Computing first-order sensitivity indices with contribution to the sample mean plot

Saint-Geours Nathalie ${ }^{(1)}$ Tarantola, S. ${ }^{(2)}$ Kopustinskas, V. (2) Bolado-Lavin, R. ${ }^{(3)}$

SAMO 2013 - Nice, July 1-4
(1) Irstea UMR TETIS, Montpelfier, France
${ }^{(2)}$ Joint Research Center of the European Commission, Ispra, Italy
${ }^{\text {(3) Joint Research Center of the European Commission, Petten, Netherlands }}$
$i_{p} s_{c}$

Sensitivity analysis from given data

Sensitivity analysis from given data

Sensitivity analysis from given data

Sensitivity analysis from given data

Sensitivity analysis from given data

Contribution to the Sample Mean (CSM)

Bolado-Lavin, R., Castaings, W., \& Tarantola, S.
Contribution to the sample mean plot for graphical and numerical sensitivity analysis
Reliab. Eng. Syst. Saf., 2009, 6, 1041-1049.

Contribution to the Sample Mean (CSM)

目
Bolado-Lavin, R., Castaings, W., \& Tarantola, S.
Contribution to the sample mean plot for graphical and numerical sensitivity analysis
Reliab. Eng. Syst. Saf., 2009, 6, 1041-1049.

- Model $Y=G\left(X_{1}, \ldots, X_{m}\right)$
- X_{1}, \ldots, X_{m} independent random variables, pdf p_{j}, cdf F_{j}
- The Contribution to the Sample Mean (CSM) for \mathbf{X}_{j} is:
$\forall q \in[0 ; 1]$,

$$
C_{j}(q)=\frac{\int_{-\infty}^{F_{j}^{-1}(q)}\left(\int_{\mathbb{R}^{m-1}} G(x) p_{X_{\sim j}}\left(x_{\sim j}\right) d x_{\sim j}\right) p_{j}\left(x_{j}\right) d x_{j}}{\int_{\mathbb{R}^{m}} G(x) p_{X}(x) d x}
$$

Contribution to the Sample Mean (CSM)

E
Bolado-Lavin, R., Castaings, W., \& Tarantola, S.
Contribution to the sample mean plot for graphical and numerical sensitivity analysis
Reliab. Eng. Syst. Saf., 2009, 6, 1041-1049.

- Model $Y=G\left(X_{1}, \ldots, X_{m}\right)$
- X_{1}, \ldots, X_{m} independent random variables, pdf p_{j}, $\operatorname{cdf} F_{j}$
- The Contribution to the Sample Mean (CSM) for \mathbf{X}_{j} is:
$\forall q \in[0 ; 1]$,

$$
\begin{equation*}
C_{j}(q)=\frac{\int_{-\infty}^{\mathrm{F}_{\mathrm{j}}^{-1}(\mathbf{q})}\left(\int_{\mathbb{R}^{m-1}} G(x) p_{\chi_{\sim j}}\left(x_{\sim j}\right) d x_{\sim j}\right) p_{j}\left(x_{j}\right) d x_{j}}{\int_{\mathbb{R}^{m}} G(x) p_{X}(x) d x} \tag{1}
\end{equation*}
$$

Contribution to the Sample Mean (CSM)

$C_{j}(q)$ represents the fraction of the output mean due to the fraction q of smallest values of X_{j}.

