Fallacies of rankings and ratings

SAMO 2013 University Nice Sophia Antipolis, Valrose Campus, Nice, France

Paolo Paruolo, Michaela Saisana, Andrea Saltelli, European Commission, Joint Research Centre

andrea.saltelli@jrc.ec.europa.eu

About indicators

... and composite indicators

Advocacy, analysis and quality

[...] composite indicators as an object populating a multidimensional space whose main axes are advocacy, analysis and quality [...]

Saltelli, A., and Saisana, M., Advocacy, analysis and quality. The Bermuda triangle of Statistics, International Statistical Institute Conference, Hong Kong, August 2013, Statistics and Policy

These three dimensions (advocacy, analysis and quality) are not independent from one another.

[...]most developers adopt for transparency and simplicity linear aggregation procedures to build composite indicators which are fraught with considerable difficulties [...]

In this case quality may suffer at the expenses of advocacy.

ibidem

Features of composite indicators

THE ROLE OF COMPOSITE INDICATORS FOR MEASURING SOCIETAL PROGRESS

→ Ubiquitous; 5-fold increase in 6 y
→ Statistics' best known face (to general public & media)
→ Open the floor to plurality of norms and views
→ Can provide analytic input to policy

The Stiglitz-Sen-Fitoussi report

Report by the Commission on the Measurement of Economic Performance and Social Progress

Professor Joseph E. StigLitz, Chair, Columbia University

Professor Amartya SEN, Chair Adviser, Harvard University

Professor Jean-Paul Fitoussi, Coordinator of the Commission, IEP

More Statistical Indicators

"the role of statistical indicators has increased over the last two decades"

(Stiglitz report, 2009)

Why?
(i) more literacy,
(ii) more complexity,
(iii) more information society (Stiglitz report, 2009)

Caveats

"League tables [...] are an easy target for criticism.

[...] surgeon can refuse to operate on the difficult cases, schools can refuse to enter those pupils likely to do poor in examinations, health authorities can defer making appointments for some patients, so that the waiting lists look smaller, and so on."

Caveats

The Stiglitz report, on page 65, mentions: [...] a general criticism that is frequently addressed at composite indicators, i.e. the arbitrary character of the procedures used to weight their various components.

Adding: [...] The problem is not that these weighting procedures are hidden, non-transparent or non-replicable – they are often very explicitly presented by the authors of the indices, and this is one of the strengths of this literature. The problem is rather that their normative implications are seldom made explicit or justified.

Quality

Quality of composite indicators

Testing (composite) indicators: two approaches

Michaela Saisana, Andrea. Saltelli, and Stefano Tarantola, 2005, Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. *J. R. Statist. Soc. A* **168**(2), 307–323.

Paolo Paruolo, Michaela Saisana, Andrea Saltelli,2013, Ratings and rankings: Voodoo or Science?,*J. R. Statist. Soc. A*, **176** (2), 1-26

Quality of composite indicators

First: The invasive approach, University ranking example

Michaela Saisana, Béatrice d'Hombres, Andrea Saltelli, Rickety numbers: Volatility of university rankings and policy implications *Research Policy* (2011), **40**, 165-177

(Invasive) Sensitivity Analysis

Robustness analysis, of ARWU and THES

Assumption	Alternatives		
Number of indicators	all six indicators included or		
	one-at-time excluded (6 options)		
Weighting method	 original set of weights, 		
	 factor analysis, 		
	 equal weighting, 		
	 data envelopment analysis 		
Aggregation rule	 additive, 		
	 multiplicative, 		
	 Borda multi-criterion 		

Sensitivity analysis

Relative uncertainty of the two rankings

Question:

Can we say something about the quality of the university rankings and the <u>reliability of the results</u>?

Source: Saisana, D'Hombres, Saltelli, 2011, Research Policy 40, 165–177

A R W/I !• simulate	Legend:					
AIX W U. SIIIuiau	Frequency lower 15%					
	Frequency between 15 and 30%					
		Frequency between 30 and 50%				
		Frequency greater than 50%				
	Simulated rank range - SITU 2008	Note: Frequencies lower than 4% are not shown				
	Simulated Fank Fange - 5510 2000					
	5 10 10 	Original				
	1	rank				
Harvard Univ	100	1 USA				
Stanford Univ	89 11	2 USA				
Univ California - Berkeley	97	3 USA				
Univ Cambridge	90 10	4 UK				
Massachusetts Inst Tech (MIT)	74 26	5 USA				
California Inst Tech	27 53 19	6 USA				
Columbia Univ	23 77	7 USA				
Princeton Univ	71 9 11 7	8 USA				
Univ Chicago	51 <mark>34</mark> 13	9 USA				
Univ Oxford	99	10 UK				
Yale Univ	47 53	11 USA				
Cornell Univ	27 73	12 USA				
Univ California - Los Angeles	9 84 7	13 USA				
Univ California - San Diego	41 46 9	14 USA				
Univ Pennsylvania	6 <mark>71 23</mark>	15 USA				
Univ Washington - Seattle	7 71 21	16 USA				
Univ Wisconsin - Madison	27 70	17 USA				
Univ California - San Francisco	14 9 14 11 7 10 6 6	18 USA				
Tokyo Univ	16 16 <mark>49</mark> 20	19 Japan				
Johns Hopkins Univ	7 54 21 17	20 USA				

