Global Sensitivity Analysis for Interpretation of Black Box Functions

Rastko Zivanovic

Goal: Convert a Black Box function to the functional ANOVA format (suitable for sensitivity analysis) using the smallest number of a Black Box function evaluations.

| Compare: | $\left.\begin{array}{ll}\text { Quasi-Monte Carlo } & \text { (Quasi-regression), } \\ \text { Sparse Grid } & \text { (Sparse Grid Regression) and } \\ & \text { Tensor Decomposition (TT-regression) }\end{array}\right)$. |
| :--- | :--- | :--- |

Example: smooth and continuous function (feed-forward neural network) obtained through a machine learning technique.
$f(\mathbf{x})=b_{o}+\sum_{i=1}^{d} w_{i \rightarrow o} x_{i}+\sum_{h=1}^{H} w_{h \rightarrow o} \phi\left(b_{h}+\sum_{i=1}^{d} w_{i \rightarrow h} x_{i}\right), \quad \phi(z)=(1+\exp (-z))^{-1}$
Although black box functions, like the neural network, are able to map input/output relations in data, they are not suitable for interpretation and sensitivity analysis.

Functional ANOVA

\checkmark Unique decomposition if integrals of every component over any of its own variables equal to zero and components are orthogonal:

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{d}\right)=f_{0}+\sum_{i=1}^{d} f_{i}\left(x_{i}\right)+\sum_{i=1}^{d} \sum_{j=i+1}^{d} f_{i j}\left(x_{i}, x_{j}\right)+\ldots+f_{1,2, \ldots, d}\left(x_{1}, \ldots, x_{d}\right) \\
\text { bias } \begin{array}{l}
\text { individual } \\
\text { effects }
\end{array} \quad \begin{array}{l}
\text { two-factors } \\
\text { interactions }
\end{array}
\end{gathered}
$$

variance

Example $d=3 \rightarrow$ terms: $2^{3}=8$

$$
f(\mathbf{x})=f_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)+f_{1,2}\left(x_{1}, x_{2}\right)+f_{1,3}\left(x_{1}, x_{3}\right)+f_{2,3}\left(x_{2}, x_{3}\right)+f_{1,2,3}\left(x_{1}, x_{2}, x_{3}\right) .
$$

Approximation of the component functions in the functional ANOVA

$$
f(\mathbf{x})=f_{0}+\sum_{u \subseteq\{1,2, \ldots, d\}} f_{u}\left(\mathbf{x}_{u}\right), \longrightarrow f_{u}\left(\mathbf{x}_{u}\right) \text { - } \begin{aligned}
& \text { a component function depends only } \\
& \text { on those } x_{i}-\text { - of factor-vector } \mathbf{x} \text { which } \\
& \text { indices are in the set } u
\end{aligned}
$$

To approximate component functions we work via the parameterization:

$$
f(\mathbf{x})=\sum_{\mathbf{r} \in \mathrm{B}_{\infty}} \beta_{\mathbf{r}} \Psi_{\mathbf{r}}(\mathbf{x})=\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=1}^{\infty} \cdots \sum_{r_{d}=1}^{\infty} \beta_{r_{1}, r_{2}, \cdots, r_{d}} \Psi_{r_{1}, r_{2}, \cdots, r_{d}}(\mathbf{x})
$$

$\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{d}\right) \in \mathrm{Z}_{+}^{d} \quad \rightarrow$ multi-index vector, $\mathrm{Z}_{+}=\{0,1,2, \ldots\}$
$\Psi_{\mathbf{r}}(\mathbf{x})=\prod_{i=1}^{d} \varphi_{r_{i}}\left(x_{i}\right) \quad \rightarrow$ tensor product of orthogonal polynomials (Legendre)
$\mathrm{B}_{\infty} \quad \rightarrow$ infinite set of multi-index vectors

Approximation of the component functions in the functional ANOVA

- Use of the orthogonal basis functions has an important implication: the contributions of individual terms in the model are independent and their significance can be measured by estimating the corresponding coefficients β_{r}
- The coefficients that minimize the least squares objective function can be found by solving the following multi-dimensional integrals

$$
\beta_{\mathbf{r}}=\int_{\mathrm{I}^{d}} f(\mathbf{x}) \Psi_{\mathbf{r}}(\mathbf{x}) d \mathbf{x}
$$

$$
\mathrm{I}^{d}=\left\{\mathbf{x} \in \mathrm{R}^{d}: 0 \leq x_{i} \leq 1,1 \leq i \leq d\right\}
$$

domain of factors have been mapped on to the unit hypercube

- Related to the functional ANOVA via the expression for the component functions

$$
\begin{array}{ll}
f_{u}(\mathbf{x})=\sum_{\mathbf{r} \in \mathrm{B}_{u}} \beta_{\mathbf{r}} \Psi_{\mathbf{r}}(\mathbf{x}) & \mathrm{B}_{u} \subset \mathrm{~B}_{\infty} \\
\mathrm{B}_{u}=\left\{\mathbf{r} \mid r_{i}>0 \text { and } i \in u\right\}
\end{array}
$$

