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Summary

We present two different regression methods that learn from several training sets produced by a simulator with
adjustable precision.

One is an extension of the Gaussian Processes base [2, 3] , and the other uses a

[1].
Motivation

The parameters on a computer fluid dynamics simulation are, in most of the cases, uncertain. Since this simulations
tend to be complex and time consuming, we will try to build a reliable meta-model based on a small set of observations
to replace the complex code to do a sensitivity analysis.

We study the case where the simulations complexity can be tuned. Precise simulations are very time-consuming
whereas fast, imprecise simulations can be too far away from the physical model.

The relationship is the key point of multi-fidelity: We hope to reduce the time it takes to build a
by using less precise simulations and compensating with faster but imprecise simulations.

Notation Coarse to fine multi-fi wavelet regression

For ease of notation we will consider two training sets: For each fidelity level we solve

> (X1, Y1) : {(x(ll),ygl)), . (xgml),ygml))} - imprecise.

> (Xa,Y2) : {(x(zl),yél)), ., (x(mz),y(zmz))} - precise.

( miny L5 (v, —A()? ming L5 - H(x))?

Fx) = Latear carpar(x) - f2(x) = Yoasen, Cr2P12(x)

Locally linear Cokriging
Where 1)1 and ), are B-spline wavelets of any degree.

We suppose that there are two independent Gaussian
Processes Y7 and D1, such that

YQ(X) =@ (Yl(X)) + Dlz(X)

where @ is an unknown function.

Adaptive algorithm

At iteration k, we chose the wavelet basis functions 1) by
looking at the

Locally linear Cokriging: Learning the parameters to solve the least-squares problem when
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needed.
First, we estimate ¢ by by
using (Y1, Y>). With the estimated relationship ¢ , we
define the learning set for D1, as (X3, Y2 — ¢ (Y1(X7)).

Then, we learn the parameters of

» Y1(x) ~ GP(u1, k(x, x; 01)) by using (X1, Y1) /A

h l
» D12(x) ~ GP(u12, k(x, x; 612)) by using lch ] el

(X2, Y2 — 9 (Y1(X1)). ]

We solve 2 separate small optimization problems to fit

a fairly complex model. The idea is to use the similarities between the two levels to

Example
Example

» Left: Linear relationship hypothesis prediction with
confidence intervals. » Left: Precise simulation with chosen wavelet basis.

» Right: Locally linear hypothesis prediction with » Right: Rough approximation with chosen wavelet basis.

confidence intervals.
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Conclusions: Coarse to fine multi-fi. wavelet

Conclusions: Locally linear Cokriging. regression.

» Simple generalization that keeps all the desirable » Alternative method that does not relies on the Gaussian

characteristics of the existing methods.

» Estimating ¢ is a sensible way to integrating all the
training sets.

Perspectives: Locally linear Cokriging.

» Uncertainty propagation of the estimated parameters
of the model.

» Consider more general relationships in the form of
parametrized curves.
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hypothesis.

» An algorithm that deals with the resource allocation
problem.

Perspectives: Coarse to fine multi-fi. wavelet
regression.

» Better understanding of the refinement process: Build
statistical test.
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dimension.
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