Harvard, Stanford, Berkley, Cambridge, MIT: top 5 in more than 75% of our simulations.

• Univ California SF: original rank 18th but could be ranked anywhere between the 6th and 100th position

•Impact of assumptions: much stronger for the middle ranked universities

THES: simulated ranks – Top 20					
	Frequency greater than 50%				
	1-5 6-10 11-15 11-15 26-30 31-35 36-40 51-55 56-60 51-55 51-55 51-55 51-55 81-85 81-85 81-95 91-95 91-95	Note: Frequencies lower than 4% are not shown			
HARVARD University	44 <u>56</u>	1 USA			
YALE University	<u>40</u> 49 11	2 USA			
University of CAMBRIDGE	99	3 UK			
University of OXFORD	93 7	4 UK			
CALIFORNIA Institute of Technology	46 50	5 USA			
IMPERIAL College London	74 24	6 UK			
UCL (University College London)	/3 23	7 UK			
University of CHICAGO					
COLUMBLA University					
University of PENINSYLVANLA	37 56 6	11 USA			
PRINCETON University	6 59 27 9	12 USA			
DUKE University	27 11 9 7 10 6 9 6	13 USA			
JOHNS HOPKINS University	20 10 9 9 7 10 6 6 7 6	13 USA			
CORNELL University	6 24 11 7 6 7 9 9 7	15 USA			
AUSTRALIAN National University	10 30 29 31	16 Australia			
STANFORD University	10 14 7 10 9 10 6 6 7	17 USA			
University of MICHIGAN	6 27 17 9 10 7 14 6	18 USA			
University of TOKYO	16 7 13 7 6 6	19 Japan			
MCGILL University	7 <mark>19 41</mark> 13 9 7	20 Canada			

• Impact of uncertainties on the university ranks is even more apparent.

M.I.T.: ranked 9th, but confirmed only in 13% of simulations (plausible range [4, 35])

 Very high volatility also for universities ranked 10th-20th position, e.g., Duke Univ, John Hopkins Univ, Cornell Univ.

Non invasive Sensitivity analysis

Second: The <u>non</u>-invasive approach

Comparing the weights as assigned by developers with 'effective weights' derived from sensitivity analysis.

And the linear aggregation paradox (weights are used as if they were importance coefficients while they are trade off coefficients) The linear aggregation paradox: weights are used as if they were importance coefficients while they are trade off coefficients

The linear aggregation paradox

An example. A dean wants to rank teachers based on 'hours of teaching' and 'number of publications', adding these two variables up she sees that teachers are practically ranked by publications.

To obviate this the dean substitutes the model $y=1/2(x_1+x_2)$ with $y=0.7x_1+0.3x_2$ X_1 : hours of teaching X_2 : number of publications

A professor comes by, looks at the last formula, and complains that publishing is disregarded in the department …

Statistical coherence

Using these points we can compute a statistics (S_i) that tells us: How much (on average) would the variance of the ARWU scores be reduced if I could fix the variable 'Papers in Nature & Science'?

index Si [linear/ non linear] is the variance of the [linear/ non linear] interpolation curve

Ratings and Rankings 27

University Rankings

Comparing the internal coherence of ARWU versus THES by testing the weights declared by developers with 'effective' importance measures.

THES

X1_Academic opinion: 6354 academics	40%
X2_Recruiters' opinion: 2339 recruiters	10%
X3_Full-time equivalent faculty/student ratio	20%
X4_Total citation/full time equivalent faculty	20%
X5_Percentage of full-time international staff	5%
X6_Percentage of full-time international students	5%

Issues with THES: a) 'Opinion' variables' weight overall: >60% instead of 50

b) Faculty/student ratio:10% instead of 20%

Life expectancy, 33% Adult literacy, 22% Enrollment education, 11% GDP per capita, 33%

Life expectancy, 33% Education, 33% GNI per capita, 33%

HDI 2010 more coherent than HDI 2009

The Sustainable Society Index (SSI-2008)

van de Kerk, G. and A. R. Manuel (2008). A comprehensive index for a sustainable society: The SSI, sustainable society index. Journal of Ecological Economics 66(2-3), 228-242.

