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Model Y = G(X1, . . . , Xm)

X1, . . . , Xm independent random variables, pdf pj , cdf Fj

The Contribution to the Sample Mean (CSM) for Xj is:

∀q ∈ [0; 1],

Cj(q) =

F
−1
j

(q)
∫

−∞

(∫

Rm−1 G(x)pX
∼j
(x∼j)dx∼j

)
pj(xj)dxj

∫

Rm G(x)pX (x)dx
(1)
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1st question

What relation between CSM plot
and first-order sensitivity indices Sj?
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Relation between CSM and first-order indices Sj

Property

Let denote cv = σ(Y )/E(Y ) .

For any input Xj we have:

Sj =
1

c2
v

·

1∫

0

[

d

dq
(Cj(q) − q)

]2

dq (2)
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c2
v

·

1∫

0







d

dq
(Cj(q) − q)
︸ ︷︷ ︸

deviation to diagonal







2

dq (2)
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Elements of proof
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Elements of proof

CSM expression using conditional expectation

∀q ∈ [0; 1], Cj(q) =
1

E(Y )

F
−1
j

(q)
∫

−∞

E [Y | Xj = xj ] pj(xj)dxj
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1

E(Y )

F
−1
j

(q)
∫

−∞

E [Y | Xj = xj ] pj(xj)dxj

CSM derivative

Using d
dq
(F −1

j (q)) = 1/pj

(
F −1

j (q)
)
:

∀q ∈ [0; 1],
d

dq
Cj(q) =

E
[
Y | Xj = F −1

j (q)
]

E(Y )
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CSM derivative

Using d
dq
(F −1

j (q)) = 1/pj

(
F −1

j (q)
)
:

∀q ∈ [0; 1],
d

dq
Cj(q) =

Sj=Var[E(Y |Xj )]/V (Y )
︷ ︸︸ ︷

E
[
Y | Xj = F −1

j (q)
]

E(Y )
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2nd question

Computing first-order effects Sj

from a CSM plot?
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Polynomial regression
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Polynomial regression

expansion of CSM using shifted Legendre polynomials (Pk)k∈N

which are orthogonal on [0, 1]

∀i = 1 . . . n, ci =
d∑

k=0

αkPk(qi) + ǫi
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Polynomial regression

expansion of CSM using shifted Legendre polynomials (Pk)k∈N

which are orthogonal on [0, 1]

∀i = 1 . . . n, ci =
d∑

k=0

αkPk(qi) + ǫi

selecting max order d⋆ by minimizing AICc information criterion

d
⋆ = argmin

d∈N

[

n

2
· log

(

2π

n

n∑

i=1

ǫi(d)
2

)

+
n

2
+

n · (d + 2)

n − d − 3

]
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Polynomial regression

explicit formula for Sj derived from Eqn.(2) using Pk properties

with :

α̃k =

{
αk if k > 1,
αk − 1

2 if k = 1

we obtain:

Ŝj =
2

ĉv
2

d∑

k,l=1
k+l ∈ 2Z

α̃k α̃l · min(k , l) [1 + min(k , l)] (3)
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3rd point

Numerical test cases
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Test cases

1 Ishigami function

X1 to X3 i.i.d ∼ U[−π, π]

Y = sin(X1) + a · sin(X2)
2 + b · X 4

3 · sin(X1)

2 G-Sobol function

X1 to X8 i.i.d ∼ U[0, 1]
fixed parameter vector a = (0, 1, 4.5, 9, 99, 99, 99, 99):

Y =
8∏

j=1

|4Xj − 2| + aj

1 + aj
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Conclusion
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Conclusion

+ Results

explicit formula linking Sj and CSM (derivative)

Ŝj estimator based on polynomial expansion of the CSM plot
(explicit formula from regression coefficients)

−→ computation of Sj from given data
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Conclusion

+ Results

explicit formula linking Sj and CSM (derivative)

Ŝj estimator based on polynomial expansion of the CSM plot
(explicit formula from regression coefficients)

−→ computation of Sj from given data

− Limits

minimum sample size n ∼ 1000

Ŝj does not compare well with other estimators based on given
data such as EASI (Plischke, 2010)

why ? because it requires approximating derivatives

SAMO 2013 Nice July 1-4 Saint-Geours et al. 20 / 22
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Conclusion

−→ Further research

Total-order effects ?

Contribution to the Sample Variance (CSV plot)
first attempts were unsuccessful but. . .

Tarantola S., V. Kopustinskas, R. Bolado-Lavin, A. Kaliatka, E. Uspuras, M.
Vaisnoras
Sensitivity analysis using contribution to sample variance plot: Application to a
water hammer model
Reliab. Eng. Syst. Saf., 2012, 99, 62-73.

SAMO 2013 Nice July 1-4 Saint-Geours et al. 21 / 22



Introduction Relation between CSM and Sj Computing Sj from a CSM plot Test cases Conclusion
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Elements of proof (2)

First-order variance-based sensitivity indices

Sj =
VarXj

(
EX

∼j
[Y | Xj ]

)

V(Y )
(Saltelli et al., 2008)
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(
EX

∼j
[Y | Xj ]

)

V(Y )
(Saltelli et al., 2008)

=
1

V(Y )

∫

[0,1]

(
d

dq
Cj(q) · E(Y ) − E(Y )

)2

dq
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First-order variance-based sensitivity indices

Sj =
VarXj

(
EX

∼j
[Y | Xj ]

)

V(Y )
(Saltelli et al., 2008)

=
1

V(Y )

∫

[0,1]

(
d

dq
Cj(q) · E(Y ) − E(Y )

