Bayesian quantification of thermodynamic uncertainties in dense gas flows

Xavier MERLE Paola CINNELLA

DynFluid Laboratory - Arts et Metiers ParisTech Paris 151, Bvd. de l'Hôpital - 75013 Paris, France

> 7th SAMO International Conference 01 - 04 July 2013, Nice, France

Introduction	Calibration Method	Results	Conclusion and prospects
00			
Context			

- Flows of complex organic fluids close to saturation conditions are encountered in many engineering applications:
 - high-Reynolds wind tunnels to chemical transport,
 - refrigeration,
 - energy conversion cycles,

• ...

• For compressible single-phase flows occuring in thermodynamic conditions close to the liquid-vapor coexistence curve, the fluid thermodynamic behaviour differs significantly from that of a perfect gas and can no longer be represented by the polytropic perfect gas law.

Consequences

We have to find other Equations of State (EOS) to represent this particular thermodynamic behaviour!

Introduction	Calibration Method	Results	Conclusion and prospects
000			
Main Issues			

- Countless EOS have been proposed in the literature, diversified according to the substance to be modelled.
- EOS based on theoretical and analytical criteria,
 - van der Waals,
 - Redlich-Kwong,
 - Peng-Robinson,
 - Martin-Hou,
 - ...

provided that some thermodynamic inputs are available for the substance of interest.

• However, such data are typically affected by more or less significant experimental errors.

Consequences

Several uncertainties related to the use of such complex EOS coming from:

- the values taken by the substance-specific coefficients,
- the functional form of the model.

Introduction	Calibration Method	Results	Conclusion and prospects
000			
Main Issues			
In these condition	ons, an interesting work	to do is:	

- to evaluate the response of the system to the uncertainties in the input parameters (Cinnella *et al.* [1]),
- to calibrate the input parameters, thanks to some experimental data, to improve the way an EOS represents the thermodynamic behaviour (this work).

Problem: no experimental data available up to now!

Consequences

Reference data generated by using a more complex EOS \Rightarrow investigation of the feasibility of the calibration procedure.

Side effect: calibration of simple, cheap EOS on a more complex, accurate and expensive one.

For this study, we use:

- Span-Wagner EOS as the reference,
- Redlich-Kwong (RKS), Peng-Robinson (PRSV) and Martin-Hou EOS to be calibrated.

International Conference on Sensitivity Analysis of Model Output, Nice, France X. N

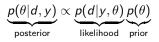
X. MERLE

DynFluid - PARIS

Paola Cinnella, Pietro Marco Congedo, Valentino Pediroda and Lucia Parusini, "Sensivity analysis of dense gas flow simulations to thermodynamic uncertainties," Phys. Fluids, 23, 116101, 2011.

Introduction	Calibration Method	Results	Conclusion and prospects
	• 000 0		
Bayesian Infe	rence - framework		

The Bayesian inference framework is employed to perform the calibration. In our case, the Bayes rule takes the form:



where

- θ is a random vector of parameters,
- y is the dense gas solver output quantity of interest (model),
- d is the experimental (numerical) data.

The quantity of interest is the criterion used for the calibration and is therefore chosen according to the experimental data.

- the calibration is performed from simulations of transonic dense gas flows (D5, siloxane) around a NACA0012 airfoil,
- quantity of interest: the pressure coefficient $C_p = \frac{p p_{\infty}}{\frac{1}{2}\rho_{\infty}U_{\infty}^2}$, at 17 locations along the airfoil wall (simulated pressure taps).

Introduction	Calibration Method	Results	Conclusion and prospects
	00000		
Bayesian Infere	ence - simulations		

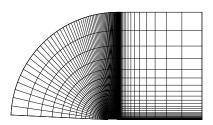


Figure: Mesh around a NACA0012 profile.

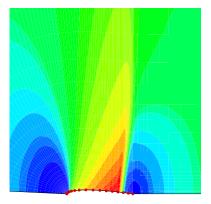


Figure: Iso-contours of pressure coefficient. \bullet : numerical pressure sensors.

