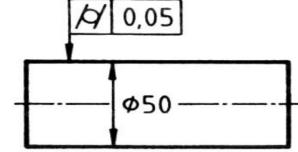
A quality measure for comparing different feature deviations to perform sensitivity analysis in tolerancing



Philipp Ziegler, Sandro Wartzack Chair of Engineering Design Friedrich-Alexander-Universität Erlangen-Nürnberg

Framework

1. Tolerances in mechanical engineering design

Axiom of manufacturing imprecision: All manufacturing and assembly processes are inherently imprecise and produce parts and products that vary. [1]

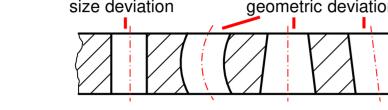
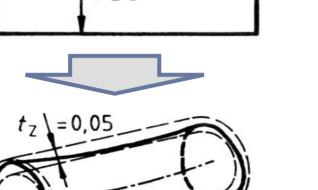



Figure 1: Different deviating drill holes

4. Tolerance Analysis Simulation Model The proposed simulation model bases on Homogenous Transformations $T \in SE(2)/SE(3)$. The simulation model consists of:

Model Input – Tolerances: Manufacturing deviations are represented by transformations T^{δ}_{d} which are restricted by tolerances (figure 4).

Assembly Operation: Assemble the components is represented by transformations T which are guided by control points to avoid collisions (figure 5).

Clearance Deviations: Assembled features have position deviations T_{c}^{δ} inside the clearance domain which also are restricted by control points (figure 6).

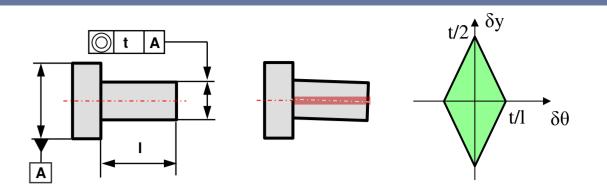


Figure 4: Pin with coaxiality tolerance (I), deviating front cylinder (m) and associated parameters: the deviation domain for T^{δ}_{d} (r) [4]

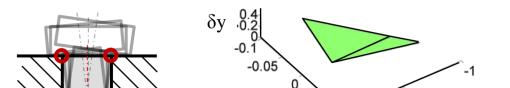



Figure 5: Pin-hole assembly with contact control points (I), represented by T(r)

Tolerances restrict the geometric variations of parts with respect to the nominal geometry.

Figure 2: Cylindricity tolerance and the associated tolerance zone [2]

Tolerance analysis explores the relations between the assigned part-tolerances and the products assemblability and functionality.

2. Tolerance analysis in early design stages

To shorten the product design process, product analyses have to be performed as early as possible to avoid late product modifications, which are cost- and timeconsuming. A simulation model for early design stages

- should have a high performance
- could handle partially incomplete geometry
- doesn't has to recognize detailed manufacturing information

3. Features

Features are generic shapes with which engineers associate certain properties or attributes and knowledge useful in reasoning about the product. [3]

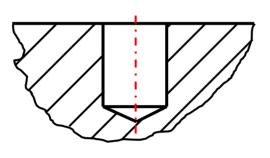


Figure 3: The feature drill hole

A feature can be a flange, a drill hole, a ball bearing, a screw, etc.. A feature usually is defined by multiple conditions and parameters! Model Output: The resulting relative position of two features or a resulting assembly clearance. Functional requirements often are formulated as geometric tolerance with associated functional domain [4] (figure 7).

Characteristic: In the proposed model, several parameters are restricted together by tolerances – the parameters are dependent (figure 4, 6 and 7 (r)).



