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Introduction Calibration Method Results Conclusion and prospects

Context

Flows of complex organic fluids close to saturation conditions are encountered
in many engineering applications:

high-Reynolds wind tunnels to chemical transport,
refrigeration,
energy conversion cycles,
...

For compressible single-phase flows occuring in thermodynamic conditions close
to the liquid-vapor coexistence curve, the fluid thermodynamic behaviour differs
significantly from that of a perfect gas and can no longer be represented by
the polytropic perfect gas law.

Consequences

We have to find other Equations of State (EOS) to represent this particular ther-
modynamic behaviour!
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Main Issues

Countless EOS have been proposed in the literature, diversified according to
the substance to be modelled.
EOS based on theoretical and analytical criteria,

van der Waals,
Redlich-Kwong,
Peng-Robinson,
Martin-Hou,
...

provided that some thermodynamic inputs are available for the substance of
interest.

However, such data are typically affected by more or less significant experi-
mental errors.

Consequences

Several uncertainties related to the use of such complex EOS coming from:

the values taken by the substance-specific coefficients,

the functional form of the model.
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Main Issues
In these conditions, an interesting work to do is:

to evaluate the response of the system to the uncertainties in the input param-
eters (Cinnella et al. [1]),

to calibrate the input parameters, thanks to some experimental data, to im-
prove the way an EOS represents the thermodynamic behaviour (this work).

Problem: no experimental data available up to now!

Consequences

Reference data generated by using a more complex EOS ⇒ investigation of the
feasibility of the calibration procedure.

Side effect: calibration of simple, cheap EOS on a more complex, accurate and
expensive one.

For this study, we use:

Span-Wagner EOS as the reference,

Redlich-Kwong (RKS), Peng-Robinson (PRSV) and Martin-Hou EOS to be
calibrated.

[1] Paola Cinnella, Pietro Marco Congedo, Valentino Pediroda and Lucia Parusini, “Sensivity analysis of dense gas flow simulations to

thermodynamic uncertainties,” Phys. Fluids, 23, 116101, 2011.
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Bayesian Inference - framework

The Bayesian inference framework is employed to perform the calibration.
In our case, the Bayes rule takes the form:

p(θ|d , y)
︸ ︷︷ ︸

posterior

∝ p(d |y , θ)
︸ ︷︷ ︸

likelihood

p(θ)
︸︷︷︸

prior

where

θ is a random vector of parameters,

y is the dense gas solver output quantity of interest (model),

d is the experimental (numerical) data.

The quantity of interest is the criterion used for the calibration and is therefore
chosen according to the experimental data.

the calibration is performed from simulations of transonic dense gas flows
(D5, siloxane) around a NACA0012 airfoil,

quantity of interest: the pressure coefficient Cp =
p − p∞
1
2ρ∞U2

∞

, at 17 locations

along the airfoil wall (simulated pressure taps).
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Bayesian Inference - simulations

Figure: Mesh around a NACA0012 profile. Figure: Iso-contours of pressure coefficient. •:
numerical pressure sensors.
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Bayesian Inference - prior and likelihood

A common practice, when no particular informations are available about the pa-
rameters, is to impose uniform distributions for prior:

p(θ) ∼ U([a, b])

For the likelihood, we modelled the data d as:

d(xi ) = d̂(xi ) + ei

ei , the experimental noise; ei is assumed to be independant and normally
distributed with mean zero and a standard deviation of 10% of the observed
value.

d̂(xi ), the true pressure coefficient value at xi . d̂(xi ) is assumed to be equal
to the modelled value y(xi ), multiplied by an error coefficient ηi :

d̂(xi ) = ηiy(xi , θ)

which takes into account the discrepancy between the simulation and the
actual system.
η is assumed to be well represented by a correlated Gaussian model of the
form: η ∼ N (1,KM)
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Bayesian Inference - prior and likelihood

Finally, the likelihood can be written under the form:

p(d |y , θ) =
1

√

(2π)n|K |
exp

[

−
1

2
(d − y)TK−1(d − y)

]

K = Ke + KM , with Ke a diagonal matrix with corresponding variance and

KM = σ2 exp

[

−

(
x − x ′

10αX

)2
]

where x and x ′ are two subsequent observations abscissa separated by the
length scale 10αX (X ≈ 1).
σ and α become new parameters (known as hyper-parameters)

θ = (θp, θh).

