

Multi-level Monte Carlo Finite Volume methods for stochastic systems of hyperbolic conservation laws

Jonas Šukys

Seminar for Applied Mathematics (SAM), Department of Mathematics (D-MATH), ETH Zürich, Switzerland.

MascotNum, ETH Zürich, Switzerland April 23, 2014.

Outline

Conservation laws

Examples

Stochastic system

Multilevel Monte Carlo FVM

Error bounds

Choosing samples

Numerical experiments

MHD

Convergence

Euler 3D

Parallelization - ALSVID-UQ

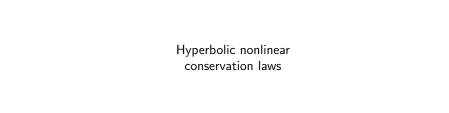
Adaptive load balancing

Numerical experiments with many sources of uncertainty

Shallow water equations

Wave equation 2D + 3D

Conclusions



(Non)linear hyperbolic conservation laws

Conservation of the physical quantities (mass, momentum, energy):

$$\begin{cases} \partial_t \mathbf{U}(\mathbf{x},t) + \operatorname{div} \mathbf{F}(\mathbf{U},\mathbf{x}) = 0, \\ \mathbf{U}(\mathbf{x},0) = \mathbf{U}_0(\mathbf{x}), \end{cases} \quad \mathbf{x} \in \mathbb{R}^d, \ t > 0.$$

- Hyperbolicity: finite speed of propagation
- Nonlinearity: smooth initial data leads to solutions with shocks
- Weak solutions need to be considered (+ entropy conditions for uniqueness)
- No explicit solutions numerical schemes

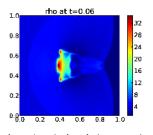
Numerical solution using Finite Volume Method (FVM):

Cell averages:

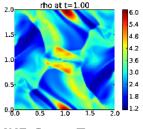
$$\mathbf{U}_{j}(t) \approx \frac{1}{|\mathcal{C}_{j}|} \int_{\mathcal{C}_{j}} \mathbf{U}(x,t) dx \qquad \mathbf{U}_{j,1} \quad \stackrel{\mathsf{F}_{j+1/2}}{\longleftarrow} \quad \stackrel{\mathsf{F}_{j+1/2}}{\longleftarrow} \quad \frac{\mathsf{F}_{j+1/2}}{\longleftarrow} \quad \partial_{t} \mathbf{U}_{j}(t) + \frac{1}{\Delta x} \left(\mathbf{F}_{j+\frac{1}{2}} - \mathbf{F}_{j-\frac{1}{2}} \right) = 0 \qquad \qquad \mathbf{C}_{j,1} \quad \stackrel{\mathsf{F}_{j+1/2}}{\longleftarrow} \quad \mathbf{C}_{j} \quad \stackrel{\mathsf{F}_{j+1/2}}{\longleftarrow} \quad \stackrel{\mathsf{$$

- Approximate Riemann fluxes: HLL, Godunov (Roe)
 - **Explicit time stepping:** FE, SSP-RK2 with CFL: $\Delta t < \Delta x/(\text{max wave speed})$

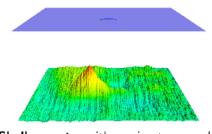
Examples of (non)linear hyperbolic conservation laws



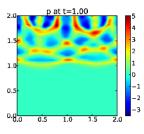
Euler cloud-shock interaction



MHD Orszag-Tang vortex



Shallow water with varying topography



Wave propagation in porous medium

Compressible Euler equations of gas dynamics

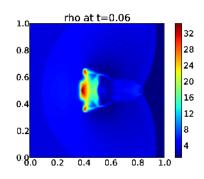
Question: What is the time evolution of density/pressure/velocity fields in compressible fluids?

$$\begin{cases} \rho_t + \mathsf{div}(\rho \mathbf{u}) = 0, \\ (\rho \mathbf{u})_t + \mathsf{div}(\rho \mathbf{u} \otimes \mathbf{u} + \rho \mathbf{ID}) = 0, \\ E_t + \mathsf{div}((E + \rho)\mathbf{u}) = 0. \end{cases}$$

$$E = \frac{p}{\gamma - 1} + \frac{\rho \mathbf{u}^2}{2}.$$

- design of aircraft profiles
- gas turbines
- internal combustion engines

...



