A least square based method using sparse low-rank approximation for uncertainty propagation

P. Rai, M. Chevreuil and A. Nouy

GeM – Institut de Recherche en Génie Civil et Mécanique LUNAM Université UMR CNRS 6183 / Université de Nantes / Centrale Nantes

Uncertainty quantification using functional approaches

Stochastic/parametric models

Uncertainties represented by "simple" random variables $\xi = (\xi_1, \cdots, \xi_d) : \Theta \to \Xi$ defined on a probability space (Θ, \mathcal{B}, P) .

Uncertainty quantification using functional approaches

Stochastic/parametric models

Uncertainties represented by "simple" random variables $\xi = (\xi_1, \dots, \xi_d) : \Theta \to \Xi$ defined on a probability space (Θ, \mathcal{B}, P) .

Ideal approach

Compute an accurate and explicit representation of $u(\xi)$ that allows fast evaluations of output quantities of interest, observables, or objective function.

$$u(\xi) \approx \sum_{i=1}^{P} u_i \phi_i(\xi), \quad \xi \in \Xi$$

where the $\phi_i(\xi)$ constitute a suitable basis (ex. Polynomial chaos)

Issue

- Approximation of a high dimensional function $u(\xi)$, $\xi \in \Xi \subset \mathbb{R}^d$
- Use of classical deterministic solvers (black box)
 - \hookrightarrow Numerous solutions of deterministic problems: $O(\# \mathfrak{I}_P)$

Issue

- Approximation of a high dimensional function $u(\xi)$, $\xi \in \Xi \subset \mathbb{R}^d$
- Use of classical deterministic solvers (black box)
 - \hookrightarrow Numerous solutions of deterministic problems: $O(\# \mathfrak{I}_P)$

Possibly fine deterministic models

$$\textit{dim}(\mathcal{V}_{\textit{N}}) \approx 10^{6}, 10^{9}, 10^{12}...$$

Make inacceptable numerous evaluations of the model

Possibly high parametric dimensionality d

Many input parameters or stochastic processes with high spectral content

 $\textit{dim}(\mathbb{S}_{\textit{P}}) \approx 10, 10^{10}, 10^{100}, 10^{1000}, ...$

ightarrow Need adapted representations for high dimensional functions

Question

Can we compute low dimensional representations a priori ?

1 Non intrusive sparse approximation

2 Non intrusive sparse tensor methods

3 Numerical illustrations

- Analytical model: checker-board function
- Diffusion equation with multiple inclusions
- Advection-Diffusion equation with random field

4) Conclusion

Outline

1 Non intrusive sparse approximation

Non intrusive sparse tensor methods

3 Numerical illustrations

- Analytical model: checker-board function
- Diffusion equation with multiple inclusions
- Advection-Diffusion equation with random field

4) Conclusion

Aim

Compute an approximation of $u \in S_P$

$$u(\xi) pprox \sum_{lpha \in \mathfrak{I}_P} u_lpha \phi_lpha(\xi)$$

using a few samples $\{u(y^k)\}_{k=1}^Q$

where $\{y_k\}_{k=1}^Q$ is a collection of sample points and the $u(y^k)$ are approximate solutions of deterministic problems

$$\mathcal{A}(u(y^k); y^k) = f(y^k)$$

Least-squares in $\mathcal{S}_P = span\{\phi_i\}_{i=1}^P$

Approximation $v(\xi) = \sum_{i=1}^{P} v_i \phi_i(\xi)$ defined by

$$\overline{\min_{v \in S_P} \|u - v\|_Q^2} \quad \text{with} \quad \|u - v\|_Q^2 = \sum_{k=1}^Q |u(y^k) - v(y^k)|^2$$

or equivalently by

$$\min_{\mathbf{v}\in\mathbb{R}^{P}} \|\mathbf{z} - \mathbf{\Phi}\mathbf{v}\|_{2}^{2} \quad \text{with } \mathbf{v} = (v_{i})_{i}, \ \mathbf{\Phi} = (\phi_{i}(y^{k}))_{k,i}, \ \mathbf{z} = (u(y^{1}), \dots, u(y^{Q}))^{T}$$

Regularized least-square

$$\min_{v \in \mathcal{S}_{P}} \|u - v\|_{Q}^{2} + \lambda \mathcal{L}(v) \quad \text{Choice of } \mathcal{L} ?$$

• No regularization ($\lambda = 0$): requires $Q \gg P$ for well-posedness and avoid overfitting

Ideal sparse regression

For a given precision ϵ , ideal sparse regression problem:

$$\min_{\mathbf{v}\in\mathbb{R}^{P}}\|\mathbf{z}-\mathbf{\Phi}\mathbf{v}\|_{2}^{2} \text{ subject to } \|\mathbf{v}\|_{0} \leq m$$

with
$$\|\mathbf{v}\|_0 = \#\{i; v_i \neq 0\}$$

[Blatman and Sudret 2011, Doostan and Owhadi 2011, Mathelin 2012, Najm 2012]

