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Introduclion Retation betwests €50 and 5) Campuling 5 lrom a €5 plal lest cases

Sensitivity analysis from given data

2 running sensitivity analysis
the madel : from given data ?
no specific Design of Experiments ! ¢
often simple random sampling
one possible SA way:

1 / Contribution to the

S?:;T’:QQ Sample Mean
Plot (CSM)

MODEL EXPERT STATISTICIAN (YOU)
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Contribution to the Sample Mean (CSM)

Bolado-Lavin, R., Castaings, W., & Tarantola, S.
Contribution to the sample mean plot for graphical and numerical sensitivity

analysis
Reliab. Eng. Syst. Saf., 2009, 6, 1041-1049.
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Contribution to the Sample Mean (CSM)

@ Bolado-Lavin, R., Castaings, W., & Tarantola, S.
Contribution to the sample mean plot for graphical and numerical sensitivity
analysis
Reliab. Eng. Syst. Saf., 2009, 6, 1041-1049.

Model Y = G(X1,...,Xm)
Xi,...,Xm independent random variables, pdf p;, cdf F;
The Contribution to the Sample Mean (CSM) for X; is:

Vg € [0;1],
F(a)
S (Jamr GO)pxe; (X dxes) pi(55)dx;
Glq) = — (1)

Jem GOPx(x)dx
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Contribution to the sample mean plot for graphical and numerical sensitivity
analysis
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Model Y = G(Xy,...,Xm)
Xi,...,Xm independent random variables, pdf p;, cdf F;
The Contribution to the Sample Mean (CSM) for X; is:

Vq € [0;1],
F, '(a)
S (Jamr GOx)px, (x))dxs) pi(x)dx;
Glq) = — (1)
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Contribution to the Sample Mean (CSM)

A
1
T :
~ Ci(q) represents the fraction of the
& output mean due to the fraction g
of smallest values of X;.
0 q 1

SAMO 2013 Mice July 1-4 Sainl-Geours el al. 3722



Introduclicn Relation bebween CSM and 5) Compuling 5 rom a CSM plal lesl cases

Contribution to the Sample Mean (CSM)

Procedure to approximate C5M plot from a set of a model runs.
input sample (x;}_1...nj_1...m and output vector (y;)i_1..n
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Contribution to the Sample Mean (CSM)

Procedure to approximate CSM plot from a set of n model runs.
input sample {x;}i=1...n.j=1...m and output vector {y;);=1...»

y A compute the output mean fi
A sort increasingly the n random
T+ realisations of X;:
—_— .
o L
~= ++ Xa(1)j = "0 = Xaln)j
O +
A compute (ci,. .., &)
+ a
+ f
At 1
o 9= E Yris)
s+ - 5—1
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Contribution to the Sample Mean (CSM)

Procedure to approximate CSM plot from a set of n model runs.
input sample {x;}i=1...n.j=1...m and output vector {y;);=1...»

y A compute the output mean fi
et sort increasingly the n random
T+ realisations of X;:
— A
= P Xr(ly =t S Xa(n)j
O e S
. + _
Ci compute (¢t €1)
. +
N + + . Z
S+ P! ¥ais)
- . =—
ALt qj h - n}”
0 q 1 plot (c1.....c,) against
(g1.....qn) with g; =i/n
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Contribution to the Sample Mean (CSM)

Ci(a)

CSM and first-order effects

X; with low first-order effect

~

CSM line close to the diagonal

(Bolado-Lavin et af., 2009)
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Contribution to the Sample Mean (CSM)

low Sj-

Ci(a)

high S,

CSM and first-order effects

X; with low first-order effect

~

CSM line close to the diagonal

(Bolado-Lavin et af., 2009)
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Contribution to the Sample Mean (CSM)

A
1
CSM and first-order effects
= | low S
~ X; with low first-order effect
(—) )
CSM line close to the diagonal
h|gh Sj (Bolado-Lavin et af., 2009)
0 q 1
. . 5
9 research what relationship between CSM plot and §; 7
questions is it possible to compute $; from a CSM plot ?
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15t question

What relation between CSM plot
and first-order sensitivity indices S;?