Density in cloud-shock interaction

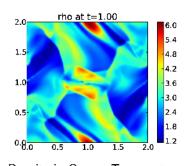
- uncertain cloud geometry/density
- uncertain shock size/location
- lacktriangle uncertain gas constant γ

Magnetohydrodynamics equations for plasma physics

Describes magnetic and density/pressure/velocity fields interaction in electrically conducting fluid.

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0, \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + (\rho + \frac{1}{2}|\mathbf{B}|^2)I - \mathbf{B} \otimes \mathbf{B}) = -\mathbf{B} \operatorname{div} \mathbf{B}, \\ \mathbf{B}_t + \operatorname{div}(\mathbf{u} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{u}) = -\mathbf{u} \operatorname{div} \mathbf{B}, \\ E_t + \operatorname{div}((E + \rho + \frac{1}{2}|\mathbf{B}|^2)\mathbf{u} - (\mathbf{u} \cdot \mathbf{B})\mathbf{B}) = -(\mathbf{u} \cdot \mathbf{B}) \operatorname{div} \mathbf{B}. \end{cases}$$

- plasmas (e.g. in the sun)
- liquid metals
- ▶ various electrolytes
- HLL 3-wave and 5-wave solvers
 - not strictly hyperbolic
 - non-convex fluxes
 - div constraint
- ► Godunov-Powell source term
- positivity preserving (W)ENO



Density in Orszag-Tang vortex

MascotNum, April 23, 2014

Shallow water equation with varying bottom topography

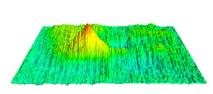
Question: what is the time evolution of a tsunami wave caused by an earthquake?

$$\begin{cases} h_t + \operatorname{div}(h\mathbf{u}) = 0 \\ (h\mathbf{u})_t + \operatorname{div}(h\mathbf{u} \otimes \mathbf{u}) = -\nabla(ghb + \frac{1}{2}gh^2) \end{cases}$$

Important for:

- avalanche modeling
- debris slides
- atmospheric flows of weather prediction
- risk assessment of region flooding (due to tsunami or dam break)

...



Water level above bottom topography

- uncertain initial perturbation
- uncertain bottom topography
- ▶

Acoustic wave equation in heterogeneous medium

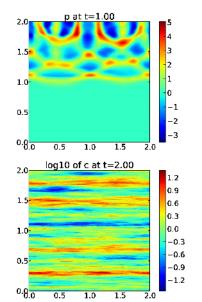
Question: What is the time evolution of the acoustic wave propagating through random medium?

$$\begin{aligned} p_{tt}(\mathbf{x}, t) - \nabla \cdot (\mathbf{c}(\mathbf{x}) \nabla p) &= f(\mathbf{x}) \\ & \quad \downarrow \mathbf{U} = [p, \mathbf{u}]^{\top} \\ \begin{cases} p_t(\mathbf{x}, t) - \nabla \cdot (\mathbf{c}(\mathbf{x}) \mathbf{u}) &= tf(\mathbf{x}), \\ \mathbf{u}_t(\mathbf{x}, t) - \nabla p(\mathbf{x}, t) &= 0. \end{cases} \end{aligned}$$

- sound/elastic wave propagation through geological layers
- structural mechanics

 $c(\mathbf{x})$ is often uncertain, e.g. log-normal with covariance $c(\mathbf{x}) = c(\mathbf{y}) = c(\mathbf{y}) = c(\mathbf{x}) = c(\mathbf{y})$ with anisotropic correlation lengths

 n_1, \ldots, n_2



Stochastic (non)linear systems of balance laws

 $\mathbf{U}_0(\mathbf{x}), \ \mathbf{c}(\mathbf{x}), \ \mathbf{F}(\cdot, \cdot), \ \mathbf{S}(\mathbf{x}, t, \cdot)$ are uncertain \longrightarrow solution $\mathbf{U}(\mathbf{x}, t)$ is also uncertain:

$$\begin{cases} \frac{\partial}{\partial t} \mathbf{U}(\mathbf{x}, t, \omega) + \operatorname{div} \mathbf{F}(\mathbf{c}(\mathbf{x}, \omega), \mathbf{U}, \omega) = \mathbf{S}(\mathbf{x}, t, \mathbf{U}, \omega), \\ \mathbf{U}(\mathbf{x}, 0, \omega) = \mathbf{U}_0(\mathbf{x}, \omega), \end{cases} \forall \omega \in \Omega, \quad (\Omega, \mathcal{F}, \mathbb{P}).$$

Well-posedness

Determine required statistical regularity of uncertain input $I = \{U_0, c, F, S\}$ such that random entropy solution $U(x, t, \omega)$ has finite mean and variance.