Introduction	Calibration Method	Results	Conclusion and prospects
	00000		
Bayesian Inference	e - prior and likelihood		

A common practice, when no particular informations are available about the parameters, is to impose uniform distributions for prior:

 $p(\theta) \sim \mathcal{U}([a, b])$

For the likelihood, we modelled the data d as:

$$d(x_i) = \hat{d}(x_i) + e_i$$

- e_i , the experimental noise; e_i is assumed to be independent and normally distributed with mean zero and a standard deviation of 10% of the observed value.
- $\hat{d}(x_i)$, the true pressure coefficient value at x_i . $\hat{d}(x_i)$ is assumed to be equal to the modelled value $y(x_i)$, multiplied by an error coefficient η_i :

$$\hat{d}(x_i) = \eta_i y(x_i, \theta)$$

which takes into account the discrepancy between the simulation and the actual system.

 η is assumed to be well represented by a correlated Gaussian model of the form: $\eta\sim\mathcal{N}(1,\mathcal{K}_{M})$

Introduction	Calibration Method	Results	Conclusion and prospects
	00000		
Bayesian Inferenc	e - prior and likelihood		

Finally, the likelihood can be written under the form:

$$p(d|y,\theta) = \frac{1}{\sqrt{(2\pi)^n |\mathcal{K}|}} \exp\left[-\frac{1}{2}(d-y)^T \mathcal{K}^{-1}(d-y)\right]$$

• $K = K_e + K_M$, with K_e a diagonal matrix with corresponding variance and

$$K_{M} = \sigma^{2} \exp\left[-\left(\frac{x - x'}{10^{\alpha}X}\right)^{2}\right]$$

where x and x' are two subsequent observations abscissa separated by the length scale $10^{\alpha}X$ (X \approx 1).

 σ and α become new parameters (known as hyper-parameters)

•
$$\theta = (\theta_p, \theta_h).$$

The inference is done using sampling techniques of the prior and the likelihood:

- *pymc* python library, based on a Markov-Chain Monte-Carlo sampler and the Metropolis-Hastings algorithm,
- samples of 200 000 draws are used, the first 50 000 of which are rejected.

Introduction	Calibration Method	Results	Conclusion and prospects
	00000		
Dense gas solver			

Dense gas effects essentially influence the inviscid flow behaviour

• analysis of single-phase compressible inviscid flows, governed by the Euler equations and completed by a real-gas thermodynamic model.

More specifically:

- \bullet 2-D flows (100 \times 32 grid),
- cell-centred finite volume scheme for structured multi-block meshes of thirdorder accuracy,
- scalar dissipation (to reduce the computational costs),
- local time stepping, implicit residual smoothing and multigrid are used to efficiently drive the solution to the steady state.

The computation is about 10 minutes long on a classical personal computer:

- need for a surrogate model,
- in this work: piecewise multidimensional Lagrange interpolations.

Introduction	Calibration Method	Results	Conclusion and prospects
		000000	
E C			

Equations of state

• thermal equation: functional relation between thermodynamic variables

e.g
$$p = \frac{RT}{\nu - b} - \frac{a/T^{0.5}}{\nu(\nu + b)}$$

• caloric equation: temperature dependence of internal energy or heat capacity

e.g
$$c_{\nu,\infty}(T) = c_{\nu,\infty}(T_c) \left(\frac{T}{T_c}\right)^n$$

- these relations involve a lot of parameters and variables: pressure temperature, specific volume...
- for the EOS we are interested in:

Redlich-Kwong and Peng-Robinson: $\begin{cases} \text{ the exponent } n \\ \text{ the reduced ideal-gas isocoric heat } c_{\nu,\infty} \\ \text{ the acentric factor } \omega \end{cases}$