Figure 7: Important here is the relative position of the two axes. The functional requirement is formulated as coaxiality tolerance (I), with associated functional domain (r)

5. Sensitivity Analysis in Tolerancing

Commonly one-dimensional sensitivity analysis considering *size deviation* is performed. The methods are restricted to independent input parameters as well as independent model outputs. $r = (t+\epsilon)/2 \delta y$

Problems in sensitivity analysis of geometric tolerances The deviation quality is for general deviation domains trivially not clear

Only the deviation domain size of a geometric tolerance can be changed, not the form (figure 8)

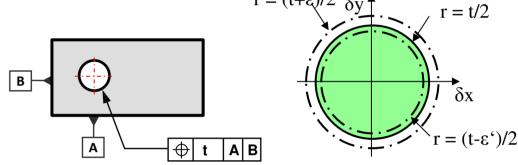


Figure 8: Position tolerance of a drill hole: The tolerance quantity t only restricts the radius of the tolerance zone, the angular position of a deviation is not controlled [5]

Sensitivity Analysis of Geometric Tolerances

6. Deviation quality measure

8. Application Example: Tolerance Scaling of Pin-Hole-○ F6/2 A -

For the deviation domain *D* $D = \{ (\delta \underline{x}, \delta \underline{\theta}) \in \mathbb{R}^6 | \text{for all } u \in f: || T^{\delta}_d(\delta \underline{x}, \delta \underline{\theta}) \cdot \underline{u} - \underline{u} ||_2 \le t/2 \}$ of a feature f with tolerance value t, the quality λ of a deviation $(\delta \underline{x}, \delta \underline{\theta})$ is defined as $\lambda = \{\lambda \ge 0 \mid \max_{u} || T^{\delta}_{d}(\delta \underline{x}, \delta \underline{\theta}) \cdot \underline{u} - \underline{u} ||_{2} = \lambda \cdot t/2 \}.$

For the fast calculation of the quality measure, the domain D should be convex. This is ensured, if the function $||T^{\delta}(\delta \underline{x}, \delta \underline{\theta}) \cdot \underline{u} - \underline{u}||_2$ is quasi-convex, what for the here considered tolerances is the case.

t/1 δθ $i t'/1 \delta \theta$

Figure 9: Quality evaluation of a deviating line with quality $\lambda = t'/t$.

Simulation

model

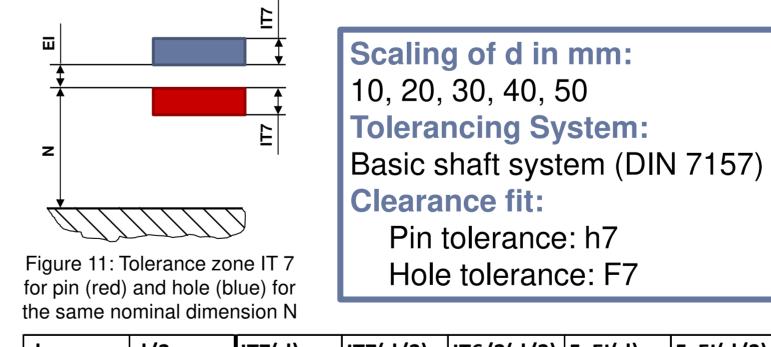
7. Sensitivity Analysis based on deviation quality measure

Sampling: The input parameters of the sensitivity analysis are the quality values for deviating features with Monte-Carlo Methods.

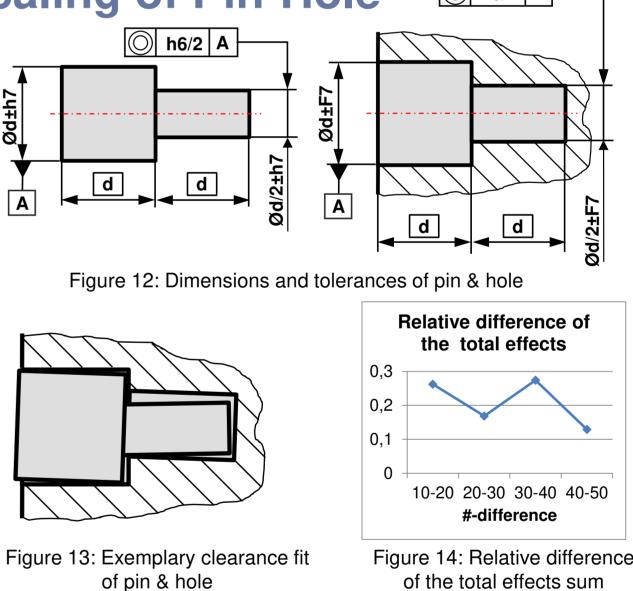
Sensitivity Analysis (SA) algorithm: variance-based SA, based on Jansen's formula.