Automated model selection

The automated model selection procedure needs to start with:

1. user selection of the factors that are expected to play a role in a model,
2. initial polynomial basis size A_{0}, A_{1}, A_{∞}

$$
\mathrm{B}\left(A_{0}, A_{1}, A_{\infty}\right)=\left\{\mathbf{r} \in \mathrm{B}_{\infty}:\|\mathbf{r}\|_{0} \leq A_{0},\|\mathbf{r}\|_{1} \leq A_{1},\|\mathbf{r}\|_{\infty} \leq A_{\infty}\right\},
$$

$$
\|\mathbf{r}\|_{0}=\sum_{i=1}^{d} 1_{r_{i}>0} \quad \rightarrow \text { number of factors used in a polynomial }
$$

$$
\|\mathbf{r}\|_{1}=\sum_{i=1}^{d} r_{i} \quad \rightarrow \text { polynomial order }
$$

$$
\|\mathbf{r}\|_{\infty}=\max _{1 \leq i \leq d} r_{i} \quad \rightarrow \text { maximum degree of the monomial used for any factor }
$$

Automated model selection

- The contribution of the \mathbf{r}-th term in the model is proportional to the square of its coefficient: β_{r}^{2}
This is the consequence of using orthogonal polynomials.
$\beta_{\mathbf{r}}^{2} / \sigma^{2}(f) \quad \rightarrow$ represents a part of the function variance apportioned to this particular term, where:

$$
\sigma^{2}(f)=\int_{\mathrm{I}^{d}} f^{2}(\mathbf{x}) d \mathbf{x}-\left(\int_{\mathrm{I}^{d}} f(\mathbf{x}) d \mathbf{x}\right)^{2}
$$

- A model structure is determined through the shrinkage process in which we remove all insignificant terms $\beta_{\mathbf{r}}^{2} \ll \sigma^{2}(f)$ from the basis $\mathrm{B}\left(A_{0}, A_{1}, A_{\infty}\right)$

Automated model selection

- The variance of a component $f_{u}\left(\mathbf{x}_{u}\right)$ in the functional ANOVA can be written in terms of the coefficients β_{r}

$$
\sigma_{\mathbf{B}_{u}}^{2}\left(f_{u}\right)=\sum_{\mathbf{r} \in \mathbf{B}_{u}} \beta_{\mathbf{r}}^{2}
$$

- Relative importance of various components can be measured using the ratio

$$
S_{u}=100 \times \sigma_{\mathrm{B}_{u}}^{2}\left(f_{u}\right) / \sigma^{2}(f)
$$

- The following indices can be calculated for a factor:
a single factor sensitivity,
sensitivity to interactions with other factors and
total sensitivity.

Numerical integration techniques suitable for coefficient estimation

- The critical issue in an approximation problem based on the functional ANOVA is the numerical integration of multivariate functions over the multidimensional problem domain.
- For a d-dimensional function with bounded variation, the integration error of Quasi-Monte Carlo will decrease with the number of samples N as
$O\left(\ln ^{d}(N) / N\right) \quad \longleftrightarrow \quad$ Monte Carlo Integration $O\left(N^{-1 / 2}\right)$
-The method which exploits smoothness to increase the convergence rate has been proposed by Smolyak (1963), and it is extensively studied under the name of Sparse Grid (Gerstner and Griebel, 1998).

Numerical integration techniques suitable for coefficient estimation

- Lower number of function evaluations compared to the tensor product rule
\rightarrow achieved by combining univariate quadrature rules of different accuracy levels in the tensor product, instead of having the univariate rules of the same accuracy as in the classical use of the tensor product.
- Example: tensor product rule (second order polynomials)
$\left\{1, x_{1}, x_{1}^{2}\right\} \otimes\left\{1, x_{2}, x_{2}^{2}\right\}=\left\{1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}^{2}\right\}$
truncated Taylor expansion

$$
\left\{1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right\}
$$

bounded order for all of its terms $\boldsymbol{\rightarrow}$ SGI
neglected without loosing accuracy $\longrightarrow\left\{x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}^{2}\right\}$

Numerical integration techniques suitable for coefficient estimation

Function approximation using Tensor Product Series. FIRST BIVARIATE FUNCTIONS

Related to the Singular Value Decomposition (SVD)
(Karhunen-Loeve expansion) truncated after r terms (rank):

$$
f\left(x_{1}, x_{2}\right) \approx \sum_{i=1}^{r} \sigma_{i} g_{1 i}\left(x_{1}\right) g_{2 i}\left(x_{2}\right)
$$

Faster singular values decay for smoother functions \rightarrow small rank.