Relation between CSM and first-order indices 5;

Let denote ¢, = o(Y)/E(Y) .
For any input X; we have:

51=l'/1ldiq(Cj(q)—q)rdq (2)

2
<
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Relation between CSM and first-order indices 5;

Let denote ¢, = o(Y)/E(Y) .
For any input X; we have:

1
J 2

€

v q \_v_/

deviation to diagonal

o/di G(q)—q) | dq (2)
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Elements of proof

F'(a)

vae il Glo)= gyy [ EIVIX=xlnb)dy
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Elements of proof

F'(a)

vq € [0:1], cj(q)=ﬁ / E[Y | X = x] pi(x) g

Using £ (F*(a)) = 1/p; (F1(9)):

E[Y X =F"(q)]
E(Y)

d
Vq € [0;1], d_qCJ(q) =
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Elements of proof

F(a)

vae il G = gyy [ ELY 1% =xlntody

Using 4 (F; () = 1/p; (F(9)):

5=VarlE(Y X))/ V(Y)
E[Y X =F'(q)]
E(Y)

d
Vq € [0;1], d—qu(q) =
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2" question

Computing first-order effects S;
from a CSM plot?
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Computing S; from a CSM plot

Start from a sample of n CSM points (g;, }i_1, -
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o +
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+ + (qlr :Cf)
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0 q 1
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Computing S; from a CSM plot

Start from a sample of n CSM points (g;, }i_1, -

A. Polynomial regression
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Introduclicn Relalion bebween CSM and 5)

Computing S; from a CSM plot

Start from a sample of n CSM points (g;, }i_1, -

A. Polynomial regression

fit a polynomial model on CSM
points (gi, ;)

exact formula for 5; from the
regression coeflicients

B. Spline smoothing

fit a spline model on the CSM
points

approximate CSM derivative

compute 5; using Eqn.{2)

SAMO 2013 Mice July 1-4 Sainl-Geours eL al.
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Polynomial regression

expansion of CSM using shifted Legendre polynomials (Py)ken
which are orthogonal on [0, 1]

d
Vi=1l...n, ¢ = ZakPk(q,-)—l—e,-
k=0
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Polynomial regression

expansion of CSM using shifted Legendre polynomials (Py)ken
which are orthogonal on [0, 1]

d
Vi=1l...n, ¢ = ZakPk(qf)+e;
k=0

selecting max order d* by minimizing AlCc information criterion

. . |n 21:1 ()2 n, n-(d+2)
d* = argmin lz Iog<n Ze'(d)>+2+n—d—3]

deN i—1

SAMO 2013 Nice July 1-4 Saint-Geours et al. 11 /22



Introduction Relation between CSM and Sj Computing S; from a CSM plot Test cases

Conclusion
Polynomial regression
explicit formula for S; derived from Eqn.(2) using Py properties
with :
N e 7 if k>1,
TV -3 if k=1
we obtain:
A d
= — Z Gy - min(k, ) [1+min(k, )] (3)
C
k+/ 2Z
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Numerical test cases
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Test cases

Ishigami function
X1 to Xz i.iid ~ U[—m, 7]
Y =sin(X1) + a-sin(X2)? + b - X3 - sin(X1)

G-Sobol function
X1 to Xg i.i.d ~ U[O, 1]
fixed parameter vector a = (0,1,4.5,9,99,99,99,99):

1—[\4X 2|+ a
1+ g
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Introduclicn Relalion bebween CSM and 5) Compuling 5 rom a CSM plal lesl cases Caonclusion

Scatterplots and CSM plots

sample size n = 300 (simple random sample)
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Introduclicn Relalion bebween CSM and 5)

Polynomial fit for input X;

sample size n = 300 (simple random sample)

Selecting max degree o
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Compuling 5 rom a CSM plal

lesl cases

Regression residuals for X;

— : R?z=0.9912

T T T T T T
0.0 0.2 0.4 086 0.8 1.0

Fitted CSM values &;
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Estimation of first-order effects