Goals

- ▶ Theory for the existence of $U(x, t, \omega)$ and its statistical moments
- lacktriangle Numerical methods for approximation of statistical moments (e.g. $\mathbb{E}[\mathbf{U}]$)
- Massively parallel implementation using efficient load balancing

Theory and numerical results on MLMC-FVM

for hyperbolic conservation laws

	Scalar stochastic PDE	System of stochastic PDE
Linear	► Linear advection Theory + numerical results ¹	 ▶ Acoustic wave ▶ Linear elasticity Theory + numerical results ²
Nonlinear	 ▶ Burgers' ▶ Buckley-Leverett Theory + numerical results ¹ 	 ► Euler ► Magneto-hydrodynamics ► Shallow water ³ Theory⁴, Numerical results⁵ ⁶

¹Mishra, Schwab (Math. Comp., 2012)

²Šukys, Mishra, Schwab (MCQMC 2012, Springer Proc. Math. Stat., 2013)

³Mishra, Schwab, Šukys (SIAM J. Sci. Comput., 2012)

⁴Fjordholm, Käppeli, Mishra, Tadmor. *Entropy Measure Valued Solutions* (arXiv, 2014)

⁵Mishra, Schwab, Šukys (J. Comput. Phys., 2012)

⁶Mishra, Schwab, Šukys (Springer LNCSE, 2013)

Short rev	view of
MC-FVM and	MLMC-FVM

Monte Carlo FVM algorithm (MC-FVM)

We are interested in $\mathbb{E}[\mathbf{U}(\mathbf{x},t)]$ and $\mathbb{V}[\mathbf{U}(\mathbf{x},t)]$ with $(\mathbf{x},t) \in \mathbf{D} \times \mathbf{T} \subset \mathbb{R}^d \times \mathbb{R}_+$.

1. **Draw** *M* i.i.d. samples of random quantities (input data)

$$\mathbf{I}^i = \{\mathbf{U}^i_0(\cdot), \mathbf{c}^i(\cdot), \mathbf{F}^i(\cdot), \mathbf{S}^i(\cdot)\}, \quad i = 1, \dots, M.$$

2. For each draw, **solve** for approximate (FVM with Δx) entropy solutions

$$\mathbf{I}^i \longrightarrow \mathbf{U}_{\Delta x}^i(\mathbf{x}, t^n) = (\mathbf{U}_{\mathbf{i}}^n)^i, \quad \forall \mathbf{x} \in \mathcal{C}_{\mathbf{j}}.$$

3. **Estimate statistics** of **E**[**U**] with

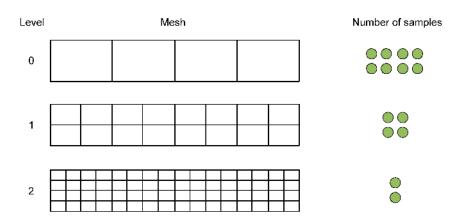
$$\mathbb{E}[\mathbf{U}] \approx E_M[\mathbf{U}_{\Delta x}] := \frac{1}{M} \sum_{i=1}^M \mathbf{U}_{\Delta x}^i.$$

Drawback: slow convergence + costly FVM \longrightarrow extremely expensive for d > 1.

Multi-Level Monte Carlo⁷ FVM method (MLMC-FVM)

Nested levels of resolution

$$\Delta x_{\ell} = \mathcal{O}(2^{-\ell} \Delta x_0), \quad \ell \in \mathbb{N}_0.$$



⁷Introduced by Heinrich (1999); Giles (2008); Barth, Schwab, Zollinger (2011).