Contribution to the Sample Mean (CSM)

Procedure to approximate CSM plot from a set of n model runs. input sample $\left(x_{i j}\right)_{i-1 \ldots n, j-1 \ldots m}$ and output vector $\left(y_{i}\right)_{i-1 \ldots, n}$

Contribution to the Sample Mean (CSM)

Procedure to approximate CSM plot from a set of n model runs. input sample $\left(x_{i j}\right)_{i=1 \ldots, ., j=1 \ldots, m}$ and output vector $\left(y_{i}\right)_{i=1 \ldots n}$

1 compute the output mean $\hat{\mu}$
2 sort increasingly the n random realisations of X_{j} :

$$
x_{\pi(1) j} \leq \cdots \leq x_{\pi(\mathrm{n}) j}
$$

3 compute $\left(c_{1}, \ldots, c_{n}\right)$:

$$
c_{i}=\frac{1}{n \hat{\mu}} \sum_{s=1}^{i} y_{\pi(s)}
$$

Contribution to the Sample Mean (CSM)

Procedure to approximate CSM plot from a set of n model runs. input sample $\left(x_{i j}\right)_{i=1 \ldots, ., j=1 \ldots, m}$ and output vector $\left(y_{i}\right)_{i=1 \ldots n}$

1 compute the output mean $\hat{\mu}$
2 sort increasingly the n random realisations of X_{j} :

$$
x_{\pi(1) j} \leq \cdots \leq x_{\pi(\mathrm{n}) j}
$$

3 compute $\left(c_{1}, \ldots, c_{n}\right)$:

$$
c_{i}=\frac{1}{n \hat{\mu}} \sum_{s-1}^{i} y_{\pi(s)}
$$

4 plot $\left(c_{1}, \ldots, c_{n}\right)$ against $\left(q_{1}, \ldots, q_{n}\right)$ with $q_{i}=i / n$

Contribution to the Sample Mean (CSM)

CSM and first-order effects

X_{j} with low first-order effect
\sim
CSM line close to the diagonal
(Bolado-Lavin et al., 2009)

Contribution to the Sample Mean (CSM)

CSM and first-order effects
X_{j} with low first-order effect
CSM line close to the diagonal
(Bolado-Lavin et al., 2009)

Contribution to the Sample Mean (CSM)

CSM and first-order effects

X_{j} with low first-order effect

CSM line close to the diagonal
(Bolado-Lavin et al., 2009)

2 research questions

11 what relationship between CSM plot and S_{j} ?
2 is it possible to compute S_{j} from a CSM plot ?

What relation between CSM plot and first-order sensitivity indices S_{j} ?

Relation between CSM and first-order indices S_{j}

Property

Let denote $c_{v}=\sigma(Y) / \mathbf{E}(Y)$.
For any input X_{j} we have:

$$
\begin{equation*}
S_{j}=\frac{1}{c_{v}^{2}} \cdot \int_{0}^{1}\left[\frac{d}{d q}\left(C_{j}(q)-q\right)\right]^{2} d q \tag{2}
\end{equation*}
$$

Relation between CSM and first-order indices S_{j}

Property

Let denote $c_{V}=\sigma(Y) / \mathbf{E}(Y)$.
For any input X_{j} we have:

$$
\begin{equation*}
S_{j}=\frac{1}{c_{v}^{2}} \cdot \int_{0}^{1}[\frac{d}{d q} \underbrace{\left(C_{j}(q)-q\right)}_{\text {deviation to diagonal }}]^{2} d q \tag{2}
\end{equation*}
$$

Elements of proof

Elements of proof

CSM expression using conditional expectation

$$
\forall q \in[0 ; 1], \quad C_{j}(q)=\frac{1}{\mathbf{E}(Y)} \int_{-\infty}^{F_{j}^{-1}(q)} \mathbf{E}\left[Y \mid X_{j}=x_{j}\right] p_{j}\left(x_{j}\right) d x_{j}
$$

Elements of proof

CSM expression using conditional expectation

$$
\forall q \in[0 ; 1], \quad C_{j}(q)=\frac{1}{\mathbf{E}(Y)} \int_{-\infty}^{F_{j}^{-1}(q)} \mathbf{E}\left[Y \mid X_{j}=x_{j}\right] p_{j}\left(x_{j}\right) d x_{j}
$$