The inference is done using sampling techniques of the prior and the likelihood:

pymc python library, based on a Markov-Chain Monte-Carlo sampler and the
Metropolis-Hastings algorithm,

samples of 200 000 draws are used, the first 50 000 of which are rejected.
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Dense gas solver

Dense gas effects essentially influence the inviscid flow behaviour

analysis of single-phase compressible inviscid flows, governed by the Euler equa-
tions and completed by a real-gas thermodynamic model.

More specifically:

2-D flows (100× 32 grid),

cell-centred finite volume scheme for structured multi-block meshes of third-
order accuracy,

scalar dissipation (to reduce the computational costs),

local time stepping, implicit residual smoothing and multigrid are used to effi-
ciently drive the solution to the steady state.

The computation is about 10 minutes long on a classical personal computer:

need for a surrogate model,

in this work: piecewise multidimensional Lagrange interpolations.
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Equations of state

thermal equation: functional relation between thermodynamic variables

e.g p =
RT

ν − b
−

a/T 0.5

ν(ν + b)

caloric equation: temperature dependence of internal energy or heat capacity

e.g cν,∞(T ) = cν,∞(Tc)

(
T

Tc

)n

these relations involve a lot of parameters and variables: pressure
temperature, specific volume...

for the EOS we are interested in:

Redlich-Kwong and Peng-Robinson:

{
the exponent n
the reduced ideal-gas isocoric heat cν,∞
the acentric factor ω

Martin-Hou:

{
the critical temperature Tc

the reduced ideal-gas isocoric heat cν,∞(Tc)
the critical pressure pc
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Preliminary analyses

Sobol analysis (Monte-Carlo):

Strong influence on Cp Weak influence on Cp

RKS ω, cν,∞(Tc) n

PRSV ω, cν,∞(Tc) n
MAH Tc , pc , cν,∞(Tc)

correlations:
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Preliminary analyses - preliminary conclusion

The previous observations allow to reduce the number of parameters:

Redlich-Kwong: the calibration is performed with only one parameter (ω)
whereas n and cν,∞(Tc) are taken at fixed values

{
n = 0.5
cν,∞(Tc) = 180.0

Peng-Robinson: the calibration is performed with only one parameter (ω)
whereas n and cν,∞(Tc) are taken at fixed values

{
n = 0.5
cν,∞(Tc) = 150.0

Martin-Hou: the calibration is performed with the two parameters Tc , pc
whereas cν,∞(Tc) = 78.0
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Calibration - Redlich-Kwong

legend:
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Calibration - Peng-Robinson

legend:

prior
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statistics:

Mean Standard
deviation
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Calibration - Martin-Hou

legend:

prior
posterior

statistics:

Mean Standard
deviation
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Calibration - Martin-Hou

legend:
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Calibration

Redlich-Kwong
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Good agreements between calibrated and reference data,

The study seems to show that there is not only one parameter set which best
fit the experimental data since some parameters are found to be correlated to
each other,

⇒ to be confirmed,

Future work: perform Bayesian model averaging to take into account several
model forms and scenarios.
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Bayesian inference

ei is assumed to be independant and normally distributed with mean zero and a
standard deviation of 10% of the observed value. Then we can write that:

p(d |d̂) =
1

√

(2π)n|Ke |
exp

[

−
1

2
(d − d̂)TK−1

e (d − d̂)

]

η is assumed to be well represented by a correlated Gaussian model of the form:

η ∼ N (1,KM)

A common used choice for KM is:

KM = σ2 exp

[

−

(
x − x ′

10αX

)2
]

where x and x ′ are two subsequent observations abscissa separated by the length
scale 10αX (X ≈ 1).