Approximate sparse regression (Lasso or Basis Pursuit)

$$\min_{\mathbf{v}\in\mathbb{R}^P} \|\mathbf{z} - \mathbf{\Phi}\mathbf{v}\|_2^2 \quad \text{subject to} \quad \|\mathbf{v}\|_1 \le \delta \qquad \text{with } \|\mathbf{v}\|_1 = \sum_{i=1}^P |v_i|$$

which for some $\lambda(\delta)$ is equivalent to

$$\min_{\mathbf{v}\in\mathbb{R}^{P}}\|\mathbf{z}-\mathbf{\Phi}\mathbf{v}\|_{2}^{2}+\lambda\|\mathbf{v}\|_{1}$$

Issues

- ${\scriptstyle \odot}$ Algorithms limited to approximation spaces with low dimension P
- Selection of good bases ?

Non intrusive sparse approximation

2 Non intrusive sparse tensor methods

3 Numerical illustrations

- Analytical model: checker-board function
- Diffusion equation with multiple inclusions
- Advection-Diffusion equation with random field

4) Conclusion

Strategies for high dimensional approximation

Instead of evaluating the coefficients of an expansion in a given approximation basis, function u is approximated in suitable low-rank tensor subsets

Nonlinear approximation using tensor approximation methods

Exploit the tensor structure of function space

$$\mathcal{S}_P = \mathcal{S}_{P_1}^1 \otimes \ldots \otimes \mathcal{S}_{P_d}^d$$

 ${\circ}\,$ Choose suitable low rank tensor subsets ${\mathfrak M}\,$

$$\mathcal{M} = \left\{ \mathbf{v} = F_{\mathcal{M}}(\mathbf{p}^{(1)}, \dots, \mathbf{p}^{(d)}); \mathbf{p}^{(k)} \in \mathbb{R}^{P_k} \right\}$$

Rank-one tensors

with dim(F

$$\mathcal{R}_{1} = \left\{ w(y) = \langle \phi(y), \mathbf{w}^{(1)} \otimes \ldots \otimes \mathbf{w}^{(d)} \rangle; \mathbf{w}^{(k)} \in \mathbb{R}^{P_{k}} \right\}$$

$$\overline{P_{1}} = \sum_{k=1}^{d} P_{k}$$

Instead of evaluating the coefficients of an expansion in a given approximation basis, function u is approximated in suitable low-rank tensor subsets

Nonlinear approximation using tensor approximation methods

Exploit the tensor structure of function space

$$S_P = S_{P_1}^1 \otimes \ldots \otimes S_{P_d}^d$$

 ${\circ}\,$ Choose suitable low rank tensor subsets ${\mathfrak M}\,$

$$\mathcal{M} = \left\{ \boldsymbol{v} = \mathcal{F}_{\mathcal{M}}(\mathbf{p}^{(1)}, \dots, \mathbf{p}^{(d)}); \mathbf{p}^{(k)} \in \mathbb{R}^{P_k} \right\}$$

• sparse Rank-one tensors

$$\mathfrak{R}_1^{\boldsymbol{\gamma}} = \left\{ w(y) = \langle \boldsymbol{\phi}(y), \mathbf{w}^{(1)} \otimes \ldots \otimes \mathbf{w}^{(d)} \rangle; \mathbf{w}^{(k)} \in \mathbb{R}^{P_k}, \|\mathbf{w}^{(k)}\|_1 \leq \gamma_k \right\},\$$

Non intrusive sparse tensor approximations

[Chevreuil, Lebrun, Nouy, Rai, A least-squares method for sparse low rank approximation of multivariate functions, arXiv:1305.0030, 2013]

Adaptive sparse tensor approximation

- Greedy construction of a basis $\{w_i\}_{i=1}^m$ selected in a tensor subset $\mathcal{R}_1^{\gamma'}$
- Compute $u_m = \sum_{i=1}^m \alpha_i w_i$ using regularized least-squares

Algorithm

Let $u_0 = 0$. For $m \ge 1$,

• Compute a sparse rank one correction $w_m \in \mathfrak{R}^{\boldsymbol{\gamma}}_1$ by solving

$$\min_{w\in\mathcal{R}_1^{\boldsymbol{\gamma}}}\|u-u_{m-1}-w\|_Q^2$$

Computed using alternating minimization on the parameters of \mathcal{R}_1^{γ} .