CSM derivative

Using $\frac{d}{d q}\left(F_{j}^{-1}(q)\right)=1 / p_{j}\left(F_{j}^{-1}(q)\right)$:

$$
\forall q \in[0 ; 1], \quad \frac{d}{d q} C_{j}(q)=\frac{\mathbf{E}\left[Y \mid X_{j}=F_{j}^{-1}(q)\right]}{\mathbf{E}(Y)}
$$

Elements of proof

CSM expression using conditional expectation

$$
\forall q \in[0 ; 1], \quad C_{j}(q)=\frac{1}{\mathbf{E}(Y)} \int_{-\infty}^{F_{j}^{-1}(q)} \mathbf{E}\left[Y \mid X_{j}=x_{j}\right] p_{j}\left(x_{j}\right) d x_{j}
$$

CSM derivative
Using $\frac{d}{d q}\left(F_{j}^{-1}(q)\right)=1 / p_{j}\left(F_{j}^{-1}(q)\right)$:

$$
\forall q \in[0 ; 1], \quad \frac{d}{d q} C_{j}(q)=\frac{\overbrace{\mathbf{E}\left[Y \mid X_{j}=F_{j}^{-1}(q)\right]}^{S_{j}=\operatorname{Var}\left[E\left(Y \mid X_{j}\right)\right] / V(Y)}}{\mathbf{E}(Y)}
$$

$2^{\text {nd }}$ question

Computing first-order effects S_{j} from a CSM plot?

Computing S_{j} from a CSM plot

Start from a sample of n CSM points $\left(q_{i}, c_{i}\right)_{i-1, \ldots, n}$.

A. Polynomial regression

fit a polynomial model on CSM points $\left(q_{i}, c_{i}\right)$
exact formula for S_{j} from the regression coefficients
B. Spline smoothing
fit a spline model on the CSM points

approximate CSM derivative
compute S_{j} Lusing Eqn.(2)

Computing S_{j} from a CSM plot

Start from a sample of n CSM points $\left(q_{i}, c_{i}\right)_{i-1, \ldots, n}$.
A. Polynomial regression

- fit a polynomial model on CSM points (q_{i}, c_{i})
- exact formula for S_{j} from the regression coefficients

fit a spline model on the CSM points

approximate CSM derivative
compute S_{j} using Eqn.(2)

Computing S_{j} from a CSM plot

Start from a sample of n CSM points $\left(q_{i}, c_{i}\right)_{i-1, \ldots, n}$.
A. Polynomial regression

- fit a polynomial model on CSM points (q_{i}, c_{i})
- exact formula for S_{j} from the regression coefficients

fit a spline model on the CSM points

approximate CSM derivative
compute S_{j} Lusing Eqn.(2)

Computing S_{j} from a CSM plot

Start from a sample of n CSM points $\left(q_{i}, c_{i}\right)_{i-1, \ldots, n}$.
A. Polynomial regression

- fit a polynomial model on CSM points (q_{i}, c_{i})
- exact formula for S_{j} from the regression coefficients

B. Spline smoothing

- fit a spline model on the CSM points
- approximate CSM derivative
- compute S_{j} using Eqn.(2)

Polynomial regression

Polynomial regression

- expansion of CSM using shifted Legendre polynomials $\left(P_{k}\right)_{k \in \mathbb{N}}$ which are orthogonal on $[0,1]$

$$
\forall i=1 \ldots n, \quad c_{i}=\sum_{k=0}^{d} \alpha_{k} P_{k}\left(q_{i}\right)+\epsilon_{i}
$$

Polynomial regression

- expansion of CSM using shifted Legendre polynomials $\left(P_{k}\right)_{k \in \mathbb{N}}$ which are orthogonal on $[0,1]$

$$
\forall i=1 \ldots n, \quad c_{i}=\sum_{k=0}^{d} \alpha_{k} P_{k}\left(q_{i}\right)+\epsilon_{i}
$$

selecting max order \mathbf{d}^{\star} by minimizing AICc information criterion

$$
d^{\star}=\underset{d \in \mathbb{N}}{\operatorname{argmin}}\left[\frac{n}{2} \cdot \log \left(\frac{2 \pi}{n} \sum_{i=1}^{n} \epsilon_{i}(d)^{2}\right)+\frac{n}{2}+\frac{n \cdot(d+2)}{n-d-3}\right]
$$