Convergence of 5, for increasing sample size n

., o [] polynomial regression
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Introdiclion Retation betwests €50 and 5)

Campuling 5 lrom a €5 plal lest cases

Estimation of first-order effects

Convergence of 5 and 53 for increasing sample size n

Conelusion
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Conclusion
+ Results
n explicit formula linking S; and CSM (derivative)

[ §j estimator based on polynomial expansion of the CSM plot
(explicit formula from regression coefficients)

— computation of S; from given data
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Introduction Relation between CSM and Sj Computing S; from a CSM plot Test cases Conclusion

Conclusion
+ Results
n explicit formula linking S; and CSM (derivative)

[ Sj estimator based on polynomial expansion of the CSM plot
(explicit formula from regression coefficients)

— computation of S; from given data

= minimum sample size n ~ 1000

[ §j does not compare well with other estimators based on given
data such as EASI (Plischke, 2010)

= why ? because it requires approximating derivatives

SAMO 2013 Nice July 1-4 Saint-Geours et al. 20 / 22



Conclusion

— Further research

u Total-order effects ?

» Contribution to the Sample Variance (CSV plot)
= first attempts were unsuccessful but. ..

Tarantola S., V. Kopustinskas, R. Bolado-Lavin, A. Kaliatka, E. Uspuras, M.

Vaisnoras
Sensitivity analysis using contribution to sample variance plot: Application to a

water hammer model
Reliab. Eng. Syst. Saf., 2012, 99, 62-73.
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Thank you for your attention !
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Elements of proof (2)

S Varxj (EXNj [Y | )<J])
T v(Y)

(Saltelli et al., 2008)
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Elements of proof (2)

S Val’xj (EXNJ- [Y | XJ])
= V(Y)

L 2
- W/ (E[Y | X; = x] — E(V)) pi(x)

(Saltelli et al., 2008)
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Elements of proof (2)

S Val’xj (EXNJ- [Y | XJ])
= V(Y)

L 2
=V / (ELY | X = x] — E(V)) pi()d
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Elements of proof (2)

& Varxj (EX~j [Y | )(J])
T v(Y)

(Saltelli et al., 2008)

1 —1 2
:W[o/l] (E[Y1X=F(a)] —E(Y)"dg
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Elements of proof (2)

[ Varxj (EXNj [Y | XJ])
L Vv(Y)

1 -1 2
:W[()[] E[Y | X = F(q)] - E(V))*dg

(Saltelli et al., 2008)
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Elements of proof (2)

Vary, (Ex., [Y | X))
v(Y)

v<v>/( Cila) - E(Y) - E(v))qu

[0.1]

S = (Saltelli et al., 2008)
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Elements of proof (2)

_ Vary, (Ex_, [Y | X]])

S = v(Y) (Saltelli et al., 2008)
1 d 2
- W[o/” (56t EM ~EM) da

<555 o =
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Elements of proof (2)

First-order variance-based sensitivity indices

o Vary (EX~j Y| XJ])
T V(Y)

(Saltelli et al., 2008)

1 d 2
“vw | (Zc@-Em-EM) %

SAMO 2013 Nice July 1-4 Saint-Geours et al.
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G-Sobol test case (n = 300)

Scatterplots and CSM plots
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G-Sobol test case

Convergence of 5, and 5, for increasing sample size n

SAMC 2013 Nice July 1-4
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Estimation of the coefficient of variation

Set of CSM points (g, ¢i)i=1...n
Coefficient of variation ¢, = o(Y)/E(Y)
Using c; — ci—1 = yr(i)/(nft) we get:

n—1 1
e =ny > (cy1—c——)

i=1

SAMO 2013 Nice July 1-4 Saint-Geours et al.
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Shifted Legendre polynomials

Shifted Legendre polynomial Py are defined by
Pi(q) = P (29 - 1)

with P,((S) the standardized Legendre polynomials,
which are given by the Rodrigue's formula [2, p.785, Eqn. 22.11.5]

vk eNVge[-1,1, PP (q)=

-1 k dk
A (G
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Detailed proof for Eqn.(3)
Using the approximation C(q) = Zk akPx(q), we get an approximation of the
integral | = fol +(C(a) - q)* dg:

-/ KZW”L(@) —11 da )

We use the fact that P{(q) = 2 to define modified coefficients (fk)k=1,...,d as

equal to coefficients (cu)k=1,....d except for & = o1 — 3, :

.....

d 1
= [ Pt ©)
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Detailed proof for Eqn.(3)
Using the approximation C(q) = Zk akPx(q), we get an approximation of the
integral | = fol +(C(a) - q)* dg:

-/ l(ZakPL(cn) —11 da )

We use the fact that P{(q) = 2 to define modified coefficients (fk)k=1,...,d as

equal to coefficients (cu)k=1,....d except for & = o1 — 3, :
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d 1
=Y wan [ PPl ©)
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Detailed proof for Eqn.(3)

Let assume that k < n.
Using an integration by parts we have :

i = [PUaP)] / P!(a)P/(q)da (7)

P/ is a polynom of degree k — 2 : it can be decomposed on the finite
orthogonal basis (P;)i=1,... k—2. As k — 2 < |/, using the orthogonality of shifted
Legendre polynomials (Px)ken on [0, 1], we find that the integral

fol P/ (q)Pi(q)dq is equal to 0. Hence :

Ik, = Pr(1)Py(1) — P (0)Pi(0) (8)

SAMO 2013 Nice July 1-4 Saint-Geours et al. 31/22



Detailed proof for Eqn.(3)

The values of Px(q) and its derivative P.(q) at ¢ =0 and g = 1 can be found
from the corresponding values of non-shifted Legendre polynomial Pﬁs)(q) at
g = —1 and g = 1, which are given in [2, p.777], Eqn.(22.4.6), (22.5.37) and
(22.4.2). Using the relations Pi(q) = P”)(2q — 1) and

Pi(q) = 2(P)) (2q — 1) we have:

P(l) = 1
Pi(l) = k(k+1)

Vk €N P(0) — (~1)F (9)
P(0) (-1 Tk(k+1)

We finally obtain:
Y(k, 1) e N? k < |, (10)
o = k(k + D1+ (-1)"

which we can also write this way:

V(k, 1) € N2, (11)
Ly =2 min(k, /) [1 + min(k, /)] 1{(k+l)€2N}

SAMO 2013 Nice July 1-4 Saint-Geours et al. 32/22
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Contribution to the Sample Variance

Contribution to the sample variance for input parameter X; at quantile g
is given by:

F'(q)
D) =iy | E[(Y—EMPIX=x|px)dy  (12)
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Contribution to the Sample Variance
Slope of the CSV plot

The slope of the CSV plot between the two points (g1, D(q1)) and (g2, D(q2))
is given by:
D(g) — D(g:) _ V(Y"1 (13)
@-q V()
with variance V(Y*[#:2]) defined as the variance of the model output when
the range of the parameter X; is reduced to [z, 2], but with respect to
constant mean E(Y) over the full range of all parameters:

V(Y ) —E[(Y —E(Y))? | X = 2]
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Contribution to the Sample Variance

Relation with total order sensitivity indices?

Total order sensitivity indices:

Ex, [Varx_, (Y | X)]

ST T )

Ex (Ex., [(Y 1Y | X)) | X = 5)])
v(Y)

=1

Let denote by V(Y°{}) the quantity Ex_, [(Y —E[Y | X])? | X; = x]. Itis
the variance of model output when model input Xj is fixed to the value x;, but
with respect to the conditional mean E[Y | X; = x;]. We then have:

v(yo{Ffl(q)})
vy | Y

1

- |

0

1-— (14)
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Contribution to the Sample Variance

Relation with total order sensitivity indices?

Trouble is that the two variances V(Y°{#}) and V(Y*{#}) are not equal,
as they are not computed with respect to the same mean value.

constant mean E(Y) for V(Y*{z})
conditionnal mean E[Y | X; = z] for V(Y°{z}))
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