- Set $U_m = span\{w_i\}_{i=1}^m$ (reduced approximation space)
- Compute $u_m = \sum_{i=1}^m \alpha_i w_i \in U_m$ using sparse regularization

$$\min_{\boldsymbol{\alpha}=(\alpha_1,\ldots,\alpha_m)\in\mathbb{R}^m}\|\boldsymbol{u}-\sum_{i=1}^m\alpha_i\boldsymbol{w}_i\|_Q^2+\lambda'\|\boldsymbol{\alpha}\|_1$$

Non intrusive sparse tensor approximations

[Chevreuil, Lebrun, Nouy, Rai, A least-squares method for sparse low rank approximation of multivariate functions, arXiv:1305.0030, 2013]

Adaptive sparse tensor approximation

- Greedy construction of a basis $\{w_i\}_{i=1}^m$ selected in a tensor subset $\mathcal{R}_1^{\gamma'}$
- Compute $u_m = \sum_{i=1}^m \alpha_i w_i$ using regularized least-squares

Algorithm

Let $u_0 = 0$. For $m \ge 1$,

• Compute a sparse rank one correction $w_m \in \mathfrak{R}^{\boldsymbol{\gamma}}_1$ by solving

$$\min_{\mathbf{w}^{(1)} \in \mathbb{R}^{P_1}, \dots, \mathbf{w}^{(d)} \in \mathbb{R}^{P_d}} \|u - u_{m-1} - \langle \phi, \mathbf{w}^{(1)} \otimes \dots \otimes \mathbf{w}^{(d)} \rangle \|_Q^2 + \sum_{k=1}^d \lambda_k \|\mathbf{w}^{(k)}\|_2$$

Computed using Alternating regularized Least Squares (with Lasso modified LARS alg.)

- Set $U_m = span\{w_i\}_{i=1}^m$ (reduced approximation space)
- Compute $u_m = \sum_{i=1}^m \alpha_i w_i \in U_m$ using sparse regularization

$$\min_{\boldsymbol{\alpha}=(\alpha_1,\ldots,\alpha_m)\in\mathbb{R}^m}\|\boldsymbol{u}-\sum_{i=1}^m\alpha_i\boldsymbol{w}_i\|_Q^2+\lambda'\|\boldsymbol{\alpha}\|_1$$

Non intrusive Sparse tensor methods Numerical illustrations Conclusion

Global sensitivity analysis

Expectation

Mean

$$\mathbb{E}[u(\boldsymbol{\xi})] = \sum_{i=1}^{m} \alpha_i \prod_{k=1}^{d} \mathbb{E}[w_i^{(k)}(\boldsymbol{\xi}_k)]$$

Conditional Expectation

$$\mathbb{E}[u(\boldsymbol{\xi})|\xi_j] = \sum_{i=1}^m w_i^{(j)}(\xi_j) \left(\alpha_i \prod_{\substack{k=1\\k\neq j}} \mathbb{E}[u_i^{(k)}(\xi_k)] \right)$$

Sobol indices

• First order Sobol index S_j for a random variable ξ_j

$$S_j = rac{\mathbb{V}(\mathbb{E}[u(\boldsymbol{\xi})|\xi_j])}{\mathbb{V}(u(\boldsymbol{\xi}))}$$

Closed sensitivity indices for a group of random variables

$$S_{\kappa}^{c} = \sum_{J \subset \kappa} S_{J} = rac{\mathbb{V}(E[u(\boldsymbol{\xi})|\xi_{\kappa})]}{\mathbb{V}(u(\boldsymbol{\xi}))}$$

1 Non intrusive sparse approximation

Non intrusive sparse tensor methods

3 Numerical illustrations

- Analytical model: checker-board function
- Diffusion equation with multiple inclusions
- Advection-Diffusion equation with random field

4) Conclusion

Analytical model: checker-board function

Approximation of u in $\mathbb{S}^1_{P_1} \otimes \mathbb{S}^2_{P_2}$

Piecewise polynomials of degree p defined on a uniform partition of Ξ_k of s intervals:

$$\mathbb{S}_{P_k}^k = \mathbb{P}_{p,s}$$

Performance of the method for sparse low rank approximation

- Q = 200 samples
- Optimal rank-mop selected using 3-fold cross validation
- Relative error ε estimated with Monte Carlo simulations

Comparison of different regularizations within Alternated Least Squares

	OLS		ℓ_2		ℓ_1	
Approximation space	ε	m _{op}	ε	m _{op}	ε	m _{op}
$\mathcal{R}_m(\mathbb{P}_{2,3}\otimes\mathbb{P}_{2,3}), P=9^2$	0.527	2	0.508	2	0.507	2
$\mathfrak{R}_m(\mathbb{P}_{2,6}\otimes\mathbb{P}_{2,6}), P=18^2$	0.664	2	0.061	8	2.4110^{-13}	2
$\mathcal{R}_m(\mathbb{P}_{2,12}\otimes\mathbb{P}_{2,12}), P=36^2$	-	-	0.566	4	1.5010^{-12}	3
$\mathfrak{R}_m(\mathbb{P}_{10,6}\otimes\mathbb{P}_{10,6}), P=66^2$	-	-	0.855	10	7.8810^{-13}	2

