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New Sensitivity Indices

Motivations
Case of Maximal Attitude: various sensitivity measures ...

Page 6



New Sensitivity Indices

Motivations

How to explain such differences between sensitivity indicators in a single framework ?
How to define other indicators ?

Issues

Gather the notion of sensitivity to the notion of quantity/feature of interest of Y

Define generic sensitivity indices relatively to a feature of Y

Study the importance ranking between these new indices and the Sobol ones: a
variable Xk may have a negligible Sobol index (the lower for instance) and may
have a significant importance for some other (contrast-based) index
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New Sensitivity Indices

Motivations

In a model Y = h(X1, . . . ,Xd ) the global Sobol index quantify the influence of a
random variable Xi on the output Y . This index is based on the variance (see
[Sobol, 1993][6], [Saltelli et al., 2000][5]): in particular, the first order index
compares the total variance of Y to the expected variance of the variable Y
conditioned by Xi ,

Si =
Var(E[Y |Xi ])

Var(Y )
. (1)
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New Sensitivity Indices

Motivations

In a model Y = h(X1, . . . ,Xd ) the global Sobol index quantify the influence of a
random variable Xi on the output Y . This index is based on the variance (see
[Sobol, 1993][6], [Saltelli et al., 2000][5]): in particular, the first order index
compares the total variance of Y to the expected variance of the variable Y
conditioned by Xi ,

Si =
Var(E[Y |Xi ])

Var(Y )
. (1)

By the property of the conditional expectation it writes also

Si =
Var(Y )− EXi

(Var[Y |Xi ])

VarY
. (2)

Formula (1) is popular and very used by computer scientists
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New Sensitivity Indices

Motivations

In a model Y = h(X1, . . . ,Xd ) the global Sobol index quantify the influence of a
random variable Xi on the output Y . This index is based on the variance (see
[Sobol, 1993][6], [Saltelli et al., 2000][5]): in particular, the first order index
compares the total variance of Y to the expected variance of the variable Y
conditioned by Xi ,

Si =
Var(E[Y |Xi ])

Var(Y )
. (1)

By the property of the conditional expectation it writes also

Si =
Var(Y )− EXi

(Var[Y |Xi ])

VarY
. (2)

Formula (1) is popular and very used by computer scientists

We propose to adopt formula (2) to extend Sobol indices
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New Sensitivity Indices

Key remarks

What is hidden in the expression Si =
Var(Y )−EXi

(Var[Y |Xi ])

VarY
...

Notice that Var(Y ) = minθ E(Y − θ)
2 (min. reached at θ∗ = EY )

Similarly, Var[Y |Xi ] = minθ E[(Y − θ)
2|Xi ] (min. reached at θ∗ = E[Y |Xi ] )
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New Sensitivity Indices

Key remarks

What is hidden in the expression Si =
Var(Y )−EXi

(Var[Y |Xi ])

VarY
...

Notice that Var(Y ) = minθ E(Y − θ)
2 (min. reached at θ∗ = EY )

Similarly, Var[Y |Xi ] = minθ E[(Y − θ)
2|Xi ] (min. reached at θ∗ = E[Y |Xi ] )

the index Si appears to compare the optimal value of the function E(Y − θ)2 to
the expected optimal value of the conditional function E[(Y − θ)2|Xi ]

Si =
E(Y − EY )2 − E(Xi ,Y ) (Y − E[Y |Xi ])

2

E(Y − EY )2
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New Sensitivity Indices

Key remarks

What is hidden in the expression Si =
Var(Y )−EXi

(Var[Y |Xi ])

VarY
...

Notice that Var(Y ) = minθ E(Y − θ)
2 (min. reached at θ∗ = EY )

Similarly, Var[Y |Xi ] = minθ E[(Y − θ)
2|Xi ] (min. reached at θ∗ = E[Y |Xi ] )

the index Si appears to compare the optimal value of the function E(Y − θ)2 to
the expected optimal value of the conditional function E[(Y − θ)2|Xi ]

Si =
E(Y − EY )2 − E(Xi ,Y ) (Y − E[Y |Xi ])

2

E(Y − EY )2

New general writing of Sobol index

S i
ψ =

Eψ(Y ;EY )− E(Xi ,Y )ψ(Y ;E[Y |Xi ])

Eψ(Y ;EY )

where for Sobol indices the function ψ is (y ; θ) 7→ (y − θ)2

we will call ψ a contrast function which depends on the considered feature of
interest, it will play a crucial rule (see [Rachdi et al., 2012][3], [Fort et al.,
2012][1])

What about changing contrast ? ...
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New Sensitivity Indices

Birth of new indices ?...