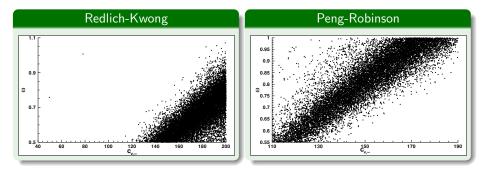
Martin-Hou: $\begin{cases} \text{ the critical temperature } T_c \\ \text{ the reduced ideal-gas isocoric heat } c_{\nu,\infty}(T_c) \\ \text{ the critical pressure } p_c \end{cases}$

Introduction	Calibration Method	Results	Conclusion and prospects
		00000	
Preliminary an	alyses		

• Sobol analysis (Monte-Carlo):

	Strong influence on C_p	Weak influence on C_p
RKS	ω , $c_{ u,\infty}({\mathcal T}_{c})$	п
PRSV	ω , $c_{ u,\infty}({\mathcal T}_{c})$	п
MAH	T_c , p_c , $c_{ u,\infty}(T_c)$	

correlations:

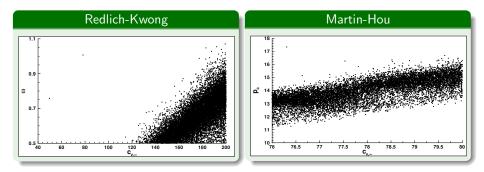


Introduction	Calibration Method	Results	Conclusion and prospects
		00000	
Preliminary an	alyses		

• Sobol analysis (Monte-Carlo):

	Strong influence on C_p	Weak influence on C_p
RKS	ω , $c_{ u,\infty}({\mathcal T}_{c})$	п
PRSV	ω , $c_{ u,\infty}({\mathcal T}_{c})$	п
MAH	T_c , p_c , $c_{ u,\infty}(T_c)$	

correlations:



The previous observations allow to reduce the number of parameters:

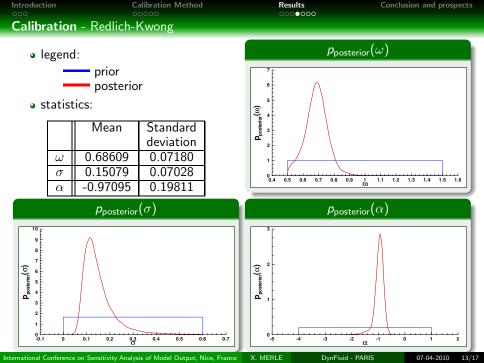
• Redlich-Kwong: the calibration is performed with only one parameter (ω) whereas *n* and $c_{\nu,\infty}(T_c)$ are taken at fixed values

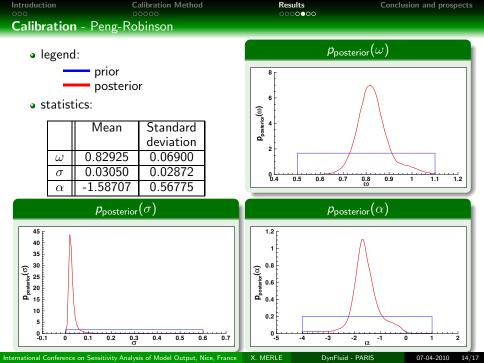
$$\begin{cases} n = 0.5 \\ c_{\nu,\infty}(T_c) = 180.0 \end{cases}$$

• Peng-Robinson: the calibration is performed with only one parameter (ω) whereas *n* and $c_{\nu,\infty}(T_c)$ are taken at fixed values

$$\begin{cases} n = 0.5 \\ c_{\nu,\infty}(T_c) = 150.0 \end{cases}$$

• Martin-Hou: the calibration is performed with the two parameters T_c , p_c whereas $c_{\nu,\infty}(T_c) = 78.0$





Introduction	Cali 000	bration Method		Results Conclusion and prospect		
Calibratio	n - Martin-Ho	ou				
• legen • statis T_c p_c σ α	prior posterior	Standard deviation 1.37210 0.64496 0.02481 0.33949		0.35 0.3 0.25 0.25 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$p_{\text{posterior}}(T_c)$	
International Conferen	ce on Sensitivity Analysis	of Model Output, Nice,	France	(a) 0.8 (b) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Pposterior (PC)	

