package to appear (person to contact: JP Gauchi)

- Enable to select 10 variables among 26 that have an important impact on IRS variability

- Sensitivity Analysis simultaneously in 10 spectral bands
Very easy to consider different selections and merging of bands

= Carry through the specification of a multispectral sensor:
metamodel with 10 input variables - uncertainty propagation => IRS dispersion

Work in progress:

- Adaptive construction of the design of experiments
- Adaptive selection of the monomials
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Questions ?

sidonie.lefebvre @onera.fr
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