A rank r bivariate function approximation can be computed by sampling on $n \times n$ tensor grid and computing matrix SVD.
n^{2} function evaluations and $O\left(n^{3}\right)$ operations

Numerical integration techniques suitable for coefficient estimation

Near-optimal rank r approximation for a given approximation accuracy \mathcal{E} can be computed using the Splitting Operator (F.W. Chapman 2003).

Algorithm:

1. For a splitting point $\left(a_{1}, b_{1}\right)$ - pivot location, construct a rank 1 approximation

$$
f_{1}\left(x_{1}, x_{2}\right)=\frac{f\left(x_{1}, b_{1}\right) f\left(a_{1}, x_{2}\right)}{f\left(a_{1}, b_{1}\right)}=d_{1} g_{11}\left(x_{1}\right) g_{21}\left(x_{2}\right), \quad d_{1}=1 / f\left(a_{1}, b_{1}\right)
$$

which interpolates function along two lines $x_{1}=a_{1}, x_{2}=b_{1}$
2. Calculate the residual $\operatorname{res}_{1}\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}, x_{2}\right)$
3. For a splitting point $\left(a_{2}, b_{2}\right)$ in $\operatorname{res}_{1}\left(x_{1}, x_{2}\right)$, construct a rank 2 approximation

$$
\begin{gathered}
f_{2}\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}, x_{2}\right)+\frac{\operatorname{res}_{1}\left(x_{1}, b_{2}\right) r e s_{1}\left(a_{2}, x_{2}\right)}{r e s_{1}\left(a_{2}, b_{2}\right)}=d_{1} g_{11}\left(x_{1}\right) g_{21}\left(x_{2}\right)+d_{2} g_{12}\left(x_{1}\right) g_{22}\left(x_{2}\right), \\
d_{2}=1 / f\left(a_{2}, b_{2}\right)
\end{gathered}
$$

Numerical integration techniques suitable for coefficient estimation

The rank r approximation is

$$
f_{r}\left(x_{1}, x_{2}\right)=\mathbf{C}\left(x_{1}\right) \mathbf{D} \mathbf{R}\left(x_{2}\right), \quad \mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)
$$

If we sample:

e.g. n samples in x_{1} and n samples in x_{2}, r times

NEEDS ADDITIONAL SAMPLING FOR COMPLETE PIVOTING (MAX VALUE)
SVD: $\mathbf{C}\left(x_{1}\right) \mathbf{D} \mathbf{R}\left(x_{2}\right)=\mathbf{Q}_{C}\left(x_{1}\right) \underbrace{\mathbf{R}_{C} \mathbf{D} \mathbf{R}_{R}^{T}}_{\mathbf{U} \Sigma \mathbf{V}^{T}} \mathbf{Q}_{R}\left(x_{2}\right)^{T}$

Numerical integration techniques suitable for coefficient estimation

Examples (exact decompositions):

$$
\begin{aligned}
& \sin \left(x_{1}+x_{2}\right)=\sin \left(x_{1}\right) \cos \left(x_{2}\right)+\cos \left(x_{1}\right) \sin \left(x_{2}\right)=\underbrace{\left[\begin{array}{ll}
\sin \left(x_{1}\right) & \cos \left(x_{1}\right)
\end{array}\right]}_{\mathbf{G}_{1}\left(x_{1}\right)} \underbrace{\left[\begin{array}{c}
\cos \left(x_{2}\right) \\
\sin \left(x_{2}\right)
\end{array}\right]}_{\mathbf{G}_{2}\left(x_{2}\right)} \\
& \sin \left(x_{1}+\ldots+x_{d}\right)= \\
& \underbrace{\left[\sin \left(x_{1}\right)\right.}_{\mathbf{G}_{1}\left(x_{1}\right)} \begin{array}{c}
\cos \left(x_{1}\right)
\end{array}] \\
& \mathbf{G}_{2}\left(x_{2}\right) \\
& {\left[\begin{array}{cc}
\cos \left(x_{2}\right) & -\sin \left(x_{2}\right) \\
\sin \left(x_{2}\right) & \cos \left(x_{2}\right)
\end{array}\right]}
\end{aligned} \cdots \underbrace{\left[\begin{array}{cc}
\cos \left(x_{d-1}\right) & -\sin \left(x_{d-1}\right) \\
\sin \left(x_{d-1}\right) & \cos \left(x_{d-1}\right)
\end{array}\right]}_{\mathbf{G}_{d-1}\left(x_{d-1}\right)} \underbrace{\left[\begin{array}{c}
\cos \left(x_{d}\right) \\
\sin \left(x_{d}\right)
\end{array}\right]}_{\mathbf{G}_{d}\left(x_{d}\right)} .
$$