Polynomial regression

- explicit formula for $\mathbf{S}_{\mathbf{j}}$ derived from Eqn.(2) using P_{k} properties with :

$$
\tilde{\alpha}_{k}=\left\{\begin{array}{lll}
\alpha_{k} & \text { if } & k>1 \\
\alpha_{k}-\frac{1}{2} & \text { if } & k=1
\end{array}\right.
$$

we obtain:

$$
\begin{equation*}
\hat{S}_{j}=\frac{2}{\hat{c}_{v}^{2}} \sum_{\substack{k, l=1 \\ k+l \in 2 \mathbb{Z}}}^{d} \tilde{\alpha}_{k} \tilde{\alpha}_{l} \cdot \min (k, l)[1+\min (k, l)] \tag{3}
\end{equation*}
$$

$3^{\text {rd }}$ point
 Numerical test cases

Test cases

11 Ishigami function

- X_{1} to X_{3} i.i.d $\sim U[-\pi, \pi]$

$$
Y=\sin \left(X_{1}\right)+a \cdot \sin \left(X_{2}\right)^{2}+b \cdot X_{3}^{4} \cdot \sin \left(X_{1}\right)
$$

2. G-Sobol function

- X_{1} to X_{8} i.i.d $\sim U[0,1]$
- fixed parameter vector $a=(0,1,4.5,9,99,99,99,99)$:

$$
Y=\prod_{j=1}^{8} \frac{\left|4 X_{j}-2\right|+a_{j}}{1+a_{j}}
$$

Scatterplots and CSM plots

sample size $n=300$ (simple random sample)

Polynomial fit for input X_{1}

 sample size $n=300$ (simple random sample)

Estimation of first-order effects

Convergence of \hat{S}_{\perp} for increasing sample size n

Estimation of first-order effects

Convergence of \hat{S}_{2} and \hat{S}_{3} for increasing sample size n

Conclusion

Conclusion

+ Results
- explicit formula linking $\mathbf{S}_{\mathbf{j}}$ and CSM (derivative)
- \hat{S}_{j} estimator based on polynomial expansion of the CSM plot (explicit formula from regression coefficients)
\longrightarrow computation of S_{j} from given data

Conclusion

Results

- explicit formula linking $\mathbf{S}_{\mathbf{j}}$ and CSM (derivative)
- \hat{S}_{j} estimator based on polynomial expansion of the CSM plot (explicit formula from regression coefficients)
\longrightarrow computation of S_{j} from given data

- Limits

- minimum sample size $n \sim 1000$
- \hat{S}_{j} does not compare well with other estimators based on given data such as EASI (Plischke, 2010)
- why ? because it requires approximating derivatives

Conclusion

Further research

- Total-order effects ?
- Contribution to the Sample Variance (CSV plot)
- first attempts were unsuccessful but. . .

Tarantola S., V. Kopustinskas, R. Bolado-Lavin, A. Kaliatka, E. Uspuras, M.
Vaisnoras
Sensitivity analysis using contribution to sample variance plot: Application to a water hammer model
Reliab. Eng. Syst. Saf., 2012, 99, 62-73.

Thank you for your attention !

