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Abstract

Sensitivity analysis of a numerical model, for instance simulating physical phenomena, is a tool used to explore, understand and (partially) validate computer codes. It aims at

explaining the outputs regarding the input uncertainties [1]. This communication proposes a sensitivity index, based upon the modification of the probability density function

(pdf) of the random inputs, when the quantity of interest is a failure probability (probability that a model output exceeds a given threshold). This work is an extension of a

submitted article [4].

1. Model, aim of the study

• We study a deterministic numerical model denoted G : Rd → R

• The uncertain inputs are denoted X which is a d-dimensional random variable - of joint pdf f .

• We consider independent inputs of marginal densities fi for i = 1..d.

• The uncertain output is denoted Z = G(X) and is a random variable.

• We will have a specific interest for binary output (reliability context). We consider the event G(x) < 0 (system

failure) and the complementary event G(x) ≥ 0 (system safe mode).

• The quantity of interest is the system failure probability:

P =

∫
1{G(x)<0}f (x)dx. (1)

• The aim of this work is the quantification of the influence of each variable Xi on this probability.

• In most real cases, the family of the distribution of an input is given by the physic wherehas the parameters
of such a distribution are data-driven.

• The question guiding us throughout this presentation is:

”what would be the impact on P of a parameterization error?”

2. Methodology of input perturbation

• Given an input variable Xi with pdf fi, let us call Xiδ ∼ fiδ the corresponding perturbed random input.

• This perturbed input takes the place of the real random input Xi, in a sense of modelling error : what if the

real distribution were Xiδ instead of Xi?

• More precisely, we suggest to define a perturbed input density fiδ as the closest distribution to the original fi
in the entropy sense and under some constraints of perturbation.

• Recall that between two pdf p and q we have:

KL(p, q) =

∫ +∞

−∞
p(y) log

p(y)

q(y)
dy if log

p(y)

q(y)
∈ L1(p(y)dy). (2)

• Let i = 1, · · · , d, the constraints express as follows:
∫
gk(xi)fmod(xi)dxi = δk,i (k = 1 · · ·K) . (3)

• For k = 1, · · · , K, gk are given functions and δk,i are given reals. These quantities will lead to a perturbation
of the original density.

• The modified density fiδ considered in our work is:

fiδ = argmin
fmod|(3) holds

KL(fmod, fi) (4)

and the result takes an explicit form [6] given in the following equations.

• Let us define, for λ = (λ1, · · · , λK)T ∈ R
K,

ψi(λ) = log

∫
fi(x) exp

[
K∑

k=1

λkgk(x)

]
dx . (5)

• Then, there exists a unique λ
∗ such that the solution of the minimisation problem (4) is:

fiδ(xi) = fi(xi) exp

[
K∑

k=1

λ∗kgk(xi)− ψi(λ
∗)

]
. (6)

3. Examples of perturbations

Mean shifting The first moment is often used to parametrize a distribution. Thus the first perturbation presented

here is a mean shift, that is expressed with a single constraint:
∫
xifmod(xi)dxi = δi . (7)

Variance shifting In some cases, the expectation of an input may not be the main source of uncertainty. One

might be interested in perturbating the second moment of an input. This case may be treated considering a

couple of constraints. The perturbation presented is a variance shift, therefore the set of constraints is:
{∫

xifmod(xi)dxi = E [Xi] ,∫
x2ifmod(xi)dxi = δi + E [Xi]

2
.

(8)

Quantile shifting As far as we noticed, in most cases the values of the input leading to the failure event comes

from the tails of the input distributions. We therefore propose a quantile perturbation. Denoting qr the refer-

ence quantile; e.g. the value so that:
∫ qr
−∞ f (x)dx = r, one can express a quantile perturbation:

∫
1]−∞;qr](xi)fmod(xi)dxi = δi (9)

meaning that fmod is a density such that its δi-quantile is qr.

4. Sensitivity index

• According to the pertubations defined in the previous section, the failure probability becomes:

Piδ =

∫
1{G(x)<0}

fiδ(xi)

fi(xi)
f (x)dx. (10)

• One can define the sensitivity index:

Siδ =

[
Piδ

P
− 1

]
1{Piδ≥P} +

[
1− P

Piδ

]
1{Piδ<P}. (11)

– Siδ = 0 if Piδ = P , as expected if Xi is a non-influential variable or if δ expresses a negligible perturbation.

– The sign of Siδ indicates how the perturbation impacts the failure probability qualitatively.

• These sensitivity indices can be estimated using the sole set of simulations that has already been used

to compute the failure probability P , thus limiting the number of calls to the numerical model. Under mild

support constraints, one can consistently estimate Piδ by:

P̂iδN =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )
. (12)

where (x1
i , . . . ,x

N
i ) is a Monte-Carlo sample. This property holds in the more general case when P is origi-

nally estimated by importance sampling rather than simple Monte Carlo, which is more appealing in contexts

when G is time-consuming [2,3]. Asymptotical properties of the indices are derived [4], including a CLT for

ŜiδN , the plug-in estimator of Siδ. One has indeed:
√
N

[
ŜiδN − Siδ

]
L−−−→

N→∞
N

(
0, dTΣd

)
(13)

where d is the derivative in (P, Piδ) of the continuous function s(x, y) =
[
y
x
− 1

]
1y≥x +

[
1− x

y

]
1y<x, ŜiδN .

5. Numerical applications

Hyperplane test case The failure function is defined as:

G(X) = k −
4∑

i=1

aiXi

with fXi ∼ N (0, 1) for i = 1, .., 4, k = 16 and a = (1,−6, 4, 0). One has P ≃ 0.014.

Variable X1 X2 X3 X4

Importance factor 0.018 0.679 0.302 0

Group index S1 S2 S3 S4 ST1 ST2 ST3 ST4

Sobol’ index of 1{G(x)<0} 0.0017 0.2575 0.0544 0 0.1984 0.9397 0.7256 0
Table 1: FORM Importance factors and Sobol’ indices for hyperplane function

Figure 1: Estimated indices Ŝiδ for hyperplane function with a mean shifting

Ishigami test case A modified version of the Ishigami function will be considered:

G(X) = sin (X1) + 7 sin (X2)
2 + 0.1X4

3 sin (X1) + 7

where Xi ∼ U [−π, π] , i = 1, . . . , 3.. The failure probability here is roughly P ≃ 0.006.

Variable X1 X2 X3

Importance factor 1e−17 1 0

Group index S1 S2 S3 ST1 ST2 ST3

Sobol’ index of 1{G(x)<0} 0.0234 0.0099 0.0667 0.8158 6758 0.9299
Table 2: FORM Importance factors and Sobol’ indices for the thresholded Ishigami function

Figure 2: Estimated indices Ŝiδ for thresholded Ishigami function with a mean shifting
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