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Background and motivation Variance-based and derivative-based sensitivity measures

Let X = (X1, . . . , Xd ) be a vector of independent input variables with
distribution µ1 ⊗ · · · ⊗ µd , and g : ∆ ⊆ R

d → R such that g(X) ∈ L2(µ).

Sobol-Hoeffding decomposition [Sobol, 1993, Efron and Stein, 1981]

g(X) = g0 +

d
∑

i=1

gi(Xi) +
∑

1≤i<j≤d

gi,j(Xi , Xj) + · · · + g1,...,d (X1, . . . , Xd )

=
∑

I⊆{1,...,d}

gI(XI) (1)

The gI ’s are centered and orthogonal.

Olivier Roustant (EMSE) DGSM for interactions SAMO 13 3 / 16



Background and motivation Variance-based and derivative-based sensitivity measures

Global sensitivity measures

Variance-based measures

Partial variances : DI = var(gI(XI)), and Sobol indices SI = DI/D

D := var(g(X)) =
∑

I

DI , 1 =
∑

I

SI
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Variance-based measures

Partial variances : DI = var(gI(XI)), and Sobol indices SI = DI/D

D := var(g(X)) =
∑

I

DI , 1 =
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I

SI

Total index : DT
i =

∑

J⊇{i} DJ , ST
i =

DT
i

D
.

Superset importance [Liu and Owen, 2006] :

D
super
I :=

∑

J⊇I DJ , S
super
I =

D
super
I

D

→ D
super
i,j :=

∑

J⊇{i,j} DJ "total interaction index" [Fruth et al., 2013]
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∑
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super
I =

D
super
I

D

→ D
super
i,j :=

∑

J⊇{i,j} DJ "total interaction index" [Fruth et al., 2013]

Derivative-based measures

In sensitivity analysis [Sobol and Gresham, 1995] :

νi =
∫

(

∂g(x)
∂xi

)2
dµ(x), called DGSM
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super
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super
I =

D
super
I

D

→ D
super
i,j :=

∑

J⊇{i,j} DJ "total interaction index" [Fruth et al., 2013]

Derivative-based measures

In sensitivity analysis [Sobol and Gresham, 1995] :

νi =
∫

(

∂g(x)
∂xi

)2
dµ(x), called DGSM

In statistical learning [Friedman and Popescu, 2008] :

νi,j =
∫

(

∂2g(x)
∂xi∂xj

)2
dµ(x), νI =

∫

(

∂|I|g(x)
∂xI

)2
dµ(x). "crossed DGSM".
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Background and motivation 1st-order analysis. Screening : Total indices & DGSM.

First-order analysis considers single variables. One aim is screening :
detection of non-influential input variables.
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Background and motivation 1st-order analysis. Screening : Total indices & DGSM.

First-order analysis considers single variables. One aim is screening :
detection of non-influential input variables.

Screening with total indices or DGSMs

If either DT
i = 0 or νi = 0, than Xi is non influential.

There is a Poincaré-type inequality between total indices and DGSMs

Di ≤ DT
i ≤ C(µi)νi

→ Proved by [Sobol and Kucherenko, 2009] for the uniform and normal

distributions, [Lamboni et al., 2013] for the general case .
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Background and motivation 1st-order analysis. Screening : Total indices & DGSM.

Poincaré inequality (1-dimensional case)

A distribution µ satisfies a Poincaré inequality if for all h in L2(µ) such that
∫

h(x)dµ(x) = 0, and h′(x) ∈ L2(µ) :
∫

h(x)2dµ(x) ≤ C(µ)

∫

h′(x)2dµ(x)

The best constant is denoted Copt(µ).
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A distribution µ satisfies a Poincaré inequality if for all h in L2(µ) such that
∫

h(x)dµ(x) = 0, and h′(x) ∈ L2(µ) :
∫

h(x)2dµ(x) ≤ C(µ)

∫

h′(x)2dµ(x)

The best constant is denoted Copt(µ).

