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1) Motivation

● LISFLOOD [1] is a fully-distributed hydrological model 

used for flood forecasting at Pan-European scale 

within the European Flood Awareness System (EFAS, 

www.efas.eu), and for Climate Change studies in 

Europe. 

● Model parameters are estimated through calibration [2]-[3], 

in order to constrain simulated discharges to the 

corresponding observed values.

● So far, nine (9) parameters of the model have been 

selected as sensitive, mostly through expert knowledge 

accumulated over years in the research group. However, 

for highly non-linear models that approach may not result 

in a proper identification of the most sensitive parameters 

for model calibration.

3) Case Studies

2) Aims

● To use Global Sensitivity Analysis (GSA) as a formal 

method to identify relevant parameters that contribute 

significantly to model performance. 

● To elucidate if the model performance obtained by 

calibrating sensitive parameters identified by GSA is higher 

than the model performance obtained by calibrating 

parameters identified by prior expert knowledge.

8) Conclusions
● Sensitive parameters identified by GSA corresponded to 

the dominant hydrological processes in each 

catchment → LISFLOOD works as expected by the 

modellers.

● Qualitative ranking provided by the screening method of 

Morris were in general agreement with those provided 

by the more computationally-intensive Sobol's method.

● In the ranfall-dominated catchment (C304), the 4 most 

sensitive parameters were related to groundwater and 

infiltration processes. Those 4 sensitive parameters 

presented large interactions among themselves. 

● Sensitive parameters for C304 were a subset of the 

original set defined by prior expert knowledge. New 

calibration results were slightly worse (NSE=0.45) than 

those of the original calibration (NSE=0.47).

● In the snow-dominated catchment (C400), the 3 most 

sensitive parameters were related to snowfall and 

snowmelt processes. Those 3 sensitive parameters 

presented very small interactions among themselves.

● Sensitive parameters for C400 were different from 

those identified by prior expert knowledge. New 

calibration results were much better (NSE=0.72) than 

those of the original calibration (NSE=0.59).

● Initial uncertainty ranges defined for threshold-like 

parameters proved to have a large influence in the 

identification of sensitive parameters (both Morris' and 

Sobol's method) (not shown here).

● Sensitivity indices may change when a different 

goodness-of-fit measure is used for assessing model's 

performance.
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5) Methodology

5.a) Screening (Morris' GSA)
● The screening method of Morris [8] aims to identify sensitivity 

parameters with a small number of sample points (model runs), 

i.e., with a low computational cost. The recommended number 

of simulations is C = r (k + 1), where k is the number of parameters 

(input factors) and r is a user-defined number of  elementary effects 
(usually r=10).

● The method results in two sensitivity measures for each 

parameter:
 μ* : a high value indicates a parameter with an important overall 

             effect on model output.
 σ : a high value indicates that either the parameter is interacting 

          with other parameters or the parameter has non-linear effects 
          on model output.

5.b) GSA (Sobol's method)
● The variance-based method of Sobol [9] quantifies the amount of 

variance that each parameter contributes with on the 

unconditional variance of the model output. 
●  The total cost of of the Sobol analysis proposed in [10] is:        

C = N (k + 2), where k is the number of parameters (input factors) 

and N is a user-defined large number (usually N ≥ 500, if 

computationally feasible).
● The method results in two sensitivity measures:

S
i
 : fraction of the total model variance explained by each 

parameter. S
i
=V

i
/V, where: V

i
 is the variance due to parameter i, 

and V is the total variance.
St

i
 : total effect of parameter i (including interactions). 

● The difference St
i
  - S

i
 is a measure of interactions of parameter i. 

Fig 1. Location of the two case studies used in this work. In the 

snow-dominated catchment (Sweeden) snow-related model 

parameters are expected to be found the most sensitive. In the 

rainfall-dominated catchment, model parameters related to 

infiltration and flow routing are expected to be found the most 

sensitive. 

4) Hydrological model

● The LISFLOOD model [1] has many parameters that 

may be calibrated.
● Based on prior expert knowledge on the research 

group, 26 parameters have been selected for 

sensitivity analysis. Remaining parameters were 

mostly GIS-related, so they were assumed to have 

already their best possible value. 
● A single model run takes ~ 1 or 2 minutes → makes 

computationally unfeasible to run a large number of 

model runs.
● Model outputs (daily time series) were transformed into 

a real value by using the Nash-Sutcliffe efficiency as a 

measure of model performance:

                                           O
i 
: observed values, [m3/s]

                                           M
i
: simulated values, [m3/s]
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5.c) Global Optimisation (SPSO-2011)
● The Standard Particle Swarm Optimisation 2011 (SPSO-2011) [2-

3] was used as global optimisation algorithm for calibrating the 

LISFLOOD model. SPSO is a recent population-based stochastic 

evolutionary algorithm inspired by the social behavior of a bird 

flock looking for food [4]. It has been benchmarked against state-

of-the-art global optimisation algorithms [3], where proved to be 

both efficient and effective. More details: [2-4].
●  The LISFLOOD model was calibrated in each catchment using a 

daily time step, during the period 1995-2003, using the first year 

as a warming up period.

6.a) Results (Screening with Morris' method) 

6.b) Results (GSA with Sobol's method) 

Subcatchment C304 (Spain)
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