With few samples:

- $\bullet~\ell_1\mbox{-regularization}$ detects sparsity and gives accurate results
- Rank 2 is retrieved

Diffusion equation with multiple inclusions

$$\begin{cases} -\nabla \cdot (\kappa \nabla u) = I_D(x) \quad on \quad \Omega = (0,1) \times (0,1) \\ u = 0 \quad on \quad \partial \Omega \end{cases}$$

with

$$\kappa(x,\xi) = egin{cases} 1 & \textit{if } x \in \Omega_0 \ 1+0.1\xi_i & \textit{if } x \in \Omega_i, \ i=1...8 \end{cases}$$

with $\xi_i \in U(-1,1)$. $\Xi = (-1,1)^8$.

Approximation of a Quantity of Interest I(u) in $S_P \subset L^2_{\mu}(\Xi)$

$$I(u)(\xi) = \int_{D} u(x,\xi) dx, \quad D = (0.4, 0.6) \times (0.4, 0.6)$$

degree p: $S_{P_{1}}^{k} = \mathbb{P}_{p}$

Polynomials of degree p: $S_{P_k}^k = 1$

Diffusion equation with multiple inclusions

Influence of tensor format

- Optimal rank-mop selected using 3-fold cross validation
- Relative error ε (×10⁵) estimated with Monte Carlo simulations

Effect of variables regrouping w.r.t. the number of samples and to the approximation space

Approximation	Q=50				Q=100			
	ℓ_2		ℓ_1		ℓ_2		l	1
	ε	m_{op}	ε	m _{op}	ε	m_{op}	ε	m _{op}
$\mathcal{R}_m(\mathbb{P}_2^{(1)}\otimes\ldots\otimes\mathbb{P}_2^{(1)})$	2.68	8	2.78	1	2.36	10	2.66	1
$\mathcal{R}_m(\mathbb{P}_2^{(4)}\otimes\mathbb{P}_2^{(4)})$	1.83	2	1.72	1	0.91	2	0.88	3
$(\mathbb{D}^{(1)})$	0.05	c	0.70	0	0.01	10	0.67	0
$\mathcal{R}_m(\mathbb{P}_3^{\prime} \otimes \ldots \otimes \mathbb{P}_3^{\prime})$	2.85	0	2.79	2	2.81	10	2.07	2
$\mathcal{R}_m(\mathbb{P}_3^{(4)}\otimes\mathbb{P}_3^{(4)})$	1250	1	18.3	2	15.54	3	1.05	2
$\mathcal{R}_m(\mathbb{P}_5^{(1)}\otimes\ldots\otimes\mathbb{P}_5^{(1)})$	12.40	3	4.42	2	3.11	9	2.97	1
$\mathcal{R}_m(\mathbb{P}_5^{(4)}\otimes\mathbb{P}_5^{(4)})$	-	-	-	-	-	-	24.5	1

Sobol Sensitivity Indices

Sobol indices of diffusion coefficient in Ω_i

Stationary advection diffusion reaction stochastic equation

$$\begin{aligned} -\nabla \cdot (\mu(x,\xi)\nabla u) + c \cdot \nabla u + \kappa u &= I_{\Omega_1} \\ + \text{ homogeneous BCs} \end{aligned}$$

• random diffusion field

$$\mu(x,\xi) = \mu_0 + \sum_{i=1}^{100} \sqrt{\sigma_i} \mu_i(x) \xi_i$$

approximation space

$$\mathcal{V}_N \otimes \underbrace{\mathbb{P}_3(\Xi_1) \otimes \ldots \otimes \mathbb{P}_3(\Xi_{100})}_{\mathbb{S}_P}$$

Problem and Qol

$$I(\xi) = \int_{\Omega_2} u(x,\xi) dx$$

Advection-diffusion equation with random field

Probability density function and Sensitivity analysis

1 Non intrusive sparse approximation

Non intrusive sparse tensor methods

3 Numerical illustrations

- Analytical model: checker-board function
- Diffusion equation with multiple inclusions
- Advection-Diffusion equation with random field

4 Conclusion

Conclusion

Least-squares method for sparse low rank approximation of high dimensional functions

- A non intrusive method
- Detects and exploits low-rank and sparsity
- A mean to circumvent the curse of dimensionality

Some challenges

- New formats for low rank tensor approximation
- Adaptive search of optimal tensor formats

This research was supported by EADS Innovation Works and by the French National Research Agency (ANR) (TYCHE project, grant number ANR-2010-BLAN-0904)

[Chevreuil, Lebrun, Nouy, Rai, A least-squares method for sparse low rank approximation of multivariate functions, arXiv:1305.0030, 2013]