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Abstract

A key point of structural reliability studies is to estimate the probability of an undesirable event. This estimation is made possible by using a numerical code that mimics the

physical behavior of the studied phenomenon. The events considered are usually rare, accuring with a low probability. These constraints forbid in practice to use crude Monte

Carlo methods. Variance reduction methods must be carried out to provide usable estimations in due time. This problem drives to the development and adaptation to methods

to reduce the number of calls of the code.

1. Industrial Context

➧ Let G : Rd → R be a deterministic numerical model

➧ Uncertain inputs are represented by a random vector X

➧ An indesirable event is described as G(X) < 0

➧ The quantity of interest is

p = P(G(X) ≤ 0) (1)

2. Monotonicity

➧ A function G is said monotonic if

∀x ∈ U, ∀i ∈ {1, . . . , d}, ∀ǫ ∈ R
∗
+, ∃si ∈ {−1, 1}, G(x1, . . . , xi + siǫ, . . . , xd) ≤ G(x1, . . . , xd) (2)

➧ Unless lost of generality one assume U = [0, 1]d and G is increasing in all inputs. Let Xi and define Fi the

cumulative density function of Xi. One transform the input as
{
Xi ← Fi(Xi) if G is increasing in Xi

Xi ← 1− Fi(Xi) if G is decreasing in Xi

(3)

➧ Let x̄n = {x1, . . . ,xn} obtained from any method of simulation and evaluated by G

➧ Considering

Ξ−n = {x ∈ x̄n : G(x) ≤ 0} (4)

Ξ+

n = {x ∈ x̄n : G(x) > 0} (5)

U
−
n = {x ∈ U : ∃y ∈ Ξ−n ;x � y} (6)

U
+

n = {x ∈ U : ∃y ∈ Ξ+

n ;x � y}, (7)

➧ Two exact and deterministic bounds for p can be obtained for all n ≥ 0:

P(U ∈ U
−
n ) = p−n ≤ p ≤ p+n= 1− P(U ∈ U

+

n ) (8)

with U uniformly distributed on U

Figure 1: In dimension 2, Ξ−
8
= {x1,x2,x5,x6} and Ξ+

8
= {x3,x4,x7,x8}.

3. Sequential Importance Sampling

➧ Assume that at step n of the exploration of input space U, the next point xn of the design is sampled from the

importance distribution

xn ∼ fn−1 ≡ Nd(x
∗
n−1, σ

2Id)1{x∈Un−1} (9)

➧ The idea is to choose x∗n−1 which maximize a criterion C such that x∗n−1 is near of Γ

➧ Denote

p±n+1(x) = P(U ∈ U
±
n+1(x)) (10)

the contribution of x for the reduction of the bounds. Where

U
−
n+1(x) = {z ∈ U : ∃y ∈ (Ξ−n ∪ x); z � y}, U

+

n+1(x) = {z ∈ U : ∃y ∈ (Ξ+

n ∪ x); z � y} (11)

➧ Two classes of methods are proposed, the first one based on geometrical criterion and the second one

based on classification tools

➧ The first criterion is the volumetric-maximin (V-Maximin) and is describe as follow

C(x) = min(p−n+1(x)− p−n , p
+

n − p+n+1(x)) (12)

➧ An alternative criterion called quick-maximin (Q-Maximin) is proposed

C̃(x) = min(c−n+1(x), c
+

n+1(x)) (13)

where

x ∈ ȳn = (y1, . . . ,yn) ∼ Uniform(Un) (14)

c−n+1(x) = #{y ∈ ȳn : y � x} , c+n+1(x) = #{y ∈ ȳn : y � x} (15)
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Figure 2: Comparison of methods V-Maximin and Q-Maximin

➧ The second approach is based on classification tools. The problem to class a new point is a problem of

binary classification, which can be solved using monotonic neural networks. One proposes three criteria:

C1(x) = [p+n − p+n+1(x)]π1(x) + [p−n+1(x)− p−n ]π−1(x) (16)

C2(x) = −[p̂n,M − p−n+1(x)][p
+

n+1(x)− p̂n,M ] (17)

C3(x) = [p+n − p+n+1(x)]π1(x) (18)
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Figure 3: Comparison of criteria C1, C2 and C3

4. Numerical applications

➧ A class of examples: in dimension d, let X = (X1 . . . , Xd) with Xi ∼ Γ(i + 1, 1) and

Zd =
X1

d∑

i=1

Xi

∼ Beta(2, (d + 1)(d + 2)/2− 3) (19)

Let qd,p be the p-order quantile of Zd, and define

G(X) = Zd − qd,p (20)

Then,

p = P(G(X) ≤ 0) = P(Zd ≤ qd,p) (21)
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Figure 4: Comparison of the exact bounds for geometric and classification-based criterion.
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