Examples ([Sobol and Kucherenko, 2009], [Ané et al., 2000],
[Lamboni et al., 2013], [Bobkov and Houdré, 1997, Bobkov, 1999])

Distribution Copt(µ) A case of equality

Uniform U [a, b] (b − a)2/π2 g(x) = cos
(

π(x−a)
b−a

)

Normal N (µ, σ2) σ2 g(x) = x − µ
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∫
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h(x)2dµ(x) ≤ C(µ)

∫
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Examples ([Sobol and Kucherenko, 2009], [Ané et al., 2000],
[Lamboni et al., 2013], [Bobkov and Houdré, 1997, Bobkov, 1999])

Distribution Copt(µ) A case of equality

Uniform U [a, b] (b − a)2/π2 g(x) = cos
(

π(x−a)
b−a

)

Normal N (µ, σ2) σ2 g(x) = x − µ

Properties of µ A Poincaré constant C(µ)

Continuous 4
[

sup
x∈R

min(F (x),1−F (x))
f (x)

]2

log-concave 1/f (m)2

log-concave, truncated on [a, b] (F (b) − F (a))
2
/f
(

q
(

F (a)+F (b)
2

))2
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Background and motivation 2nd-order analysis. Interaction screening. Crossed DGSM

Second-order analysis considers pairs of variables. It allows interaction

screening : To detect {Xi , Xj} that do not interact together (Dsuper
i,j = 0).
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Second-order analysis considers pairs of variables. It allows interaction

screening : To detect {Xi , Xj} that do not interact together (Dsuper
i,j = 0).

2nd-order analysis and additive structures

If either νi,j = 0 or D
super
i,j = 0, then g can be written as a sum of two functions,

one that does not depend on xi , the other that does not depend on xj

[Hooker, 2004, Friedman and Popescu, 2008] :

g(x) = g−i(x−i) + g−j(x−j)
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Background and motivation 2nd-order analysis. Interaction screening. Crossed DGSM

Second-order analysis considers pairs of variables. It allows interaction

screening : To detect {Xi , Xj} that do not interact together (Dsuper
i,j = 0).

2nd-order analysis and additive structures

If either νi,j = 0 or D
super
i,j = 0, then g can be written as a sum of two functions,

one that does not depend on xi , the other that does not depend on xj

[Hooker, 2004, Friedman and Popescu, 2008] :

g(x) = g−i(x−i) + g−j(x−j)

[Hooker, 2004] uses it in machine learning

[Muehlenstaedt et al., 2012] use it in computer experiments (see after).
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The main result : A link between superset importance and crossed DGSM

Theorem - A link between superset importance and crossed DGSM

Assume that all µi (i = 1, . . . , d) satisfy a Poincaré inequality. Then for all pairs
{i , j} (1 ≤ i , j ≤ n),

Di,j ≤ D
super

i,j ≤ C(µi)C(µj)νi,j .

and Copt(µi)Copt(µj) is the best constant. Generalizes to more than pairs.
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super
i,j (x)
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2 νi,j =
∫

(

∂2g(x)
∂xi∂xj

)2
dµ(x) =

∫

(

∂2g
super
i,j

(x)

∂xi∂xj

)2

dµ(x)

Finally combine (by integrating) the two Poincaré inequalities :

∫

(

g
super
i,j (x)

)2
dµi(xi) ≤ C(µi)

∫

(

∂g
super
i,j (x)

∂xi

)2

dµi(xi)

∫

(

∂g
super
i,j (x)

∂xi

)2

dµj(xj) ≤ C(µj)

∫

(

∂

∂xj

∂g
super
i,j (x)

∂xi

)2

dµj(xj)
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Applications

Applications

In applications, we would base the results on the upper bounds :

Ui := C(µi)
νi

D
≥ ST

i

Ui,j := C(µi)C(µj)
νi,j

D
≥ S

super
i,j
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Applications

Applications

In applications, we would base the results on the upper bounds :

Ui := C(µi)
νi

D
≥ ST

i

Ui,j := C(µi)C(µj)
νi,j

D
≥ S

super
i,j

The estimation of DT
i and D

super
i,j can be done by MC (or QMC) from

[Jansen, 1999] [Liu and Owen, 2006] :

DT
i = 1

2

∫

[f (x) − f (zi , x−i)]
2

dµ(x)dµi(zi)

D
super
i,j =

1
4

∫

[

f (x) − f (xi , zj , x−i,j)

−f (zi , xj , x−i,j) + f (zi , zj , x−i,j)
]2

dµ(x)dµi(zi)dµj(zj)
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Applications A 6-dimensional example

A 6-dimensional example

We consider the 6-dimensional function in L2 ([Muehlenstaedt et al., 2012]) :

a(X1, . . . , X6) = cos([1, X1, X5, X3]φ) + sin([1, X4, X2, X6]γ)

with φ = [−0.8,−1.1, 1.1, 1]T , γ = [−0.5, 0.9, 1,−1.1]T , and where X1, . . . , X6

are assumed i.i.d uniform on [−1, 1].
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A 6-dimensional example

We consider the 6-dimensional function in L2 ([Muehlenstaedt et al., 2012]) :

a(X1, . . . , X6) = cos([1, X1, X5, X3]φ) + sin([1, X4, X2, X6]γ)

with φ = [−0.8,−1.1, 1.1, 1]T , γ = [−0.5, 0.9, 1,−1.1]T , and where X1, . . . , X6

are assumed i.i.d uniform on [−1, 1].