Funding (6 weeks stay in JRC, Ispra, Italy):

Appendix

References

References

Bolado-Lavin, R., Castaings, W., \& Tarantola, S.
Contribution to the sample mean plot for graphical and numerical sensitivity analysis
Reliab. Eng. Syst. Saf., 2009, 6, 1041-1049.
E
Abramowitz, M. \& Segun, I. (eds.)
Handbook of mathematical functions with Formulas, Graphs, and Mathematical Tables
1972, New York: Dover Publications

Elements of proof (2)

First-order variance-based sensitivity indices

$$
S_{j}=\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim j}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) }
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
S_{j}=\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim j}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) }
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
\begin{aligned}
S_{j} & =\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) } \\
& =\frac{1}{\mathbf{V}(Y)} \int_{\mathbb{R}}\left(\mathbf{E}\left[Y \mid X_{j}=x_{j}\right]-\mathbf{E}(Y)\right)^{2} p_{j}\left(x_{j}\right) d x_{j}
\end{aligned}
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
\begin{aligned}
S_{j} & =\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) } \\
& =\frac{1}{\mathbf{V}(Y)} \int_{\mathbb{R}}\left(\mathbf{E}\left[Y \mid X_{j}=x_{j}\right]-\mathbf{E}(Y)\right)^{2} p_{j}\left(x_{j}\right) d x_{j}
\end{aligned}
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
\begin{aligned}
S_{j} & =\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim j}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) } \\
& =\frac{1}{\mathbf{V}(Y)} \int_{[0,1]}\left(\mathbf{E}\left[Y \mid X_{j}=F_{j}^{-1}(q)\right]-\mathbf{E}(Y)\right)^{2} d q
\end{aligned}
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
\begin{aligned}
S_{j} & =\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim j}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) } \\
& =\frac{1}{\mathbf{V}(Y)} \int_{[0,1]}\left(\mathbf{E}\left[Y \mid X_{j}=F_{j}^{-1}(q)\right]-\mathbf{E}(Y)\right)^{2} d q
\end{aligned}
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
\begin{aligned}
S_{j} & =\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim j}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) } \\
& =\frac{1}{\mathbf{V}(Y)} \int_{[0,1]}\left(\frac{d}{d q} C_{j}(q) \cdot \mathbf{E}(Y)-\mathbf{E}(Y)\right)^{2} d q
\end{aligned}
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
\begin{aligned}
S_{j} & =\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim} j}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) } \\
& =\frac{1}{\mathbf{V}(Y)} \int_{[0,1]}\left(\frac{d}{d q} C_{j}(q) \cdot \mathbf{E}(Y)-\mathbf{E}(Y)\right)^{2} d q \\
& =\frac{\mathbf{E}(Y)^{2}}{\mathbf{V}(Y)} \int_{0}^{1}\left[\frac{d}{d q} C_{j}(q)-1\right]^{2} d q
\end{aligned}
$$

Elements of proof (2)

First-order variance-based sensitivity indices

$$
\begin{aligned}
S_{j} & =\frac{\operatorname{Var}_{X_{j}}\left(\mathbf{E}_{X_{\sim j}}\left[Y \mid X_{j}\right]\right)}{\mathbf{V}(Y)} \quad \text { (Saltelli et al., 2008) } \\
& =\frac{1}{\mathbf{V}(Y)} \int_{[0,1]}\left(\frac{d}{d q} C_{j}(q) \cdot \mathbf{E}(Y)-\mathbf{E}(Y)\right)^{2} d q \\
& =\frac{\mathbf{E}(Y)^{2}}{\mathbf{V}(Y)} \int_{0}^{1}\left[\frac{d}{d q} C_{j}(q)-1\right]^{2} d q \\
& =\frac{1}{c_{V}^{2}} \int_{0}^{1}\left[\frac{d}{d q}\left(C_{j}(q)-q\right)\right]^{2} d q
\end{aligned}
$$

G-Sobol test case $(n=300)$

Scatterplots and CSM plots

G-Sobol test case

Convergence of \hat{S}_{1} and \hat{S}_{4} for increasing sample size n

Estimation of the coefficient of variation

Set of CSM points $\left(q_{i}, c_{i}\right)_{i=1 \ldots n}$
Coefficient of variation $c_{v}=\sigma(Y) / E(Y)$
Using $c_{i}-c_{i-1}=y_{\pi(i)} /(n \hat{\mu})$ we get:

$$
\begin{equation*}
\hat{c}_{V}=n \sqrt{\sum_{i=1}^{n-1}\left(c_{i+1}-c_{i}-\frac{1}{n}\right)^{2}} \tag{4}
\end{equation*}
$$