σ and α become new parameters (known as hyper-parameters) to be calibrated
and representing the magnitude of the error variance and the magnitude of the
correlation length.
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Response surface

multi-dimensional lagrange interpolations

Πf (v1, ..., vm) =

n1∑

i1=0

...

nm∑

im=0

αi1...im li1(v1)...lim(vm),

where the li ’s are the 1-D caracteristic lagrange polynomials,
Gauss-Lobatto grids to minimize the interpolation error,
in this study m ≤ 3.
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Preliminary analyses

Interpolation: 10 random points inside the mesh for each EOS (total: 170
points)

Parameter range < 1% > 10%

RKS
ω ∈ [0.5, 1.1]

163 1cν,∞(Tc) ∈ [30.0, 200.0]
n ∈ [0.0, 1.0]

PRSV
ω ∈ [0.5, 1.1] (9)

166 1cν,∞(Tc) ∈ [100.0, 200.0] (9)
n ∈ [0.0, 1.0] (9)

MAH
ω ∈ [a, b]

X YTc ∈ [a, b]
pc ∈ [a, b]

Main discrepancies are in the vicinity of the shock.

Sobol analysis:

Strong influence on Cp Weak influence on Cp

RKS ω, cν,∞(Tc) n
PRSV ω, cν,∞(Tc) n
MAH Tc , pc , cν,∞(Tc)
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Redlich-Kwong

Thermal equation:

p =
RT

ν − b
−

a/T 0.5

ν(ν + b)

p pressure,

T absolute temperature,

ν the specific volume,

R the gas constant,

a and b two material dependant parameters.

The Soave modification[1]:

a(T ) = acα(T ); ac = 0.42747R2T
2
c

pc
, α(T ) = [1 +m(1 − T 0.5

r )]2, Tr = T
Tc

and m = 0.480 + 1.57ω − 0.176ω2

b = 0.08664R
Tc

pc

where the subscript c denotes critical-point values and ω is the substance acentric
factor.
[1] G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., 27, 1197, 1972.
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Redlich-Kwong

Caloric equation:

cν,∞(T ) = cν,∞(Tc)

(
T

Tc

)n

.

where cν,∞(T ) is the ideal-gas-limit isocoric specific heat.

Those equations can be written in a normalized form:







pr =
Tr/Zc

νr − br
−

ar/T
0.5
r

νr (νr + br )
cν,∞(T )

R
=

cν,∞(Tc)

R
(Tr )

n

in such a way that the RKS model only depends on the following three factors:

the acentric factor ω,

the exponent n,

the reduced ideal-gas constant-volume specific heat at the critical temperature
cν,∞(Tc).
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Peng-Robinson

Thermal equation:

p =
RT

ν − b
−

a

ν2 + 2bν − b2

with

a = 0.457235R2T
2
c

pc
α(T ),

b = 0.077796R
Tc

pc
.

To improve the results, the recorrelated m as a function of ω of Stryjek and Vera
can be used:

m = 0.378893+ 1.4897153ω− 0.17131848ω2 + 0.0196554ω3

Thanks to same normalization technique as in the RKS case, the PRSV model
depends only on three parameters:

the acentric factor ω,

the exponent n,

the reduced ideal-gas constant-volume specific heat at the critical temperature
cν,∞(Tc).
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Martin-Hou

Thermal equation:

p =
RT

ν − b
+

5∑

i=2

fi (T )

(ν − b)i

with

b = RTc

1− β/15

pc
; β = 20.533− 31.883Zc, Z c =

pcνc
RTc

the critical

compressibility factor,

fi (T ) = Ai + BiT + Ci exp (−
kT

Tc

); k = 5.475.

Ai , Bi and Ci can be expressed in terms of Tc , pc , Zc , the Boyle temperature
(function of Tc) and one point on the vapour pressure curve.

This equation can be reduced in such a way that the MAH model depends only on
the following parameters: pc , Tc , Zc , the normal boiling temperature Tb, n and
cν,∞(Tc)/R .

The work of Cinnella et al. shows that only Tc , pc and cν,∞(Tc)/R have a great
influence on the outcome.
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