Introduction	

Calibration Method

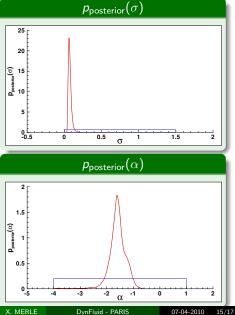
Results ○○○○○●○ Conclusion and prospects

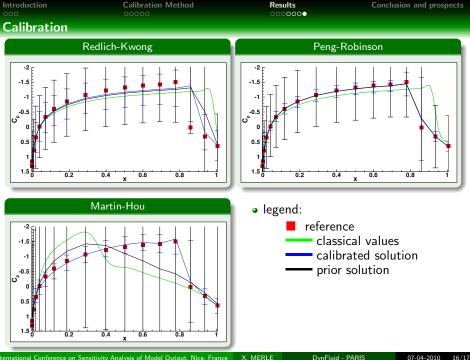
Calibration - Martin-Hou

legend:

statistics:

	Mean	Standard	
		deviation	
T_c	555.20456	1.37210	
p _c	14.33245	0.64496	
σ	0.07523	0.02481	
α	-1.60219	0.33949	





International Conference on Sensitivity Analysis of Model Output, Nice, France

X. MERLE

DynFluid - PARIS

Introduction	Calibration Method	Results	Conclusion and prospects

- Good agreements between calibrated and reference data,
- The study seems to show that there is not only one parameter set which best fit the experimental data since some parameters are found to be correlated to each other,
- \Rightarrow to be confirmed,
 - Future work: perform Bayesian model averaging to take into account several model forms and scenarios.

Calibration method

Results

Bayesian inference

 e_i is assumed to be independant and normally distributed with mean zero and a standard deviation of 10% of the observed value. Then we can write that:

$$p(d|\hat{d}) = rac{1}{\sqrt{(2\pi)^n |K_e|}} \exp\left[-rac{1}{2}(d-\hat{d})^T K_e^{-1}(d-\hat{d})
ight]$$

 η is assumed to be well represented by a correlated Gaussian model of the form:

 $\eta \sim \mathcal{N}(1, K_M)$

A common used choice for K_M is:

$$\mathcal{K}_{M} = \sigma^{2} \exp\left[-\left(\frac{x-x'}{10^{lpha}X}\right)^{2}\right]$$

where x and x' are two subsequent observations abscissa separated by the length scale $10^{\alpha}X$ (X \approx 1).

 σ and α become new parameters (known as hyper-parameters) to be calibrated and representing the magnitude of the error variance and the magnitude of the correlation length.

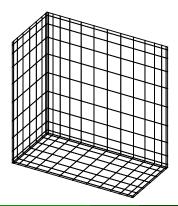
Calibration method • Response surface

multi-dimensional lagrange interpolations

$$\Pi f(v_1,...,v_m) = \sum_{i_1=0}^{n_1} \dots \sum_{i_m=0}^{n_m} \alpha_{i_1...i_m} I_{i_1}(v_1) \dots I_{i_m}(v_m),$$

where the l_i 's are the 1-D caracteristic lagrange polynomials,

- Gauss-Lobatto grids to minimize the interpolation error,
- in this study $m \leq 3$.



Preliminary analyses

• Interpolation: 10 random points inside the mesh for each EOS (total: 170 points)

	Parameter range	< 1%	>10%
RKS	$\omega \in [0.5, 1.1] \ c_{ u,\infty}(\mathcal{T}_c) \in [30.0, 200.0] \ n \in [0.0, 1.0]$	163	1
PRSV	$egin{aligned} &\omega\in [0.5,1.1] \ (9)\ &c_{ u,\infty}(\mathcal{T}_c)\in [100.0,200.0] \ (9)\ &n\in [0.0,1.0] \ (9) \end{aligned}$	166	1
МАН	$egin{array}{l} \omega \in [a,b] \ T_c \in [a,b] \ p_c \in [a,b] \end{array}$	х	Y

Main discrepancies are in the vicinity of the shock.