Multivariate tensor decomposition:

$$
f_{1}\left(x_{1}, \ldots, x_{d}\right)=\mathbf{G}_{1}\left(x_{1}\right) \mathbf{G}_{2}\left(x_{2}\right) \ldots \mathbf{G}_{d-1}\left(x_{d-1}\right) \mathbf{G}_{d}\left(x_{d}\right)
$$

Each core $\mathbf{G}_{k}\left(x_{k}\right)$ is $r_{k-1} \times r_{k}$ matrix; depends on the continuous coordinate x_{k}
Terms: Matrix Product State (S.Östlund, S.Rommer, 1995)
Tensor Train (I.V.Oseledets, E.E.Tyrtyshnikov, 2009)

Numerical integration techniques suitable for coefficient estimation

Multivariate tensor decomposition via splitting of the unfolding matrices:

(G.Vidal, 2003)
(I.V.Oseledets, E.E.Tyrtyshnikov, 2010)

By introducing tensor product grid we get multidimensional tensor (array)

$$
\mathbf{A}\left(i_{1}, \ldots, i_{d}\right)=f\left(x_{1}\left(i_{1}\right), \ldots, x_{d}\left(i_{d}\right)\right)
$$

Use splitting of the unfolding matrix to separate i_{1} :

$$
\mathbf{A}\left(i_{1}, \ldots, i_{d}\right)=\sum_{\alpha_{1}=1}^{r_{1}} \mathbf{G}_{1}\left(i_{1}, \alpha_{1}\right) \mathbf{V}\left(\alpha_{1} i_{2}, i_{3}, \ldots, i_{d}\right)
$$

separate $i_{2}: \mathbf{V}\left(\alpha_{1} i_{2}, i_{3}, \ldots, i_{d}\right)=\sum_{\alpha_{2}=1}^{r_{2}} \mathbf{G}_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) \mathbf{W}\left(\alpha_{2} i_{3}, i_{4}, \ldots, i_{d}\right)$, etc.

Numerical integration techniques suitable for coefficient estimation

Bivariate function integration: replace the calculation of one integral in two dimensions by $2 r$ integrals each in one dimension, where r is the rank of the Tensor Product Series.

$$
\begin{aligned}
\beta_{\mathbf{r}} & =\int_{00}^{1} \int_{0}^{1} f\left(x_{1}, x_{2}\right) \varphi_{r_{1}}\left(x_{1}\right) \varphi_{r_{2}}\left(x_{2}\right) d x_{1} d x_{2} \\
& \approx \sum_{i=1}^{r}\left(\int_{0}^{1} g_{1 i}\left(x_{1}\right) \varphi_{r_{1}}\left(x_{1}\right) d x_{1}\right)\left(\int_{0}^{1} g_{2 i}\left(x_{2}\right) \varphi_{r_{2}}\left(x_{2}\right) d x_{2}\right)
\end{aligned}
$$

We need a univariate quadrature rule defined with n nodes and weights $\left(x_{j}, w_{j}\right)$

$$
\int_{0}^{1} g_{1 i}\left(x_{1}\right) \varphi_{r_{1}}\left(x_{1}\right) d x_{1} \approx \sum_{j=1}^{n} w_{j} g_{1 i}\left(x_{1 j}\right) \varphi_{r_{1}}\left(x_{1 j}\right)
$$

