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Screening sensitivity analysis (SA) 
 

 Quick search of parameter importance 
 

 Select most important parameters 
 

 Dimensionality reduction (Factor Fixing) 
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We investigated 
 

 Convergence of the screening SA 
 

 For increasing number of trajectories 
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 SWAT (Soil and Water Assessment Tool) 
 

 Rainfall-runoff model 
 

 Conceptual, but based on physical processes 
 

 Highly nonlinear, nonmonotonic, multimodal 
 

 Flow, nitrate, phosphate, sediment,… 
 

 Case studies:  River Kleine Nete (BEL – 40 pars) 

  River Zenne (BEL – 26 pars) 



Screening methods 
are suitable for environmental models 

Latin-Hypercube – One-factor-at-A-Time 
 

 Morris-like screening method 
 

 Latin-Hypercube replaces random sampling 
 

 Elementary effects 
 

  
 

  
 

 (van Griensven et al., 2006) 

𝐸𝐸𝑖 =   100 ∙ 𝑦 𝜃1 , … , 𝜃𝑖 1 + ∆𝑖 , … , 𝜃𝑘 − 𝑦 𝜃1 , … , 𝜃𝑘  𝑦 𝜃1 , … , 𝜃𝑖 1 + ∆𝑖 , … , 𝜃𝑘 + 𝑦 𝜃1 , … , 𝜃𝑘  2 ∆𝑖    
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Latin-Hypercube – One-factor-at-A-Time 
 

 μ  (mean) of elementary effects 
 

  Overall effect of the input factor on the output 
 

  Unbiased estimator of the distribution of EE’s 

 

 σ  (stdev) of elementary effects 
 

  Uniformity of the effects 
  

  Measure for the nonlinearity of the effects 
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Limited number of model evaluations 

 

Quantitative parameter rankings 

 

Identify non-influential parameters 

 

Factor fixing = dimensionality reduction 

 

Sometimes fix additional parameters 

 

Can be prone to type II errors 
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Increase number of trajectories for SA 

 

Confidence Intervals (CI) for μ and σ 
 

 Bootstrapping with resampling 

 

If converged 
 

 CI should decrease for increasing # trajectories 

 

 σ should not increase for increasing # trajectories 

 (every EE is a random sample of the distribution of EE’s) 
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The River Kleine Nete – 40 parameter model 
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More than 100 trajectories 
are required for converged rankings 

The River Zenne – 26 parameter model 
 

 5 non-influential parameters 
 

  Already identified with standard sample size 
 

 Limited type II error 
 

  Parameter Ch_N (channel conductivity) 

 
5 10 50 100 200

rank 11 4 3 2 2

µ 4.20E-02 3.75E-01 4.14E-01 6.32E-01 7.09E-01
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The River Zenne – 26 parameter model 
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Conclusions 

100 trajectories are required to 
 

 achieve converged parameter rankings 
 

  become more resilient to type II errors 
 

 make a correct selection of parameters 
 

 reduce the dimensionality 

 with least loss of model variability 
 

 achieve better predictions 
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Investing time (more trajectories) 

 

presently costs you money 

 

but gives you profit in future 

(reduced loss of variability) 
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