Shifted Legendre polynomials

Shifted Legendre polynomial P_{k} are defined by
$P_{k}(q)=P_{k}^{(s)}(2 q-1)$
with $P_{k}^{(s)}$ the standardized Legendre polynomials, which are given by the Rodrigue's formula [2, p.785, Eqn. 22.11.5]

$$
\forall k \in \mathbb{N}, \forall q \in[-1,1], \quad P_{k}^{(s)}(q)=\frac{(-1)^{k}}{2^{k} \cdot k!} \frac{d^{k}}{d q^{k}}\left[\left(q^{2}-1\right)^{k}\right]
$$

Detailed proof for Eqn.(3)

Using the approximation $C(q) \approx \sum_{k} \alpha_{k} P_{k}(q)$, we get an approximation of the integral $I=\int_{0}^{1} \frac{d}{d q}(C(q)-q)^{2} d q$:

$$
\begin{equation*}
\hat{\imath}=\int_{0}^{1}\left[\left(\sum_{k=1}^{d} \alpha_{k} P_{k}^{\prime}(q)\right)-1\right]^{2} d q \tag{5}
\end{equation*}
$$

We use the fact that $P_{1}^{\prime}(q)=2$ to define modified coefficients $\left(\tilde{\alpha}_{k}\right)_{k=1, \ldots, d}$ as equal to coefficients $\left(\alpha_{k}\right)_{k=1, \ldots, d}$ except for $\tilde{\alpha}_{1}=\alpha_{1}-\frac{1}{2}$, :

$$
\begin{align*}
\hat{l} & =\int_{0}^{1}\left[\sum_{k=1}^{d} \tilde{\alpha}_{k} P_{k}^{\prime}(q)\right]^{2} d q \\
& =\sum_{k, l=1}^{d} \tilde{\alpha}_{k} \tilde{\alpha}_{l} \int_{0}^{1} P_{k}^{\prime}(q) P_{l}^{\prime}(q) d q \tag{6}\\
& =\sum_{k, l=1}^{d} \tilde{\alpha}_{k} \tilde{\alpha}_{l} l_{k l}
\end{align*}
$$

Detailed proof for Eqn.(3)

Using the approximation $C(q) \approx \sum_{k} \alpha_{k} P_{k}(q)$, we get an approximation of the integral $I=\int_{0}^{1} \frac{d}{d q}(C(q)-q)^{2} d q$:

$$
\begin{equation*}
\hat{\imath}=\int_{0}^{1}\left[\left(\sum_{k=1}^{d} \alpha_{k} P_{k}^{\prime}(q)\right)-1\right]^{2} d q \tag{5}
\end{equation*}
$$

We use the fact that $P_{1}^{\prime}(q)=2$ to define modified coefficients $\left(\tilde{\alpha}_{k}\right)_{k=1, \ldots, d}$ as equal to coefficients $\left(\alpha_{k}\right)_{k=1, \ldots, d}$ except for $\tilde{\alpha}_{1}=\alpha_{1}-\frac{1}{2}$, :

$$
\begin{align*}
\hat{l} & =\int_{0}^{1}\left[\sum_{k=1}^{d} \tilde{\alpha}_{k} P_{k}^{\prime}(q)\right]^{2} d q \\
& =\sum_{k, l=1}^{d} \tilde{\alpha}_{k} \tilde{\alpha}_{l} \int_{0}^{1} P_{k}^{\prime}(q) P_{l}^{\prime}(q) d q \tag{6}\\
& =\sum_{k, l=1}^{d} \tilde{\alpha}_{k} \tilde{\alpha}_{l} l_{k l}
\end{align*}
$$

Detailed proof for Eqn.(3)