We will define ψ-indices as

QoI = Quantity of Interest and QoI |Xi = Conditional Quantity of Interest

S i
ψ =

Eψ(Y ;QoI )− E(Xi ,Y )ψ(Y ;QoI |Xi )

Eψ(Y ;QoI )

where ψ is the (a) contrast adapted to the Quantity of Interest

Page 9



New Sensitivity Indices

Theoretical definition: ψ-index

Assumption

Let ψ be some contrast, assume that

Emin
θ
ψ(Y ; θ) ∈ R.

All the contrasts presented before satisfy this Assumption since minθ ψ(y ; θ) = 0.

Definition: ψ-index

Let Ψ(θ) = Eψ(Y ; θ) be a contrast associated to a feature of Y , θ∗ = Argmin
θ

Ψ(θ).

The ψ-index of the variable Y = h(X1, . . . ,Xd ) w.r.t the contrast ψ and the variable
Xk is defined as

Sk
ψ =

Eψ(Y ; θ∗)− E(X
k
,Y )ψ(Y ; θk (Xk ))

Eψ(Y ; θ∗)− Eminθ ψ(Y ; θ)

where θk (x) = Argmin
θ

E(ψ(Y ; θ)|Xk = x) is the feature of interest of Y conditionally

to Xk = x

do not solve minimisation problems to compute θ∗ and θk (x) !
"just" compute the features if known ... (see Simulation section)
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New Sensitivity Indices

Comments on ψ-index

Lemma

The ψ-index Sk
ψ

is non negative.

Proof: comes from the fact that for any random variable ξ and any function g

Emin
θ

g(θ, ξ) ≤ min
θ

Eg(θ, ξ) .

If Y does not depends on Xk , then Sk
ψ
= 0. Moreover, assuming that the

variables (X1, . . . ,Xd ) are independent, if Y = h(Xk ) then Sk
ψ
= 1 and the other

indices S l
ψ
, l 6= k are 0

we have that
Sk
ψ ∈ [0, 1] .

These basic properties were expected from a reasonable sensitivity index.

Page 11



New Sensitivity Indices

Outline

1 Motivations

2 Feature of Interest & Contrast Function

3 2D toy example

4 3D example: Ishigami function

5 Back up

Page 12



New Sensitivity Indices

Notion of Contrast Function

Goal: Define formal indices adapted to a feature of interest of Y

Idea: to characterize a feature of Y by a contrast function (see [Rachdi,
2011] [2])

"a feature of interest of Y induces (defines) a contrast function which induces
(defines) an adapted sensitivity index"
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New Sensitivity Indices

Notion of Contrast Function

Goal: Define formal indices adapted to a feature of interest of Y

Idea: to characterize a feature of Y by a contrast function (see [Rachdi,
2011] [2])

"a feature of interest of Y induces (defines) a contrast function which induces
(defines) an adapted sensitivity index"

Example of the "mean feature":

θ∗ = EY ⇒EY = Argminθ∈Θ E(Y − θ)2⇒ψ : (y ; θ) 7→ (y − θ)2

⇒ S i
ψ
=

Eψ(Y ;EY )−E(Xi ,Y )ψ(Y ;E[Y |Xi ])

Eψ(Y ;EY )
=

Var(Y )−E(Var[Y |Xi ])
VarY

that is "the mean feature" ⇒ 1st order Sobol index

Feature of Interest formalization:

a feature of interest is viewed as a minimizer of contrast
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New Sensitivity Indices

Notion of Contrast Function

Goal: Define formal indices adapted to a feature of interest of Y

Idea: to characterize a feature of Y by a contrast function (see [Rachdi,
2011] [2])

"a feature of interest of Y induces (defines) a contrast function which induces
(defines) an adapted sensitivity index"

Example of the "mean feature":

θ∗ = EY ⇒EY = Argminθ∈Θ E(Y − θ)2⇒ψ : (y ; θ) 7→ (y − θ)2

⇒ S i
ψ
=

Eψ(Y ;EY )−E(Xi ,Y )ψ(Y ;E[Y |Xi ])

Eψ(Y ;EY )
=

Var(Y )−E(Var[Y |Xi ])
VarY

that is "the mean feature" ⇒ 1st order Sobol index

Feature of Interest formalization:

a feature of interest is viewed as a minimizer of contrast

Other contrast functions ?
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New Sensitivity Indices

Examples of Contrast Functions
Recall that a generic contrast writes Ψ(θ) = Eψ(Y ; θ) and θ∗ = Argminθ Ψ(θ)

⇛ feature of interest θ∗ ←→ contrast function Ψ ⇚

Central parameters:

- The mean θ∗ = EY : Ψ(θ) = E|Y − θ|2.
- The median (in R) θ∗ = q0.5(Y ): Ψ(θ) = 1

2
E|Y − θ|.

An excess probability : θ∗ = P(Y ≥ t), Ψ(θ) = E|1Y≥t − θ|
2.