Multi-Level Monte Carlo FVM method (MLMC-FVM)

1. **Draw** M_{ℓ} i.i.d. samples of random quantities (input data) for each level ℓ

$$\mathbf{I}_{\ell}^i = \{\mathbf{U}_{0,\ell}^i(\cdot), \mathbf{c}_{\ell}^i(\cdot), \mathbf{F}_{\ell}^i(\cdot), \mathbf{S}_{\ell}^i(\cdot)\}, \qquad i = 1, \dots, M.$$

2. For each draw i and level ℓ , solve for approximate (FVM with Δx_{ℓ}) solutions

$$\mathbf{l}^i_\ell \longrightarrow \mathbf{U}^i_{\Delta \times_\ell}.$$

3. Estimate statistics:

$$\mathbb{E}[\mathbf{U}] \approx \mathbb{E}[\mathbf{U}_{\Delta \mathsf{x}_{\ell}}] = \mathbb{E}\left[\mathbf{U}_{\Delta \mathsf{x}_{0}}\right] + \sum_{\ell=1}^{L} \mathbb{E}\left[\mathbf{U}_{\Delta \mathsf{x}_{\ell}} - \mathbf{U}_{\Delta \mathsf{x}_{\ell-1}}\right].$$

Estimate each term in the telescoping sum using MC-FVM

$$E^{L}[\mathbf{U}_{\Delta \times_{L}}] = E_{M_{0}}[\mathbf{U}_{\Delta \times_{0}}] + \sum_{\ell=1}^{L} E_{M_{\ell}}[\underbrace{\mathbf{U}_{\Delta \times_{\ell}} - \mathbf{U}_{\Delta \times_{\ell-1}}}_{\text{variance} \to 0 \text{ as } \ell \to \infty}].$$

Error vs. Work for Multi-Level Monte Carlo FVM

Theorem 8

▶ scalar conservation laws: $I = \{U_0\}, E = L^1 \cap L^\infty(D), H = TV(D).$

$$\mathbf{U}_0 \in L^{\mathbf{2}} \cap L^{\infty}(\Omega, E \cap H), \quad \mathbf{F} \in L^{\infty}(\Omega, \mathbf{C}^1(-\|\mathbf{U}_0\|_{\infty}, \|\mathbf{U}_0\|_{\infty})).$$

▶ linear hyperbolic systems: $I = \{K, U_0, S\}, E = L^2 \cap L^\infty(D), H = H^s(D)$

$$\mathbf{U}_0, \mathbf{S} \in L^2(\Omega, E \cap H), \quad \mathbf{A}_r \in L^0(\Omega, C^1(\mathbf{D})^{m \times m}) : K \in L^2(\Omega).$$

Denoting FVM convergence rate by s,

$$\|\mathbb{E}[\mathbf{U}] - E^{L}[\mathbf{U}_{\Delta x_{L}}]\|_{L^{2}(\Omega, E)} \leq C_{1} \Delta x_{L}^{s} + C_{2} \sum_{l}^{L} M_{\ell}^{-\frac{1}{2}} \Delta x_{\ell}^{s} + C_{3} M_{0}^{-\frac{1}{2}}.$$

Constants $C_{1,2,3}$ depend on $\mathbf{D} \times \mathbf{T}$, s, \mathbf{U}_0 , \mathbf{A}_r , \mathbf{F} , \mathbf{S} , but not on L, Δx_ℓ , M_ℓ .

⁸Mishra, Schwab (Math. Comp., 2012); Šukys, Mishra, Schwab (MCQMC 2012 Proc., 2013)

Choosing number of samples

Asymptotic MLMC-FVM error (denoting $\|\mathbf{I}\|_V = K(\|\mathbf{U}_0\|_V + T\|\mathbf{S}\|_V)$):

$$C_{1}\Delta x_{L}^{s}\|\mathbf{I}\|_{L^{1}(\Omega,H)}+C_{2}\sum_{\ell=1}^{L}M_{\ell}^{-\frac{1}{2}}\Delta x_{\ell}^{s}\|\mathbf{I}\|_{L^{2}(\Omega,H)}+C_{3}M_{0}^{-\frac{1}{2}}\|\mathbf{I}\|_{L^{2}(\Omega,E)}$$

Equilibrate MC and FVM errors: Optimize MC and FVM errors for M_{ℓ} :

$$M_{\ell} = M_L \cdot 2^{2(L-\ell)s}$$

$$M_{\ell} = M_L \cdot 2^{\frac{2}{3}(L-\ell)(s+d+1)}$$

Error $\leq \mathbb{E}[\mathsf{Work}]^{-s/(d+1)}$

$$\mathsf{Error} \lesssim \mathbb{E}[\mathsf{Work}]^{-s/(d+1)} \log(\mathbb{E}[\mathsf{Work}])$$

! Same complexity as a single FVM solve. Constants differ by
$$\sqrt{M_L}$$
.