Let assume that $k \leq n$.
Using an integration by parts we have:

$$
\begin{equation*}
I_{k, l}=\left[P_{k}^{\prime}(q) P_{l}(q)\right]_{0}^{1}-\int_{0}^{1} P_{k}^{\prime \prime}(q) P_{l}(q) d q \tag{7}
\end{equation*}
$$

$P_{k}^{\prime \prime}$ is a polynom of degree $k-2$: it can be decomposed on the finite orthogonal basis $\left(P_{i}\right)_{i=1, \ldots, k-2}$. As $k-2<I$, using the orthogonality of shifted Legendre polynomials $\left(P_{k}\right)_{k \in \mathbb{N}}$ on $[0,1]$, we find that the integral $\int_{0}^{1} P_{k}^{\prime \prime}(q) P_{l}(q) d q$ is equal to 0 . Hence :

$$
\begin{equation*}
I_{k, l}=P_{k}^{\prime}(1) P_{l}(1)-P_{k}^{\prime}(0) P_{l}(0) \tag{8}
\end{equation*}
$$

Detailed proof for Eqn.(3)

The values of $P_{k}(q)$ and its derivative $P_{k}^{\prime}(q)$ at $q=0$ and $q=1$ can be found from the corresponding values of non-shifted Legendre polynomial $P_{k}^{(s)}(q)$ at $q=-1$ and $q=1$, which are given in [2, p.777], Eqn.(22.4.6), (22.5.37) and (22.4.2). Using the relations $P_{k}(q)=P_{k}^{(s)}(2 q-1)$ and $P_{k}^{\prime}(q)=2\left(P_{k}^{(s)}\right)^{\prime}(2 q-1)$ we have:

$$
\forall k \in \mathbb{N}\left\{\begin{array}{l}
P_{k}(1)=1 \tag{9}\\
P_{k}^{\prime}(1)=k(k+1) \\
P_{k}(0)=(-1)^{k} \\
P_{k}^{\prime}(0)=(-1)^{k-1} k(k+1)
\end{array}\right.
$$

We finally obtain:

$$
\begin{align*}
& \forall(k, I) \in \mathbb{N}^{2}, k \leq I \\
& I_{k, I}=k(k+1)\left[1+(-1)^{k+l}\right] \tag{10}
\end{align*}
$$

which we can also write this way:

$$
\begin{align*}
& \forall(k, l) \in \mathbb{N}^{2} \tag{11}\\
& I_{k l}=2 \min (k, l)[1+\min (k, l)] \mathbf{1}_{\{(k+l) \in 2 \mathbb{N}\}}
\end{align*}
$$

Detailed proof for Eqn.(3)

The values of $P_{k}(q)$ and its derivative $P_{k}^{\prime}(q)$ at $q=0$ and $q=1$ can be found from the corresponding values of non-shifted Legendre polynomial $P_{k}^{(s)}(q)$ at $q=-1$ and $q=1$, which are given in [2, p.777], Eqn.(22.4.6), (22.5.37) and (22.4.2). Using the relations $P_{k}(q)=P_{k}^{(s)}(2 q-1)$ and $P_{k}^{\prime}(q)=2\left(P_{k}^{(s)}\right)^{\prime}(2 q-1)$ we have:

$$
\forall k \in \mathbb{N}\left\{\begin{array}{l}
P_{k}(1)=1 \tag{9}\\
P_{k}^{\prime}(1)=k(k+1) \\
P_{k}(0)=(-1)^{k} \\
P_{k}^{\prime}(0)=(-1)^{k-1} k(k+1)
\end{array}\right.
$$

We finally obtain:

$$
\begin{align*}
& \forall(k, I) \in \mathbb{N}^{2}, k \leq I \\
& I_{k, I}=k(k+1)\left[1+(-1)^{k+\prime}\right] \tag{10}
\end{align*}
$$

which we can also write this way:

$$
\begin{align*}
& \forall(k, l) \in \mathbb{N}^{2} \tag{11}\\
& I_{k l}=2 \min (k, l)[1+\min (k, l)] \mathbf{1}_{\{(k+l) \in 2 \mathbb{N}\}}
\end{align*}
$$

