Two Multi-Fidelity Regression Algorithms

Federico Zertuche Celine Helbert Anestis Antoniadis Laboratoire Jean Kuntzmann, Grenoble

Summary

We present two different regression methods that learn from several training sets produced by a simulator with adjustable precision.

One is an extension of the Gaussian Processes base Cokriging [2, 3], and the other uses a Coarse to fine multi-fidelity wavelet regression[1].

Motivation

The parameters on a computer fluid dynamics simulation are, in most of the cases, uncertain. Since this simulations tend to be complex and time consuming, we will try to build a reliable meta-model based on a small set of observations to replace the complex code to do a sensitivity analysis.

We study the case where the simulations complexity can be tuned. Precise simulations are very time-consuming whereas fast, imprecise simulations can be too far away from the physical model.

The time-precision relationship is the key point of multi-fidelity: We hope to reduce the time it takes to build a reliable meta-model by using less precise simulations and compensating with faster but imprecise simulations.

Notation

For ease of notation we will consider two training sets:

• $(X_1, Y_1) : \{(x_1^{(1)}, y_1^{(1)}), ..., (x_1^{(m1)}, y_1^{(m1)})\}$ - imprecise. • $(X_2, Y_2) : \{(x_2^{(1)}, y_2^{(1)}), ..., (x_2^{(m2)}, y_2^{(m2)})\}$ - precise.

Locally linear Cokriging

We suppose that there are two independent Gaussian Processes Y_1 and D_{12} such that

 $Y_2(x) = \varphi(Y_1(x)) + D_{12}(x)$

where φ is an unknown function.

Locally linear Cokriging: Learning the parameters

First, we estimate φ by locally linear polynomials by using (Y_1, Y_2) . With the estimated relationship $\widehat{\varphi}$, we define the learning set for D_{12} as $(X_2, Y_2 - \widehat{\varphi}(Y_1(X_1)))$.

Coarse to fine multi-fi wavelet regression

For each fidelity level we solve

$$\min_{\lambda 1} \sum_{i=1}^{m1} (y_1^i - f_1(x_1^i))^2 \quad \min_{\lambda 2} \sum_{i=1}^{m2} (y_2^i - f_2(x_2^i))^2$$
$$f_1(x) = \sum_{\lambda 1 \in \Lambda 1} c_{\lambda 1} \psi_{\lambda 1}(x) \quad f_2(x) = \sum_{\lambda 2 \in \Lambda_2} c_{\lambda 2} \psi_{\lambda 2}(x)$$

Where $\psi_{\lambda 1}$ and $\psi_{\lambda 2}$ are B-spline wavelets of any degree.

Adaptive algorithm

At iteration k, we chose the wavelet basis functions ψ_{λ} by looking at the size of its coefficients c_{λ} .

Add observations to solve the least-squares problem when needed.

 $|c_{\lambda}^{h}|$

Then, we learn the parameters of

- $Y_1(x) \sim GP(\mu_1, k(x, x; \theta_1))$ by using (X_1, Y_1)
- $D_{12}(x) \sim GP(\mu_{12}, k(x, x; \theta_{12}))$ by using $(X_2, Y_2 \widehat{\varphi}(Y_1(X_1))).$

We solve 2 separate small optimization problems to fit a fairly complex model.

Example

- Left: Linear relationship hypothesis prediction with confidence intervals.
- Right: Locally linear hypothesis prediction with confidence intervals.

Conclusions: Locally linear Cokriging.

- Simple generalization that keeps all the desirable characteristics of the existing methods.
- Estimating φ is a sensible way to integrating all the training sets.

Perspectives: Locally linear Cokriging.

- Uncertainty propagation of the estimated parameters of the model.
- Consider more general relationships in the form of parametrized curves.

The idea is to use the similarities between the two levels to add more observations produced by the fast simulator.

Example

- Left: Precise simulation with chosen wavelet basis.
- Right: Rough approximation with chosen wavelet basis.

Conclusions: Coarse to fine multi-fi. wavelet regression.

- Alternative method that does not relies on the Gaussian hypothesis.
- An algorithm that deals with the resource allocation problem.

Perspectives: Coarse to fine multi-fi. wavelet regression.

- Better understanding of the refinement process: Build statistical test.
- Test the algorithm on complex simulations: higher dimension.

Bibliography

Daniel Castaño and Angela Kunoth, Robust regression of scattered data with adaptive spline-wavelets., IEEE transactions on

image processing : a publication of the IEEE Signal Processing Society **15** (2006), no. 6, 1621–32.

Loic Le Gratiet, *Bayesian analysis of hierarchical multi-fidelity*, (2012), 1–30.

M Kennedy and A O'Hagan, *Predicting the output from a complex computer code when fast approximations are available,* Biometrika (2000), no. 87, 1–13.

Zertuche.Federico@imag.fr, Celine.Helbert@ec-lyon.fr, Anestis.Antoniadis@imag.fr