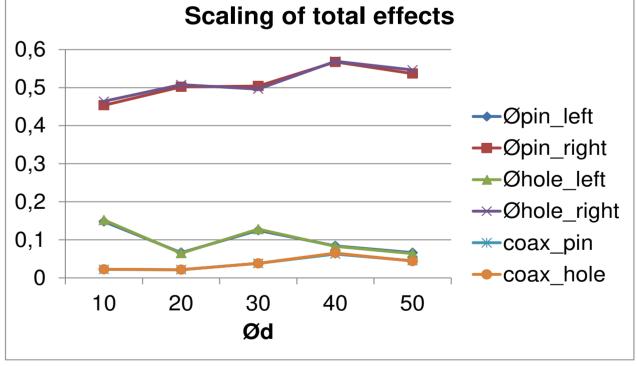
Figure 10: SA with guality value – tensor inferface

Interface SA – Simulation model: The simulation model has to translate the quality values from the SA algorithm into matching deviation parameters ($\delta x, \delta \theta$).


Connection

- Two-dimensional simulation-model
- Deviating pin and hole with clearance fit (figure 13)
- Geometric tolerances: Coaxiality (figure 12, figure 4)
- Size tolerances: diameters of pin & hole (figure 12)
- Model output: size of the deviation domain of the pin,
- approximated by a monte-carlo sampling (200 samples)
- Sensitivity analysis: 5000 samples


Question: How scale the sensitivity values with the international fit system?


International fit system

The tolerance zone t is defined by a letter and a number (figure 12), dependent on the nominal dimension N (figure 11 and table below).

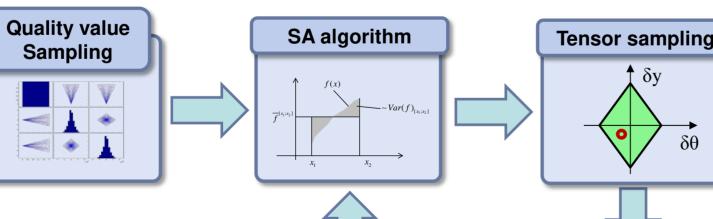

d	d/2	IT7(d)	IT7(d/2)	IT6/2(d/2)	F: El(d)	F: EI(d/2)
mm	mm	μm	μm	μm	μm	μm
10	5	15	12	4	13	10
20	10	21	15	4,5	20	13
30	15	21	18	5,5	20	16
40	20	25	21	6,5	25	20
50	25	25	21	6,5	25	20

Figure 15: Scaling of the total effects values dependent on Ød

Interpretation: The relative difference is for 10-20 and 30-40 very high (figure 14). There, the main contribution of Øpin/hole_right increases significantly (figure 15).

λ=0.4 <

Quality of Output

δy

[1] V. Srinivasan, "Role of Statistics in Achieving Global Consistency of Tolerances", Proceedings of the 6th CIRP International Seminar on Computer-Aided Tolerancing, University of Twente, Netherlands, 1999.

[2] W. Jorden, W. Schütte, Form- und Lagetoleranzen – Handbuch für Studium und Praxis, 7th edition, Carl Hanser Verlag, München, 2012.

[3] J. Shah, "Conceptual development of form features and feature models", *Research in Engineering Design*, 2: 93-108, 1991.

[4] G. Ameta, S. Serge and M. Giordano, "Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS", Jour. of Comp. and Inf. Sc. in Eng., 11(2): 021004, pp. 8, 2011.

[5] Z. Wu, "Sensitive Factor for Position Tolerance", *Research in Engineering Design*, 9: 228-234, 1997.

© Lehrstuhl für Konstruktionstechnik • Prof. Dr.-Ing. Sandro Wartzack