All the probability tail: θ∗ =
∫∞
t0

P(Y ≥ t)dt, Ψ(θ) = E
∫∞
t0
|1Y≥t − θ(t)|

2dt.

The α-quantile : θ∗ = qα(Y ), Ψ(θ) = E(Y − θ)(α− 1Y≤θ).

Quantile tail: θ∗ =
∫

1

α0
qα(Y )dα, Ψ(θ) = E

∫
1

α0
(Y − θ(α))(α− 1Y≤θ(α))dα.

The probability density function θ∗ = pdf (Y ) (infinite dimensional parameter)

- Using the kernel method, with Kr (y) =
1

r
K( y

r
), r > 0

Ψ(θ) = E

∫ +∞

−∞
(Kr (Y − t)− θ(t))2dt or L2 basis, etc.

Etc.

One easily checks that all these contrasts achieve their minimal value at θ∗
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New Sensitivity Indices

Higher order ψ-indices

Higher order ψ-index

The indices Sk
ψ

can be generalized to higher order indices, for I ⊂ {1, ..., d} and

denoting by XI = (Xi )i∈I , we define

S I
ψ =

Eψ(Y ; θ∗)− E(XI ,Y )ψ(Y ; θI (XI ))

EYψ(Y ; θ∗)
(3)

where θI (XI ) is the feature associated to the contrast ψ of the random variable Y |XI

(In what follows we deal with first order indices)
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New Sensitivity Indices

ψ-Indices Simulation: basic Monte-Carlo approach
Assume that Eminθ ψ(Y ; θ) = 0 (it is the case for all presented contrasts), let’s
estimate

Sk
ψ =

Eψ(Y ; θ∗)− E(X
k
,Y )ψ(Y ; θk (Xk ))

EYψ(Y ; θ∗)
(4)

1 Generate X j
1
, ...,X j

p and compute the Y j = h(X j
1
, ...,X j

p), for j = 1, ..., n1. Then

compute θ̂∗ and replace in (4) the expectations E(X
k
,Y ) and EY by their

empirical versions.

2 Generate X ′ j
1
, ...,X ′ j

p for j = 1, ..., n2 (independent from the previous set) and

compute the Y ′ j = h(X ′ j
1
, ...,X ′ j

p ). Then, from the sample

Y ′ j
k
(x) = h(X ′ j

1
, ...,X ′ j

k−1
, x ,X ′ j

k+1
, ...,X ′ j

p ), j = 1, ..., n2, compute the function

x 7→ θ̂k (x).

3 Compute the Monte-Carlo estimator

Ŝk
ψ =

1

n1

∑n1

j=1

(
ψ(Y j ; θ̂∗)− ψ(Y j ; θ̂k (X

j
k
))
)

1

n1

∑n1

j=1
ψ(Y j ; θ̂∗)

(5)
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New Sensitivity Indices

ψ-Indices Simulation: Sobol indices

We retrieve the basic Monte-Carlo estimator of the 1st order Sobol index

considering the mean-contrast ψ(y ; θ) = (y − θ)2 and n1 = n2 = N we have that

θ̂∗ =
1

N

N∑

l=1

Y l and θ̂k (X
j
k
) =

1

N

N∑

l=1

Y ′ l
k (X j

k
) .

it is easy to check that the index Ŝk
ψ

in (5) is the well known Monte-Carlo

estimator of the first order Sobol index, see [4]:

Ŝk
ψ =

YY′
k − YY′

k

Y2 − Y
2

,

where Y = (Y 1, ...,Y N) and Y′
k = (Y ′ 1

k
(X 1

k
), ...,Y ′N

k
(XN

k
)) and for any vector

u = (u1, ..., uN)

u =
1

N

N∑

j=1

uj .
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New Sensitivity Indices

Toy example

Let Y = X1 − X2, with X1,X2 ∼ Exp(1) independent

It is clear that first order Sobol indices are

S1

Sob = S2

Sob = 1/2

Sobol indices ↔ mean-contrast indices ... what about using other contrasts ?
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New Sensitivity Indices

Toy example
Let Y = X1 − X2, with X1,X2 ∼ Exp(1) independent

feature of interest: the α-quantile qY (α) of Y

associated contrast:

