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Summary

We present two different regression methods that learn from several training sets produced by a simulator with
adjustable precision.

One is an extension of the Gaussian Processes base Cokriging [2, 3] , and the other uses a Coarse to fine multi-fidelity
wavelet regression[1].

Motivation

The parameters on a computer fluid dynamics simulation are, in most of the cases, uncertain. Since this simulations
tend to be complex and time consuming, we will try to build a reliable meta-model based on a small set of observations
to replace the complex code to do a sensitivity analysis.

We study the case where the simulations complexity can be tuned. Precise simulations are very time-consuming
whereas fast, imprecise simulations can be too far away from the physical model.

The time-precision relationship is the key point of multi-fidelity: We hope to reduce the time it takes to build a reliable
meta-model by using less precise simulations and compensating with faster but imprecise simulations.

Notation

For ease of notation we will consider two training sets:

◮ (X1,Y1) : {(x(1)
1
, y(1)

1
), ..., (x(m1)

1
, y(m1)

1
)} - imprecise.

◮ (X2,Y2) : {(x(1)
2
, y(1)

2
), ..., (x(m2)

2
, y(m2)

2
)} - precise.

Locally linear Cokriging

We suppose that there are two independent Gaussian
Processes Y1 and D12 such that

Y2(x) = ϕ (Y1(x)) +D12(x)

where ϕ is an unknown function.

Locally linear Cokriging: Learning the parameters

First, we estimate ϕ by locally linear polynomials by
using (Y1,Y2). With the estimated relationship ϕ̂ , we
define the learning set for D12 as (X2,Y2 − ϕ̂ (Y1(X1)).

Then, we learn the parameters of

◮ Y1(x) ∼ GP(µ1, k(x, x;θ1)) by using (X1,Y1)

◮ D12(x) ∼ GP(µ12, k(x, x;θ12)) by using
(X2,Y2 − ϕ̂ (Y1(X1)).

We solve 2 separate small optimization problems to fit
a fairly complex model.

Example

◮ Left: Linear relationship hypothesis prediction with
confidence intervals.

◮ Right: Locally linear hypothesis prediction with
confidence intervals.
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Coarse to fine multi-fi wavelet regression

For each fidelity level we solve

minλ1

∑m1
i=1(yi

1
− f1(xi

1
))2 minλ2

∑m2
i=1(yi

2
− f2(xi

2
))2

f1(x) =
∑
λ1∈Λ1 cλ1ψλ1(x) f2(x) =

∑
λ2∈Λ2

cλ2ψλ2(x)

Where ψλ1 and ψλ2 are B-spline wavelets of any degree.

Adaptive algorithm

At iteration k, we chose the wavelet basis functions ψλ by
looking at the size of its coefficients cλ.

Add observations to solve the least-squares problem when
needed.
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Stop

The idea is to use the similarities between the two levels to
add more observations produced by the fast simulator.

Example

◮ Left: Precise simulation with chosen wavelet basis.

◮ Right: Rough approximation with chosen wavelet basis.

Conclusions: Locally linear Cokriging.

◮ Simple generalization that keeps all the desirable
characteristics of the existing methods.

◮ Estimating ϕ is a sensible way to integrating all the
training sets.

Perspectives: Locally linear Cokriging.

◮ Uncertainty propagation of the estimated parameters
of the model.

◮ Consider more general relationships in the form of
parametrized curves.

Conclusions: Coarse to fine multi-fi. wavelet
regression.

◮ Alternative method that does not relies on the Gaussian
hypothesis.

◮ An algorithm that deals with the resource allocation
problem.

Perspectives: Coarse to fine multi-fi. wavelet
regression.

◮ Better understanding of the refinement process: Build
statistical test.

◮ Test the algorithm on complex simulations: higher
dimension.
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