Numerical integration techniques suitable for coefficient estimation

Multivariate function integration via tensor decomposition

$$
\begin{aligned}
\beta_{\mathbf{r}} & =\int_{\mathbf{I}^{d}} f(\mathbf{x}) \Psi_{\mathbf{r}}(\mathbf{x}) d \mathbf{x}, \quad \Psi_{\mathbf{r}}(\mathbf{x})=\prod_{i=1}^{d} \varphi_{r i}\left(x_{i}\right) \\
\beta_{\mathbf{r}} & =\int_{\mathbf{I}^{d}} \prod_{i=1}^{d} \mathbf{G}_{i}\left(x_{i}\right) \varphi_{r i}\left(x_{i}\right) d \mathbf{x}=\prod_{i=1}^{d} \int_{0}^{1} \mathbf{G}_{i}\left(x_{i}\right) \varphi_{r i}\left(x_{i}\right) d x_{i} \\
& \approx \prod_{i=1}^{d} \sum_{j=1}^{n} w_{j} \mathbf{G}_{i}\left(x_{i j}\right) \varphi_{r i}\left(x_{i j}\right)
\end{aligned}
$$

we use the same n in all modes (dimensions)

Number of samples: $\mathbf{O}\left(\boldsymbol{n d r}^{\mathbf{2}}\right)$ where r is upper bound on the ranks of cores

Results of comparative study
 QMC / SG / TT

Problem: predicting computer performance using a neural network model [Venables, W. and Ripley, B. , Modern Applied Statistics with S-PLUS.]

$$
f(\mathbf{x})=b_{o}+\sum_{i=1}^{6} w_{i \rightarrow o} x_{i}+\sum_{h=1}^{3} w_{h \rightarrow o} \phi\left(b_{h}+\sum_{i=1}^{6} w_{i \rightarrow h} x_{i}\right)
$$

209 computers data are used to fit the neural network model with nnet (S-PLUS)

$f(\mathbf{x})$	perf	Performance relative to IBM 370/158-3
x_{1}	syct	Cycle time in nanoseconds
x_{2}	mmin	Minimum main memory in kilobytes
x_{3}	mmax	Maximum main memory in kilobytes
x_{4}	cash	Cache size in kilobytes
x_{5}	chmin	Minimum number of channels
x_{6}	chmax	Maximum number of channels

Sensitivity analysis:

syct	mmin	mmax	cash	chmin	chmax	Importance (\%)
0	0	0	0	0	1	1.25
0	0	0	0	1	0	3.65
0	0	0	1	0	0	13.01
0	0	1	0	0	0	8.615
0	0	1	1	0	0	5.401
0	1	0	0	0	0	1.147
0	1	1	0	0	0	2.575
0	1	1	1	0	0	1.047
1	0	0	0	0	0	52.13
1	0	0	0	1	0	1.069
1	0	0	1	0	0	5.47
Additive Total (individual effects)						$\mathbf{7 9 . 8 1 9}$
Total (individual effects and interactions>1\%)						95.384

Results of comparative study QMC / SG / TT

Sensitivity analysis by converting the neural network model into the dimension-wise expansion model (ANOVA).

Tensor product basis is composed of 1145 basis functions (multidimensional Legendre polynomials) pre-selected using limits:
$A_{0}=3$: the highest order of interaction between predictors,
$A_{1}=8 \quad$: the highest polynomial order and
$A_{\infty}=4$: the highest order of the monomial used for any predictor.

Coefficients $\beta_{\mathbf{r}}$ in the model $f(\mathbf{x})=\sum_{\mathbf{r}} \beta_{\mathbf{r}} \Psi_{\mathbf{r}}(\mathbf{x})$
are calculated by solving the integrals $\quad \beta_{\mathbf{r}}=\int_{\mathbf{I}}{ }^{d} f(\mathbf{x}) \Psi_{\mathbf{r}}(\mathbf{x}) d \mathbf{x}$
using: QMC (Quasi-regression), SG (Sparse Grid Regression) and TT-regression

Results of comparative study QMC / SG / TT

Ranks of TT cores for $\varepsilon=0.0001$ in low-rank approximation of the unfolding matrices.

The same number of nodes n in the univariate quadratures for all modes.

n	eval	r_{1}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}	r_{7}
3	1710	1	5	10	12	8	3	1
4	3760	1	6	11	12	9	4	1
5	5750	1	7	11	12	9	4	1
6	10368	1	7	11	12	9	5	1
7	13769	1	7	11	12	9	5	1
8	16960	1	7	11	12	9	5	1
9	22680	1	7	11	11	9	5	1
10	25600	1	7	11	11	9	5	1
11	33638	1	7	11	11	9	5	1

Results of comparative study QMC / SG / TT

$$
\operatorname{LOF}=\left(1 / N_{c}\right) \sum_{n=1}^{N_{c}}\left(f_{n}-\hat{f}_{n}\right)^{2} / \sigma^{2}(f)
$$

Results of comparative study QMC / SG / TT

$\operatorname{MaxRe}=\max _{n} \mid\left(f_{n}-\hat{f}_{n}\right) / f_{n}$