• Sobol analysis:

	Strong influence on C_p	Weak influence on C_p
RKS	ω , $c_{ u,\infty}(T_c)$	п
PRSV	ω , $c_{ u,\infty}(T_c)$	п
MAH	T_c , p_c , $c_{ u,\infty}(T_c)$	

Redlich-Kwong

Thermal equation:

$$p=\frac{RT}{\nu-b}-\frac{a/T^{0.5}}{\nu(\nu+b)}$$

- p pressure,
- T absolute temperature,
- ν the specific volume,
- R the gas constant,
- a and b two material dependant parameters.

The Soave modification[1]:

•
$$a(T) = a_c \alpha(T); a_c = 0.42747 R^2 \frac{T_c^2}{p_c}, \alpha(T) = [1 + m(1 - T_r^{0.5})]^2, Tr = \frac{T}{T_c}$$

and $m = 0.480 + 1.57\omega - 0.176\omega^2$
• $b = 0.08664 R \frac{T_c}{p_c}$

where the subscript c denotes critical-point values and ω is the substance acentric factor.

[1] G. Soave, "Equilibrium constants from a modified Redlich-Kwong equation of state," Chem. Eng. Sci., 27, 1197, 1972.

Caloric equation:

$$c_{
u,\infty}(T) = c_{
u,\infty}(T_c) \left(\frac{T}{T_c}\right)^n.$$

where $c_{\nu,\infty}(T)$ is the ideal-gas-limit isocoric specific heat.

Those equations can be written in a normalized form:

$$\begin{cases} p_r = \frac{T_r/Z_c}{\nu_r - b_r} - \frac{a_r/T_r^{0.5}}{\nu_r(\nu_r + b_r)}\\ \frac{c_{\nu,\infty}(T)}{R} = \frac{c_{\nu,\infty}(T_c)}{R} (T_r)^n \end{cases}$$

in such a way that the RKS model only depends on the following three factors:

- the acentric factor ω ,
- the exponent n,
- the reduced ideal-gas constant-volume specific heat at the critical temperature $c_{\nu,\infty}(T_c)$.

Thermal equation:

$$p = \frac{RT}{\nu - b} - \frac{a}{\nu^2 + 2b\nu - b^2}$$

with

• $a = 0.457235 R^2 \frac{T_c^2}{p_c} \alpha(T)$, • $b = 0.077796 R \frac{T_c}{p_c}$.

To improve the results, the recorrelated m as a function of ω of Stryjek and Vera can be used:

 $m = 0.378893 + 1.4897153\omega - 0.17131848\omega^2 + 0.0196554\omega^3$

Thanks to same normalization technique as in the RKS case, the PRSV model depends only on three parameters:

- the acentric factor ω ,
- the exponent *n*,
- the reduced ideal-gas constant-volume specific heat at the critical temperature $c_{\nu,\infty}(\mathcal{T}_c)$.

Martin-Hou

Thermal equation:

$$p = \frac{RT}{\nu - b} + \sum_{i=2}^{5} \frac{f_i(T)}{(\nu - b)^i}$$

with

• $b = RT_c \frac{1 - \beta/15}{pc}$; $\beta = 20.533 - 31.883Z_c$, $Z_c = \frac{p_c \nu_c}{RT_c}$ the critical compressibility factor,

•
$$f_i(T) = A_i + B_i T + C_i \exp(-\frac{kT}{T_c}); \ k = 5.475.$$

 A_i , B_i and C_i can be expressed in terms of T_c , p_c , Z_c , the Boyle temperature (function of T_c) and one point on the vapour pressure curve.

This equation can be reduced in such a way that the MAH model depends only on the following parameters: p_c , T_c , Z_c , the normal boiling temperature T_b , n and $c_{\nu,\infty}(T_c)/R$.

The work of Cinnella *et al.* shows that only T_c , p_c and $c_{\nu,\infty}(T_c)/R$ have a great influence on the outcome.