To find M_L , equilibrate first error term with error terms in the sum:

$$M_L = \left(\frac{C_2 \|\mathbf{I}\|_{L^2(\Omega, H)}}{C_1 \|\mathbf{I}\|_{L^1(\Omega, E)}}\right)^2 \approx \left(\frac{C_2}{C_1}\right)^2 = \begin{cases} 16 & \text{scalar } (C_1 = 1, C_2 = 4) \\ 4 & \text{linear systems } (C_1 = 1, C_2 = 2) \end{cases}$$

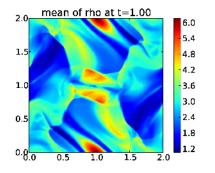
⁹Giles (Oper. Res., 2008); Pauli and Arbenz (2014)

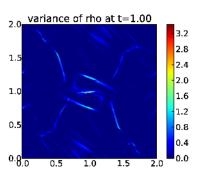
and error convergence

Numerical experiments

MHD: MLMC-FVM for Orszag-Tang vortex

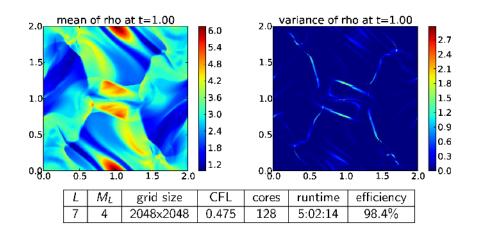
with uncertain initial magnetic field (2 sources of uncertainty)





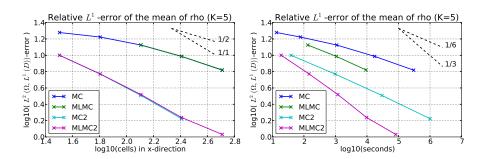
MHD: MLMC-FVM for Orszag-Tang vortex

with uncertain initial magnetic field (2 sources of uncertainty)



MHD: Orszag-Tang vortex - convergence for mean

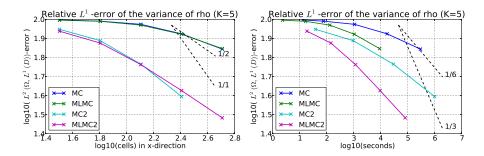
with 2 sources of uncertainty



Convergence rates coincide with the rigorous theory for SCL!

MHD: Orszag-Tang vortex - convergence for variance

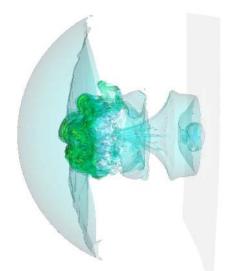
with 2 sources of uncertainty



Euler: FVM for cloud shock - one sample

with uncertain shock location/magnitude and geometry of the cloud

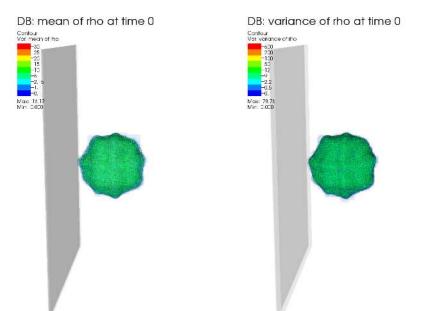
DB: rho at time 0.06



0		
1		
1 Billion		
0.475		
4096		
4:29:44		
95.7%		

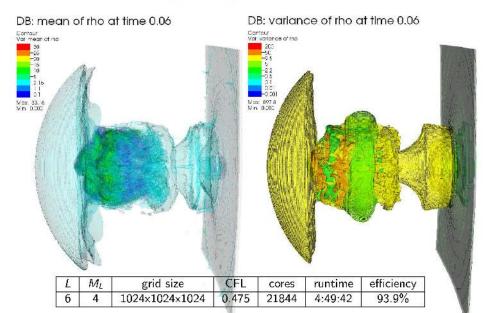
Euler: MLMC-FVM for cloud shock - mean and variance

with uncertain shock location/magnitude and geometry of the cloud



Euler: MLMC-FVM for cloud shock - mean and variance

with uncertain shock location/magnitude and geometry of the cloud



MLMC algorithm is non-intrusive

Parallelization

MLMC: Distributions of random run-times across levels

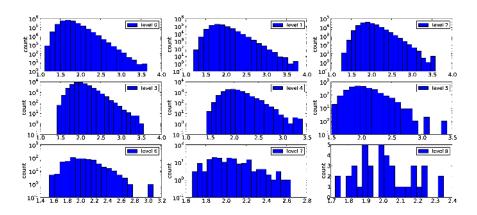


Figure: Distributions of random wave speeds for all resolution levels

Adaptive load balancing algorithm

Generalization of "greedy" algorithm for "workers" with non-uniform speed of execution

