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Goal: Convert a Black Box function to the functional ANOVA format (suitable for 
sensitivity analysis) using the smallest number of a Black Box function evaluations.

Compare: Quasi-Monte Carlo      (Quasi-regression),  
Sparse Grid                 (Sparse Grid Regression)  and  p ( p g )
Tensor Decomposition (TT-regression) 

Example:   smooth and continuous function (feed-forward neural network ) 
obtained through a machine learning technique.

Although black box functions, like the neural network, are able to map input/output 
relations in data, they are not suitable for interpretation and sensitivity analysis. 
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�Unique decomposition if integrals of every component over any of 
its own variables equal to zero and components are orthogonal:
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Approximation of the component 
functions in the functional ANOVA
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- a component function depends only 
on those xi -s  of factor-vector x which 
indices are in the set  u
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To approximate component functions we work via the parameterization:
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� multi-index vector, {0,1, 2, }+ = �Z

� tensor product of orthogonal polynomials (Legendre)

� infinite set of multi-index vectors



Approximation of the component 
functions in the functional ANOVA
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- The coefficients that minimize the least squares objective function can be found 
by solving the following multi-dimensional integrals

- Use of the orthogonal basis functions has an important implication: 
the contributions of individual terms in the model are independent and their    
significance can be measured by estimating the corresponding coefficients β
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domain of factors have been mapped on to 
the unit hypercube

- Related to the functional ANOVA via the expression for the component functions 
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Automated model selection
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The automated model selection procedure needs to start with:

1. user selection of the factors that are expected to play a role in a model,

2. initial polynomial basis size     0 1, ,A A A∞
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� number of factors used in a polynomial 

� polynomial order 

� maximum degree of the monomial used for any factor



Automated model selection
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- The contribution of the r-th term in the model is proportional to 

the square of its coefficient:  

This is the consequence of using orthogonal polynomials.

2β
r

2 2
( )fβ � represents a part of the function variance apportioned to  

this particular term, where:

2 2
( )fβ σ

r

( )
2

2 2( ) ( ) ( )
d d

f f d f dσ = −∫ ∫x x x x
I I

- A model structure is determined through the shrinkage process in which we

remove all insignificant terms

from the basis    
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- The variance of a component                in the functional ANOVA can be written 

in terms of the coefficients

Automated model selection
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- Relative importance of various components can be measured using the ratio  
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- The following indices can be calculated for a factor:

a single factor sensitivity,

sensitivity to interactions with other factors and 

total sensitivity. 



Numerical integration techniques 
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- The critical issue in an approximation problem based on the functional  
ANOVA  is the numerical integration of multivariate functions over the    
multidimensional problem domain. 

- For a d-dimensional function with bounded variation, the integration error of
Quasi-Monte Carlo will decrease with the number of samples N asp

( )(ln / )
d

O N N �������� Monte Carlo Integration
1/ 2( )O N

−

-The method which exploits smoothness to increase the convergence rate has  
been proposed by Smolyak (1963), and it is extensively studied under the name 
of Sparse Grid (Gerstner and Griebel, 1998).
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- Lower number of function evaluations compared to the tensor product rule

� achieved by combining univariate quadrature rules of different accuracy 
levels in the tensor product, instead of having the univariate rules of the 
same accuracy as in the classical use of the tensor product.

- Example: tensor product rule (second order polynomials)
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Function approximation using Tensor Product Series.   
FIRST BIVARIATE FUNCTIONS

Related to the Singular Value Decomposition  (SVD)  
(Karhunen-Loeve expansion) truncated after  r terms (rank):

Faster singular values decay for smoother functions ���� small rank.

A rank r bivariate function approximation can be computed by 
sampling on n x n tensor grid and computing matrix SVD.

n function evaluations  and  O(n ) operations
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Near-optimal rank  r approximation for a given approximation accuracy ε can be 
computed using the Splitting Operator (F.W. Chapman 2003).

Algorithm:

1.  For a splitting point              – pivot location, construct a rank 1 approximation
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The rank  r approximation is

If we sample:
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e.g.  n samples in       and n samples in      ,  r times

NEEDS ADDITIONAL SAMPLING FOR COMPLETE PIVOTING (MAX VALUE)

SVD:      
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Examples (exact decompositions):

[ ]
�����

��� ���� ��

)(

2

2

)(

11212121

22

11

)sin(

)cos(
)cos()sin()sin()cos()cos()sin()sin(

x
x

x

x
xxxxxxxx

G
G









=+=+

[ ]

�

1122

1

)cos()sin()cos()sin()cos(

)sin(

ddd

d

xxxxx

xx

 − −

=++

Multivariate tensor decomposition:

Each core                  is                   matrix; depends on the continuous coordinate  

Terms:  Matrix Product State (S.Östlund, S.Rommer, 1995)
Tensor Train (I.V.Oseledets, E.E.Tyrtyshnikov, 2009)
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Multivariate tensor decomposition via splitting of the unfolding matrices:

(G.Vidal, 2003)
(I.V.Oseledets, E.E.Tyrtyshnikov, 2010)

By introducing tensor product grid we get multidimensional tensor (array)

Use splitting of the unfolding matrix to separate      :

separate :                                                                                                  etc.
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Bivariate function integration: replace the calculation of one integral in two 
dimensions by 2r integrals each in one dimension, where r is the rank of the 
Tensor Product Series.
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We need a univariate quadrature rule defined with n nodes and weights 
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Multivariate function integration via tensor decomposition
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we use the same n in all modes (dimensions) 

Number of samples:   O(ndr )     where r is upper bound on the ranks of cores 

∏ ∑

∏ ∫∫ ∏

= =

==

≈

==

d

i

n

j
ijriijij

d

i
iiriii

d

i
iriii

xxw

dxxxdxxd

1 1

1

1

01

)()(

)()()()(

ϕ

ϕϕβ

G

GxG
Ir



Results of comparative study
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Problem:    predicting computer performance using a neural network model
[Venables, W. and Ripley, B. , Modern Applied Statistics with S-PLUS.]
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209 computers data are used to fit the neural network model with nnet (S-PLUS)

Sensitivity analysis:
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Sensitivity analysis by converting the neural network model into the dimension-wise 
expansion model (ANOVA). 

Tensor product basis is composed of 1145 basis functions (multidimensional 
Legendre polynomials) pre-selected using limits: 

: the highest order of interaction between predictors,30 =A :   the highest order of interaction between predictors,

:   the highest polynomial order and  

:   the highest order of the monomial used for any predictor.

Coefficients        in the model 

are calculated by solving the integrals 

using: QMC (Quasi-regression), SG (Sparse Grid Regression) and TT-regression
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Results of comparative study
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n eval r r r r r r r

3 1710 1 5 10 12 8 3 1

Ranks of TT cores for  ε = 0.0001  in low-rank approximation of the unfolding 
matrices. 

The same number of nodes  n  in the univariate quadratures for all modes.

3 1710 1 5 10 12 8 3 1

4 3760 1 6 11 12 9 4 1

5 5750 1 7 11 12 9 4 1

6 10368 1 7 11 12 9 5 1

7 13769 1 7 11 12 9 5 1

8 16960 1 7 11 12 9 5 1

9 22680 1 7 11 11 9 5 1

10 25600 1 7 11 11 9 5 1

11 33638 1 7 11 11 9 5 1



Results of comparative study
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Nc = 10000   - number of randomly 
generated control points



Results of comparative study
QMC  /  SG  /   TT
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Nc = 10000   - number of randomly 
generated control points