Contribution to the Sample Variance

Contribution to the sample variance for input parameter X_{j} at quantile q is given by:

$$
\begin{equation*}
D_{j}(q)=\frac{1}{\mathrm{~V}(Y)} \int_{-\infty}^{F_{j}^{-1}(q)} \mathbf{E}\left[(Y-\mathbf{E}(Y))^{2} \mid X_{j}=x_{j}\right] p\left(x_{j}\right) d x_{j} \tag{12}
\end{equation*}
$$

Contribution to the Sample Variance

Slope of the CSV plot

The slope of the CSV plot between the two points $\left(q_{1}, D\left(q_{1}\right)\right)$ and $\left(q_{2}, D\left(q_{2}\right)\right)$ is given by:

$$
\begin{equation*}
\frac{D\left(q_{2}\right)-D\left(q_{1}\right)}{q_{2}-q_{1}}=\frac{\mathbf{V}\left(Y^{\star\left[z_{1}, z_{2}\right]}\right)}{\mathbf{V}(Y)} \tag{13}
\end{equation*}
$$

with variance $\mathbf{V}\left(Y^{\star\left[z_{1}, z_{2}\right]}\right)$, defined as the variance of the model output when the range of the parameter X_{j} is reduced to $\left[z_{1}, z_{2}\right]$, but with respect to constant mean $\mathbf{E}(Y)$ over the full range of all parameters:

$$
\mathbf{V}\left(Y^{\star\{z\}}\right)=\mathbf{E}\left[(Y-\mathbf{E}(Y))^{2} \mid X_{j}=z\right]
$$

Contribution to the Sample Variance

Relation with total order sensitivity indices?

Total order sensitivity indices:

$$
\begin{aligned}
S T_{j} & =1-\frac{\mathbf{E}_{X_{j}}\left[\operatorname{Var}_{X_{\sim j}}\left(Y \mid X_{j}\right)\right]}{\mathbf{V}(Y)} \\
& =1-\frac{\mathbf{E}_{X_{j}}\left(\mathbf{E}_{X_{\sim j}}\left[\left(Y-\mathbf{E}\left[Y \mid X_{j}\right]\right)^{2} \mid X_{j}=x_{j}\right]\right)}{\mathbf{V}(Y)}
\end{aligned}
$$

Let denote by $\mathbf{V}\left(Y^{\circ}\left\{x_{j}\right\}\right)$ the quantity $\mathbf{E}_{X_{\sim j}}\left[\left(Y-\mathbf{E}\left[Y \mid X_{j}\right]\right)^{2} \mid X_{j}=x_{j}\right]$. It is the variance of model output when model input X_{j} is fixed to the value x_{j}, but with respect to the conditional mean $\mathbf{E}\left[Y \mid X_{j}=x_{j}\right]$. We then have:

$$
\begin{equation*}
S T_{j}=\int_{0}^{1}\left[1-\frac{\mathbf{V}\left(Y^{\circ}\left\{F_{j}^{-1}(q)\right\}\right)}{\mathbf{V}(Y)}\right] d q \tag{14}
\end{equation*}
$$

Contribution to the Sample Variance

Relation with total order sensitivity indices?

Trouble is that the two variances $\mathbf{V}\left(Y^{\circ\{z\}}\right)$ and $\mathbf{V}\left(Y^{\star\{z\}}\right)$ are not equal, as they are not computed with respect to the same mean value.

- constant mean $\mathbf{E}(Y)$ for $\mathbf{V}\left(Y^{\star\{z\}}\right)$
- conditionnal mean $\mathbf{E}\left[Y \mid X_{j}=z\right]$ for $\left.\mathbf{V}\left(Y^{\circ\{z\}}\right)\right)$

