Sensitivity analysis method for failure probability

E. Sergienko^{3,4}

P. Lemaître 1,2 N. Bousquet¹ A. Arnaud¹ **B.** $looss^{1,4}$

1-EDF R&D, Chatou, France; 2-INRIA Bordeaux Sud-Ouest, Talence, France; 3-IFPEN, Rueil-Malmaison; 4-Université Paul Sabatier, Toulouse

paul.lemaitre@edf.fr

Abstract

Sensitivity analysis of a numerical model, for instance simulating physical phenomena, is a tool used to explore, understand and (partially) validate computer codes. It aims at explaining the outputs regarding the input uncertainties [1]. This communication proposes a sensitivity index, based upon the modification of the probability density function (pdf) of the random inputs, when the quantity of interest is a failure probability (probability that a model output exceeds a given threshold). This work is an extension of a submitted article [4].

(2)

(3)

1. Model, aim of the study

- We study a deterministic numerical model denoted $G : \mathbb{R}^d \to \mathbb{R}$
- The uncertain inputs are denoted X which is a d-dimensional random variable of joint pdf f.
- We consider independent inputs of marginal densities f_i for i = 1..d.
- The uncertain output is denoted $Z = G(\mathbf{X})$ and is a random variable.
- We will have a specific interest for binary output (reliability context). We consider the event $G(\mathbf{x}) < 0$ (system) failure) and the complementary event $G(\mathbf{x}) \ge 0$ (system safe mode).
- The quantity of interest is the system failure probability:

$$P = \int \mathbf{1}_{\{G(\mathbf{x}) < 0\}} f(\mathbf{x}) d\mathbf{x}.$$
 (1)

- The aim of this work is the quantification of the **influence** of each variable X_i on this probability.
- In most real cases, the family of the distribution of an input is given by the physic wherehas the parameters of such a distribution are data-driven.
- The question guiding us throughout this presentation is:

"what would be the impact on P of a parameterization error?"

2. Methodology of input perturbation

- Given an input variable X_i with pdf f_i , let us call $X_{i\delta} \sim f_{i\delta}$ the corresponding perturbed random input.
- This perturbed input takes the place of the real random input X_i , in a sense of modelling error : what if the real distribution were $X_{i\delta}$ instead of X_i ?
- More precisely, we suggest to define a perturbed input density $f_{i\delta}$ as the closest distribution to the original f_i in the entropy sense and under some constraints of perturbation.
- Recall that between two pdf p and q we have:

$$KL(p,q) = \int_{-\infty}^{+\infty} p(y) \log \frac{p(y)}{q(y)} dy \text{ if } \log \frac{p(y)}{q(y)} \in L^1(p(y)dy).$$

• Let $i = 1, \dots, d$, the constraints express as follows:

• These sensitivity indices can be estimated using the sole set of simulations that has already been used to compute the failure probability P, thus limiting the number of calls to the numerical model. Under mild **support constraints**, one can consistently estimate $P_{i\delta}$ by:

$$\hat{P}_{i\delta N} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{\{G(\mathbf{x}^n) < 0\}} \frac{f_{i\delta}(x_i^n)}{f_i(x_i^n)}.$$
(12)

where $(\mathbf{x}_i^1, \ldots, \mathbf{x}_i^N)$ is a Monte-Carlo sample. This property holds in the more general case when P is originally estimated by importance sampling rather than simple Monte Carlo, which is more appealing in contexts when G is time-consuming [2,3]. Asymptotical properties of the indices are derived [4], including a CLT for $\hat{S}_{i\delta N}$, the plug-in estimator of $S_{i\delta}$. One has indeed:

$$\sqrt{N} \left[\hat{S}_{\mathbf{i}\delta N} - S_{\mathbf{i}\delta} \right] \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N} \left(0, d^T \Sigma d \right)$$
(13)

where *d* is the derivative in $(P, P_{i\delta})$ of the continuous function $s(x, y) = \left[\frac{y}{x} - 1\right] \mathbf{1}_{y \ge x} + \left[1 - \frac{x}{y}\right] \mathbf{1}_{y < x}, \hat{S}_{i\delta N}$.

5. Numerical applications

Hyperplane test case The failure function is defined as:

$$G(\mathbf{X}) = k - \sum_{i=1}^{4} a_i X_i$$

with $f_{X_i} \sim \mathcal{N}(0, 1)$ for i = 1, ..., 4, k = 16 and $\mathbf{a} = (1, -6, 4, 0)$. One has $P \simeq 0.014$.

	Variable			X_1	X	2	X_3	X_4			
Impor	tance fa	actor	0.	018	0.6	79	0.302	0			
Group index	S_1	S_2		S_3		S_4	S_{T1}		S_{T2}	S_{T3}	S_{T4}
Sobol' index of $1_{\{G(\mathbf{x}) < 0\}}$	0.0017	0.2575		0.0544		0	0.1984		0.9397	0.7256	0
Table 1: FORM Import	ance fac	ctors a	and	1 Sc	bol'	ind	ices fo	or h	vperpl	ane fund	ction

X1

$$\int g_k(x_i) f_{\text{mod}}(x_i) dx_i = \delta_{k,i} \quad (k = 1 \cdots K) \,.$$

• For $k = 1, \dots, K$, g_k are given functions and $\delta_{k,i}$ are given reals. These quantities will lead to a perturbation of the original density.