Ψα(θ) = E(Y − θ)(α− 1Y≤θ) ,

indices computation: (computed analytically)
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New Sensitivity Indices

Toy example
Let Y = X1 − X2, with X1,X2 ∼ Exp(1) independent

feature of interest: the exceeding probability P(Y ≥ t)

associated contrast:
Ψt(θ) = E|1Y≥t − θ|

2 ,

indices computation: (simulated by Monte-Carlo methods)

Page 20



New Sensitivity Indices

Toy example
Let Y = X1 − X2, with X1,X2 ∼ Exp(1) independent

Remark: the threshold-contrast Ψt(θ) = E|1Y≥t − θ|
2 induces Sobol indices of

the random variable Zt = 1Y≥t (which is a well known fact)

Contrast comparison: t-threshold-contrast and α-quantile-contrast bring the
same information since

P(Y > t) ≤ α⇐⇒ qα(Y ) ≤ t

Figure : α-quantile contrast & t-threshold contrast
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New Sensitivity Indices

Toy example
Let Y = X1 − X2, with X1,X2 ∼ Exp(1) independent

Comparison with Sobol index:

Remark:

• First order Sobol indices are insensitive to the quantile level α and
(equivalently) the threshold t (Sobol indices ↔ mean-contrast !)

• We retrieve the Sobol ranking at the level α = 0.5 for the quantile-contrast
or equivalently at a threshold t = 0 ("the middle") for the
threshold-contrast.
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New Sensitivity Indices

Ishigami function

Ishigami function: Consider Y = sin(ξ1) + 7 sin(ξ2)2 + 0.1 ξ4
3

sin(ξ1), where
ξ1, ξ1 ∼ U(−π, π) are independent

2 different ψ-indices :

• mean-contrast: Ψmean(θ) = E|Y − θ|2 → 1st order Sobol indices that are

S1

Sob = 0.3139, S2

Sob = 0.4424 and S3

Sob = 0 .

• quantile-contrast: Ψα(θ) = E(Y − θ)(α− 1Y≤θ)

→ let’s compute the indices S1
α, S2

α and S3
α
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New Sensitivity Indices

Results
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S3

Sob
is always equals to 0 whereas S3

α is highly significative for extreme values of
α... which is intuitive !
It shows clearly the importance of taking into account the goal of the study
when measuring the impact of the input variables.

the importance ranking is different from the Sobol one for α & 85% and
α . 15%
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New Sensitivity Indices

Conclusions & Perspectives

We have introduced new indices of influence of an input random variable

It allows to handle many cases that are not directly related to a mean/variance
criterion

Sobol indices are viewed as a particular case related to the mean-contrast

This work is a first step toward a generalized theory of (goal oriented) sensitivity
analysis
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New Sensitivity Indices
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New Sensitivity Indices

Notion of Contrast Function

Definition: Contrast Function

Let Θ be some generic set and Q be some probability measure on a space Y. A
(Θ,Q)-contrast function, or simply contrast function, is defined as any function ψ

ψ : Θ −→ L1(Q) (6)

θ 7−→ ψ(·; θ) : y ∈ Y 7−→ ψ(y ; θ) ,

such that

θ∗ = Argmin
θ∈Θ

EY∼Q ψ(Y ; θ) (7)

is unique. The function Ψ : θ 7→ EY∼Q ψ(Y ; θ) is the average contrast function, or
abusively contrast function if there is no ambiguity.
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New Sensitivity Indices

Comments on ψ-index
Let us retrieve the first order Sobol index:

trend of interest: compute sensitivity carried by "the mean": θ∗ = EY

associated contrast: it induces the mean-contrast
EY = Argminθ E(Y − θ)

2 ⇒ ψ : (y ; θ) 7→ (y − θ)2

conditional feature of interest: θk (x) = E(Y |Xk = x)
with the contrast characterization = Argminθ E(Y − θ)

2|Xk = x)

We compute

Eψ(Y ; θ∗)− E(X
k
,Y )ψ(Y ; θk (Xk )) = E(Y − EY )2 − E(X

k
,Y )(Y − E(Y |Xk ))

2

= Var(Y )− EX
k
E
[
(Y − E(Y |Xk ))

2|Xk

]

= Var(Y )− EX
k
Var(Y |Xk )

= Var(E(Y |Xk ))

and

Eψ(Y ; θ∗)− Emin
θ
ψ(Y ; θ) = Var(Y )− 0 = Var(Y ) .

Finally, we obtain the following ψ-index

Sk
ψ =

Var(E(Y |Xk ))

Var(Y )
,

which is exactly the first order Sobol index.
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