)2

dq

=
E(Y )2

V(Y )

1∫

0

[
d

dq
Cj(q) − 1

]2

dq
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Estimation of the coefficient of variation

Set of CSM points (qi , ci)i=1...n

Coefficient of variation cv = σ(Y )/E (Y )

Using ci − ci−1 = yπ(i)/(nµ̂) we get:

ĉv = n

√
√
√
√

n−1∑

i=1

(ci+1 − ci −
1

n
)2 (4)
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Shifted Legendre polynomials

Shifted Legendre polynomial Pk are defined by

Pk(q) = P
(s)
k (2q − 1)

with P
(s)
k the standardized Legendre polynomials,

which are given by the Rodrigue’s formula [2, p.785, Eqn. 22.11.5]
:

∀k ∈ N, ∀q ∈ [−1, 1], P
(s)
k (q) =

(−1)k

2k · k!

dk

dqk

[

(q2 − 1)k
]
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Detailed proof for Eqn.(3)
Using the approximation C(q) ≈

∑

k
αkPk(q), we get an approximation of the

integral I =
∫ 1

0
d
dq

(C(q) − q)2
dq:

Î =

∫ 1

0

[(
d∑

k=1

αkP
′
k(q)

)

− 1

]2

dq (5)

We use the fact that P ′
1(q) = 2 to define modified coefficients (α̃k)k=1,...,d as

equal to coefficients (αk)k=1,...,d except for α̃1 = α1 − 1
2
, :

Î =

∫ 1

0

[
d∑

k=1

α̃kP
′
k(q)

]2

dq

=

d∑

k,l=1

α̃k α̃l

∫ 1

0

P
′
k(q)P

′
l (q)dq

=

d∑

k,l=1

α̃k α̃l Ikl

(6)
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Detailed proof for Eqn.(3)

Let assume that k ≤ n.
Using an integration by parts we have :

Ik,l =
[
P

′
k(q)Pl(q)

]1

0
−

1∫

0

P
′′
k (q)Pl(q)dq (7)

P ′′
k is a polynom of degree k − 2 : it can be decomposed on the finite

orthogonal basis (Pi)i=1,...,k−2. As k − 2 < l , using the orthogonality of shifted
Legendre polynomials (Pk)k∈N on [0, 1], we find that the integral
∫ 1

0
P ′′

k (q)Pl(q)dq is equal to 0. Hence :

Ik,l = P
′
k(1)Pl(1) − P

′
k(0)Pl(0) (8)
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Detailed proof for Eqn.(3)

The values of Pk(q) and its derivative P ′
k(q) at q = 0 and q = 1 can be found

from the corresponding values of non-shifted Legendre polynomial P
(s)
k (q) at

q = −1 and q = 1, which are given in [2, p.777], Eqn.(22.4.6), (22.5.37) and

(22.4.2). Using the relations Pk(q) = P
(s)
k (2q − 1) and

P ′
k(q) = 2(P

(s)
k )′(2q − 1) we have:

∀k ∈ N







Pk(1) = 1
P ′

k(1) = k(k + 1)

Pk(0) = (−1)k

P ′
k(0) = (−1)k−1k(k + 1)

(9)

We finally obtain:
∀(k, l) ∈ N

2, k ≤ l ,

Ik,l = k(k + 1)[1 + (−1)k+l ]
(10)

which we can also write this way:

∀(k, l) ∈ N
2,

Ikl = 2 min(k, l) [1 + min(k, l)] 1{(k+l) ∈ 2N}
(11)
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Contribution to the Sample Variance

Contribution to the sample variance for input parameter Xj at quantile q

is given by:

Dj(q) =
1

V(Y )

F
−1
j

(q)
∫

−∞

E
[

(Y − E(Y ))
2

| Xj = xj

]

p(xj)dxj
(12)
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Contribution to the Sample Variance
Slope of the CSV plot

The slope of the CSV plot between the two points (q1, D(q1)) and (q2, D(q2))
is given by:

D(q2) − D(q1)

q2 − q1
=

V(Y ⋆[z1,z2])

V(Y )
(13)

with variance V(Y ⋆[z1,z2]), defined as the variance of the model output when
the range of the parameter Xj is reduced to [z1, z2], but with respect to
constant mean E(Y ) over the full range of all parameters:

V(Y ⋆{z}) = E
[
(Y − E(Y ))2 | Xj = z

]
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Contribution to the Sample Variance
Relation with total order sensitivity indices?

Total order sensitivity indices:

STj = 1 −
EXj

[
VarX

∼j (Y | Xj)
]

V(Y )

= 1 −
EXj

(
EX

∼j

[
(Y − E [Y | Xj ])

2 | Xj = xj

])

V(Y )

Let denote by V(Y ◦{xj}) the quantity EX
∼j

[
(Y − E [Y | Xj ])

2 | Xj = xj

]
. It is

the variance of model output when model input Xj is fixed to the value xj , but
with respect to the conditional mean E [Y | Xj = xj ]. We then have:

STj =

1∫

0

[

1 −
V(Y

◦
{

F
−1
j

(q)
}

)

V(Y )

]

dq (14)

SAMO 2013 Nice July 1-4 Saint-Geours et al. 35 / 22



Contribution to the Sample Variance
Relation with total order sensitivity indices?

Trouble is that the two variances V(Y ◦{z}) and V(Y ⋆{z}) are not equal,
as they are not computed with respect to the same mean value.

constant mean E(Y ) for V(Y ⋆{z})

conditionnal mean E [Y | Xj = z ] for V(Y ◦{z}))
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