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Nice, July 4, 2013

Nicolas Lenz Covariance kernels accounting for non-additivity in kriging



General Setting
Projections

Numerical experiments
Conclusions and Perspectives

General setting

Point of departure

N. Durrande, D. Ginsbourger and O. Roustant (2012)

Additive covariance kernels for high-dimensional Gaussian process modeling.

Ann. Fac. Sci. Toulouse 21 481-499.

Nicolas Lenz Covariance kernels accounting for non-additivity in kriging



General Setting
Projections

Numerical experiments
Conclusions and Perspectives

General setting

Point of departure

N. Durrande, D. Ginsbourger and O. Roustant (2012)

Additive covariance kernels for high-dimensional Gaussian process modeling.

Ann. Fac. Sci. Toulouse 21 481-499.

We consider a GRF (Zx)x∈D over the domain D = [0, 1]d , d ∈ N.
We assume that expectation and covariance kernel exist and call
them respectively

m(x) = E[Zx ]

k(x , y) = Cov(Zx ,Zy )

Under mild conditions the trajectories of Z are L2
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f ∈ L2 can be decomposed

f = fC + fU1 + . . .+ fUd
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Considerations in L2

f ∈ L2 can be decomposed

f = fC + fU1 + . . .+ fUd
+ fO

fC =

∫

D

f dµ · 1D =: πC f

fUi
=

∫

D−i

f − fC dµ−i · 1D−i
=: πUi

f

fA = fC +

d
∑

i=1

fUi
=: πA f

fO = f − fA =: πO f
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Projecting a random field

Realizations Z (ω) of a GRF, generated
with an isotropic kernel

k(x , y) = σ
2 · e−(

‖x−y‖
θ

)2
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Projecting a random field

Realizations Z (ω) of a GRF, generated
with an isotropic kernel

k(x , y) = σ
2 · e−(
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θ
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πAZ (ω)
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Projecting a random field

Realizations Z (ω) of a GRF, generated
with an isotropic kernel

k(x , y) = σ
2 · e−(

‖x−y‖
θ

)2

πAZ (ω)

πOZ (ω)
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Projecting a random field

Realizations Z (ω) of a GRF, generated
with an isotropic kernel

k(x , y) = σ
2 · e−(

‖x−y‖
θ

)2

πAZ (ω)

πOZ (ω)

πAZ (ω) + πOZ (ω)
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”Double” decomposition of a kernel

Let P be a finite family of projections such that

IdL2 =
∑

π∈P

π

Nicolas Lenz Covariance kernels accounting for non-additivity in kriging



General Setting
Projections

Numerical experiments
Conclusions and Perspectives

Considerations in L2

Projecting a random field
”Double” decomposition of a kernel

”Double” decomposition of a kernel

Let P be a finite family of projections such that

IdL2 =
∑

π∈P

π

With these projections we can equally decompose a kernel

IdL2×L2 = (
∑

π∈P

π)⊗ (
∑

π̃∈P

π̃) =
∑

π∈P

∑

π̃∈P

(π ⊗ π̃)
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”Double” decomposition of a kernel

Let P be a finite family of projections such that

IdL2 =
∑

π∈P

π

With these projections we can equally decompose a kernel

IdL2×L2 = (
∑

π∈P

π)⊗ (
∑

π̃∈P

π̃) =
∑

π∈P

∑

π̃∈P

(π ⊗ π̃)

k(x , y) = Cov(Zx ,Zy ) = Cov(
∑

π∈P

π Zx ,

∑

π̃∈P

π̃ Zy )

=
∑

π∈P

∑

π̃∈P

Cov(π Zx , π̃ Zy ) =

(

∑

π∈P

∑

π̃∈P

(π ⊗ π̃)k

)

(x , y)
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Schematic representation of kernels

Applying P = {πC , πU1 , . . . , πUd
, πO} to a kernel gives us a

decomposition into (d + 2)2 parts.

We identify a projected kernel figuratively by a (d + 2)× (d + 2)
matrix
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Applying P = {πC , πU1 , . . . , πUd
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decomposition into (d + 2)2 parts.
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Projecting a random field
”Double” decomposition of a kernel

Schematic representation of kernels

Applying P = {πC , πU1 , . . . , πUd
, πO} to a kernel gives us a

decomposition into (d + 2)2 parts.

We identify a projected kernel figuratively by a (d + 2)× (d + 2)
matrix, e.g.

constant ortho-add. additive (full) add.
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Decomposition of a product kernel

(

(πO ⊗ πO) k
)

(x, y) = E

[

k(x, y)

E
+

d
∑

i=1

( ki (xi , yi )

Ei

−
Ei (xi )Ei (yi )

E2
i

)

−
E(x)

E

(

1 +

d
∑

i=1

( ki (xi , yi )

Ei (xi )
− 1

)

)

−
E(y)

E

(

1 +
d

∑

i=1

( ki (xi , yi )

Ei (yi )
− 1

)

)

+

(

1 +
d

∑

i=1

( Ei (xi )

Ei

− 1
)

)

·

(

1 +

d
∑

i=1

( Ei (yi )

Ei

− 1
)

)

]

where

Ei (xi ) := Ei (xi , ai , bi ) =
∫ bi

ai
ki (xi , yi ) dyi

E (x) := E (x, a,b) =
∏d

i=1 Ei (xi , ai , bi )

Ei := Ei (ai , bi ) =
∫ bi

ai
E (xi , ai , bi ) dxi

E := E(a,b) =
∏d

i=1 Ei (ai , bi )
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Kriging

Kriging is done under the assumption that we know the true
covariance kernel.