See also http://www.beyond-gdp.eu

Personal development, 0.13% Healthy environment, 0.13% Well-balanced society, 0.13% Sustainable use of resources, 30% Sustainable World, 30%

Vale Center for Environmental Law & Policy

Center for International Earth Science Information Network

World Economic Param, Genera, Switzerland Jatar Research Centre of the European Constitution, Spra, Bally-

This upper last loss made prosible drough the contributions of the listmail Foreign Decisions and DelEs

http://epi.yale.edu

Yale University

Columbia University

tradition and

SUMMARY FOR POLICYMAKERS

http://epi.yale.edu

Julia Tie tan

Yele Control for Environmental Law and Policy Yele University

European Commission

EPI Rank	Country	Trend EPI Rank		
1	Switzerlan d	89		
2	Latvia	1		
3	Norway	84		
4	Luxembourg	105		
5	Costa Rica	113		
6	France	19		
7	Austria	71		
8	Italy	12		
9	United Kingdom	20		
9	Sweden	63		
11	Germany	56		
12	Slovakia	7		
13	Iceland	64		
14	New Zealand	50		
15	Albania	4		
16	Netherlands	92		
17	Lithuania	104		
18	Czech Republic	25		
19	Finland	54		
20	Croatia	74		

2012 Environment al Performance Index (EPI)

- Developed for 132 countries
- Based on 22 indicators grouped in
- Ten Policy Cat egories and Two Objectives

Ratings and Rankings 37

EPI 2012 Framework

Weights for the two objectives in EPI 2012: 30-70

But in EPI 2010 they were 50-50

2012 Environmental Performance Index and Pilot Trend Environmental Performance Index

Yide Genter for Emissioneneural Law & Policy Yale University

Genrie for International Earth Science Information Network Columbia University

2) ordination and Windt Formund Brown, Genera, Dotterdand Janz Research Course of the Facepoor Community, hprs. haly http://epi.vale.edu

The upper his laws multi-pecific through the contributions of the Limits Party's Researchers and Bellis

Appendix II. Preliminary Sensitivity Analysis

Michaela Saisana & Andrea Saltelli European Commission – Joint Research Centre – IPSC, ITALY

The JRC analysis focused on:

- Conceptual & statistical coherence in the EPI framework
- 2. Impact on EPI ranks of modeling assumptions (e.g. change of weights, aggregation for mula)
- 3. Most sensitive (..to be read as least reliable) country ranks

EPI component		Importance i for E	neasures Pl	Weights within EPI	hin I EPI rela		Weights ly e
		S _i non linear ⁽¹⁾	Si linear ⁽²⁾		balance	d in the	e two
	Environmental Health	0.231 (0.057)	0.329	30%	ohi	objectives	
	Ecosystem Vitality	0.489 (0.076)	0.415	70%	objectives		
	or a manufication of the address				Enviror	mental He	alth
	Air Pollution (health)	0.165 (0.092)	0.267	8%	0.455 (0.100)	0.661	25%
	Water & Sanitation (health)	0.279 (0.122)	0.289	8%	0.925 (0.045)	0.886	25%
	Child Mortality	0.415 (0.078)	0.300	15%	0.938 (0.022)	0.918	50%
				9%	F	All a line	0010
A	ir pollution (ecosystem)	0.108 (0.051)	0.135	9%	C	But	
	Water (ecosystem)	0.074 (0.059)	0.166	18%	d Element		
	Biodiversity & Habitat	0.438 (0.080)	0.448	6%	d Foresti	ry and .	Marine
	Forestry	0.121 (0.063)	0.000	6%	are "sil	ent" in	dicators
	Marine & Fisheries	0.041 (0.032)	0.015	6%	C		
	Agriculture	0.166 (0.067)	0.005	18%	C		
	Climate change	0.116 (0.042)	0.008	8%	0.461 (0.081)	0.446	25%

 Table 1. Importance measures for the EPI 2012 components Source: European Commission Joint Research Centre

Notes: (1) Numbers represent the average kernel estimates of the Pearson correlation ratio (x^2) calculated by bootstrap (1000 samples). (2) Numbers represent the Pearson correlation coefficient (squared). (3) Bootstrap standard deviations for the correlation ratio are given in parenthesis. (4) Results are based on the data reported for 2010.

END