• The modified density $f_{i\delta}$ considered in our work is:

$$f_{i\delta} = \underset{f_{\text{mod}}|(3)}{\operatorname{argmin}} KL(f_{\text{mod}}, f_i) \tag{4}$$

and the result takes an explicit form [6] given in the following equations. • Let us define, for $\boldsymbol{\lambda} = (\lambda_1, \cdots, \lambda_K)^T \in \mathbb{R}^K$,

$$\psi_i(\boldsymbol{\lambda}) = \log \int f_i(x) \exp\left[\sum_{k=1}^K \lambda_k g_k(x)\right] dx .$$
(5)

• Then, there exists a unique λ^* such that the solution of the minimisation problem (4) is:

$$f_{i\delta}(x_i) = f_i(x_i) \exp\left[\sum_{k=1}^K \lambda_k^* g_k(x_i) - \psi_i(\boldsymbol{\lambda}^*)\right].$$
(6)

3. Examples of perturbations

Mean shifting The first moment is often used to parametrize a distribution. Thus the first perturbation presented here is a **mean shift**, that is expressed with a single constraint:

$$\int x_i f_{\text{mod}}(x_i) dx_i = \delta_i .$$
(7)

Variance shifting In some cases, the expectation of an input may not be the main source of uncertainty. One might be interested in perturbating the second moment of an input. This case may be treated considering a couple of constraints. The perturbation presented is a variance shift, therefore the set of constraints is:

$$\int x_i f_{\text{mod}}(x_i) dx_i = \mathbb{E} [X_i] ,$$

$$\int x_i^2 f_{\text{mod}}(x_i) dx_i = \delta_i + \mathbb{E} [X_i]^2 .$$
(8)

Figure 1: Estimated indices $\widehat{S_{i\delta}}$ for hyperplane function with a mean shifting

Ishigami test case A modified version of the Ishigami function will be considered:

 $G(\mathbf{X}) = \sin(X_1) + 7\sin(X_2)^2 + 0.1X_3^4\sin(X_1) + 7$

where $X_i \sim \mathcal{U}[-\pi, \pi], i = 1, ..., 3$. The failure probability here is roughly $P \simeq 0.006$.

	Variable			$X_{}$	1	X_2	X_3			
Im	port	ance fac	ctor	$1e^{-}$	-17	1	0			
Group index		S_1	S	2	S_3		S_T	'1	S_{T2}	S_{T3}
Sobol' index of $1_{\{G(\mathbf{x})\}}$	$() < 0 \}$	0.0234	0.00)99	0.0	0667	0.81	.58	6758	0.9299

Table 2: FORM Importance factors and Sobol' indices for the thresholded Ishigami function

Quantile shifting As far as we noticed, in most cases the values of the input leading to the failure event comes from the tails of the input distributions. We therefore propose a quantile perturbation. Denoting q_r the reference quantile; e.g. the value so that: $\int_{-\infty}^{q_r} f(x) dx = r$, one can express a quantile perturbation:

$$\int 1_{]-\infty;q_r]}(x_i) f_{\text{mod}}(x_i) dx_i = \delta_i$$
(9)

meaning that f_{mod} is a density such that its δ_i -quantile is q_r .

4. Sensitivity index

• According to the **pertubations** defined in the previous section, the failure probability becomes:

$$P_{i\delta} = \int \mathbf{1}_{\{G(\mathbf{x})<0\}} \frac{f_{i\delta}(x_i)}{f_i(x_i)} f(\mathbf{x}) d\mathbf{x}.$$
(10)

• One can define the **sensitivity index**:

$$S_{i\delta} = \left[\frac{P_{i\delta}}{P} - 1\right] \mathbf{1}_{\{P_{i\delta} \ge P\}} + \left[1 - \frac{P}{P_{i\delta}}\right] \mathbf{1}_{\{P_{i\delta} < P\}}.$$
(11)

 $-S_{i\delta} = 0$ if $P_{i\delta} = P$, as expected if X_i is a non-influential variable or if δ expresses a negligible perturbation. - The sign of $S_{i\delta}$ indicates how the perturbation impacts the failure probability qualitatively.

7th International Conference on Sensitivity Analysis of Model Output, July 1–4 2013, Nice

Figure 2: Estimated indices $\widehat{S_{i\delta}}$ for thresholded Ishigami function with a mean shifting

References:

[1] A. Saltelli, Sensitivity analysis for importance assessment, *Risk Analysis*, **22**(3):579–590, 2002.

[2] T.C. Hesterberg. Estimates and confidence intervals for importance sampling sensitivity analysis, *Mathematical and Computer Modelling*, **23**(8):79–85, 1996.

[3] R.J. Beckman and M.D McKay. Monte-Carlo estimation under different distributions using the same simulation. *Technometrics*, **29**(2):153–160, 1987.

[4] P. Lemaître et al. Density modification based reliability sensitivity analysis, Journal of Statistical Computation & Simulation (Submitted)

[5] T.M. Cover and J.A. Thomas. Elements of information theory 2nd edition, *Wiley series in telecommunications* and signal processing. 2006.

[6] I. Csiszár. I-divergence geometry of probability distributions and minimization problems. The Annals of *Probability*, **3**(1):146–158, 1975.