What is the impact of a misspecified kernel in the context of the
”double” decomposition?
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Kriging

Kriging is done under the assumption that we know the true
covariance kernel.

What is the impact of a misspecified kernel in the context of the
”double” decomposition?

Controlled experiment:

generate a realization of a random field using some kernel

Split the data into a learning set and a test set

Based on the learning set predict the other values using a
misspecified kernel!

Assess the quality of the predictions
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Concrete Experiment

Realization of a GRF generated
with a Gaussian kernel

Predictions

Z

!

Ẑ error
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Define learning and test set on a domain
D = [0, 1]2

Nicolas Lenz Covariance kernels accounting for non-additivity in kriging



General Setting
Projections

Numerical experiments
Conclusions and Perspectives

Kriging

Concrete Experiment

Define learning and test set on a domain
D = [0, 1]2

Generate Z := Z (ω) using

Nicolas Lenz Covariance kernels accounting for non-additivity in kriging



General Setting
Projections

Numerical experiments
Conclusions and Perspectives

Kriging
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Define learning and test set on a domain
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Generate Z := Z (ω) using

Calculate the predictor Ẑ := Ẑ (ω) for every
trajectory with all four kernels (using the
measurements)
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Concrete Experiment

Define learning and test set on a domain
D = [0, 1]2

Generate Z := Z (ω) using

Calculate the predictor Ẑ := Ẑ (ω) for every
trajectory with all four kernels (using the
measurements)

Estimate
∫

D

(

Ẑ (x)− Z (x)
)2
dµ
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Kriging

Concrete Experiment

Define learning and test set on a domain
D = [0, 1]2

Generate Z := Z (ω) using

Calculate the predictor Ẑ := Ẑ (ω) for every
trajectory with all four kernels (using the
measurements)

Estimate
∫

D

(

Ẑ (x)− Z (x)
)2
dµ

Repeat the procedure 200 times and take the
mean over all results
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Some first Conclusions

Summary of the presented work

The kernel used for simulating the data always did the best
predictions

The additive kernel was less stable under the chosen
circumstances

The ortho-additive kernel much worse

The combined additive and ortho-additive kernel performed as
reliable as the full kernel

A sparse kernel can carry almost the same information as a
full one
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Work in progress: Considerations in high dimensions

Development of the mean squared error with
respect to the dimension

Simulation of GRFs with a kernel of the form

α(πA ⊗ πA)k + (1− α)(πO ⊗ πO)k , α ∈ [0, 1]

Recover the value of α by MLE
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Summary of the presented work

Ortho-additivity was introduced along with according
projections of functions

A kernel ”double” decomposition was presented, and explicitly
derived in the case of product kernels over Rd

Experiments suggested that neglecting cross-correlations
between additive and ortho-additive parts have little influence
on prediction for data generated with a Gaussian kernel
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Summary of the presented work

Ortho-additivity was introduced along with according
projections of functions

A kernel ”double” decomposition was presented, and explicitly
derived in the case of product kernels over Rd

Experiments suggested that neglecting cross-correlations
between additive and ortho-additive parts have little influence
on prediction for data generated with a Gaussian kernel

Selected perspectives

Analyse which term is negligible by calculating relevant norms

Define classes of kernels enabling to further exploit synergies
between Kriging and Global Sensitivity Analysis

Investigate further estimation procedures for high dimensions

Nicolas Lenz Covariance kernels accounting for non-additivity in kriging



General Setting
Projections

Numerical experiments
Conclusions and Perspectives

Some first conclusions
Perspectives
References

References

Thank you for your attention!

This presentation is based on...

N. Durrande and D. Ginsbourger and O. Roustant and L. Carraro (2013)
ANOVA kernels and RKHS of zero mean functions for model-based sensitivity
analysis. Journal of Multivariate Analysis 115 57 - 67

D. Ginsbourger and O. Roustant and N. Durrande (in preparation)
Invariances of random field paths, with applications in Gaussian Process
Regression

J.E. Oakley and A. O’Hagan (2004)
Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach. J.
Roy. Statist. Soc. 66 751–769

F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski and H. Wozniakowski (2010)

On decompositions of multivariate functions. Mathematics of Computation 79

953-966.

Nicolas Lenz Covariance kernels accounting for non-additivity in kriging


	General Setting
	Projections
	Considerations in L2
	Projecting a random field
	"Double" decomposition of a kernel

	Numerical experiments
	Kriging

	Conclusions and Perspectives
	Some first conclusions
	Perspectives
	References