First-order analysis

Input Si ST
i ŜT

i sd Ui Ûi sd

X1 0.11 0.231 0.231 (0.012) 0.329 0.329 (0.007)
X2 0.143 0.214 0.215 (0.009) 0.272 0.285 (0.005)
X3 0.086 0.196 0.197 (0.01) 0.272 0.272 (0.006)
X4 0.112 0.176 0.176 (0.008) 0.22 0.231 (0.004)
X5 0.11 0.231 0.232 (0.011) 0.329 0.329 (0.007)
X6 0.18 0.256 0.256 (0.011) 0.329 0.345 (0.007)

→ Screening does not discard any inputs here. Ranking is different (cf.

[Sobol and Kucherenko, 2009])
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Applications A 6-dimensional example

Second-order analysis

Inputs pair Si,j S
super
i,j Ŝ

super
i,j sd Ui,j Ûi,j sd

X1 : X2 0 0 0 (0) 0 0 (0)
X1 : X3 0.043 0.067 0.067 (0.005) 0.133 0.132 (0.003)
X1 : X4 0 0 0 (0) 0 0 (0)
X1 : X5 0.055 0.078 0.08 (0.006) 0.161 0.16 (0.004)
X1 : X6 0 0 0 (0) 0 0 (0)
X2 : X3 0 0 0 (0) 0 0 (0)
X2 : X4 0.018 0.04 0.039 (0.004) 0.085 0.085 (0.002)
X2 : X5 0 0 0 (0) 0 0 (0)
X2 : X6 0.031 0.053 0.052 (0.005) 0.127 0.127 (0.003)
X3 : X4 0 0 0 (0) 0 0 (0)
X3 : X5 0.043 0.067 0.067 (0.005) 0.133 0.132 (0.003)
X3 : X6 0 0 0 (0) 0 0 (0)
X4 : X5 0 0 0 (0) 0 0 (0)
X4 : X6 0.024 0.046 0.045 (0.004) 0.103 0.103 (0.002)
X5 : X6 0 0 0 (0) 0 0 (0)
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Applications A 6-dimensional example

Visualization of the second-order analysis

12

3

4

5

6

12

3

4

5

6

FIGURE: FANOVA graphs of Ŝ
super
i,j (left) and Ûi,j (right).
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Applications When the gradient is supplied

An advantageous situation : When the gradient is supplied

Suppose that one run gives both f (x) and ∇f (x) =
(

∂f (x)
∂xi

)

1≤i≤d
.

Then crossed DGSM estimation requires ≈ d/2 fewer evaluations :

Function only Gradient supplied

Total indices (d + 1)N no change
DGSMs (d + 1)N N

superset importance (d + 1 + d(d−1)
2 )N no change

crossed DGSMs (d + 1 + d(d−1)
2 )N (d + 1)N

TABLE: Computational cost for Monte Carlo estimation. N is the sample size.
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Applications When the gradient is supplied

Convergence study when the gradient is supplied

Example for the 6-dimensional function ‘a’
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FIGURE: Blue : Ui,j (upper bounds for crossed DGSM) ; Red : S
super
i,j .

Dotted : True value ; Solid : MC estimates.
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Conclusion

Conclusion

This work is about 2nd-order analysis, which considers pairs of inputs.

There is a Poincaré-type inequality between
superset importance (total interaction index) & crossed DGSM :

Di,j ≤ D
super

i,j ≤ C(µi)C(µj)

∫
(

∂2g(x)

∂xi∂xj

)2

dµ(x)
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→ detection of additive structures.
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Conclusion

Conclusion

This work is about 2nd-order analysis, which considers pairs of inputs.

There is a Poincaré-type inequality between
superset importance (total interaction index) & crossed DGSM :

Di,j ≤ D
super

i,j ≤ C(µi)C(µj)

∫
(

∂2g(x)

∂xi∂xj

)2

dµ(x)

Crossed DGSM can be used for interaction screening
→ detection of additive structures.

Crossed DGSM are especially useful when the gradient is supplied.

Limitations : As for DGSM, crossed DGSM must NOT be used to rank
interactions. They may be give poor results for functions with sharp
variations, as well as when some of the C(µi)’s are large.
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