Setup: "Workers" \mathcal{G}_m^s (blue) with "computing capacities" C_m (green):

Loads: (pre-FVM step, computed in parallel)

$$\mathsf{Load}^i_\ell = \lambda^i_\ell \Delta x_\ell^{-(d+1)} \sim \mathcal{O}(N_\mathsf{cells} \textcolor{red}{N_\mathsf{t}}), \qquad \ell = 0, \dots, L, \quad i = 1, \dots, M_\ell.$$

Recursive rule:

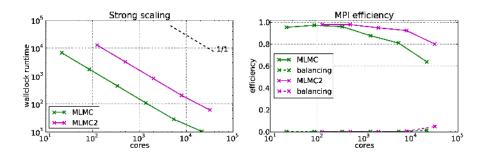
Assign the largest Load'_{ℓ} to the worker \mathcal{G}_m^s for which the total load is **minimized**.

Pseudocode $\mathcal{L} = \{\mathsf{Load}_{\ell}^i : \ell = 0, \dots, L, i = 1, \dots, M_{\ell}\}$ while $\mathcal{L} \neq \emptyset$ do

$$\begin{array}{l} \textbf{while } \mathcal{L} \neq \varnothing \ \textbf{do} \\ \text{Load}_{\ell}^{i} = \max \mathcal{L} \\ \mathcal{G}_{m}^{s} = \arg \min \sum_{} \left\{ \text{Load} / C_{m} : \text{Load} \in \mathcal{G}_{m}^{s} \cup \text{Load}_{\ell}^{i} \right\} \\ \mathcal{G}_{m}^{s} = \mathcal{G}_{m}^{s} \cup \text{Load}_{\ell}^{i} \\ \mathcal{L} = \mathcal{L} \backslash \text{Load}_{\ell}^{i} \end{array}$$

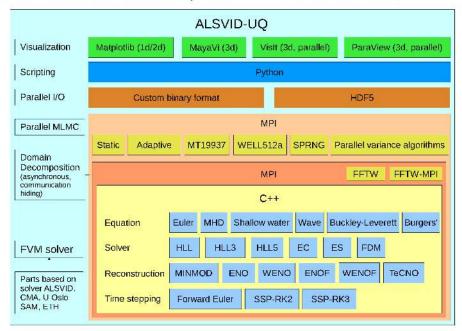
Linear (strong) scaling of adaptive load balancing

(with domain decomposition)



Strong and weak scaling up to 40 000 cores with high efficiency. (Cray XE6, CSCS)

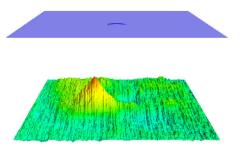
Parallel MLMC-FVM implementation: ALSVID-UQ



Do we ever need more than 10 or even 100 sources of uncertainty?

If yes, does MLMC-FVM still work?

Shallow water equations



Flows in rivers, lakes and oceans; atmospheric flows for weather prediction, etc.

$$\mathbf{U} = \begin{bmatrix} h \\ hu \\ hv \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} 0 \\ -ghb_x(\omega) \\ -ghb_y(\omega) \end{bmatrix},$$

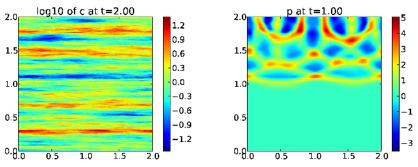
with bottom topography $b \in L^2(\Omega, W^{1,\infty}(\mathbf{D}))$.

$$\begin{cases} \mathbf{U}_t + \mathbf{F}(\mathbf{U})_x + \mathbf{G}(\mathbf{U})_y = \mathbf{S}(\mathbf{U}, x, y, \omega), \\ \mathbf{U}(x, y, 0) = \mathbf{U}_0(x, y, \omega). \end{cases} (x, y) \in \mathbf{D}, \quad t > 0, \quad \forall \omega \in \Omega.$$

Wave equation: log-normal material coefficient

One realization - 16 384 sources of uncertainty

$$p_{tt}(\mathbf{x}, t, \omega) - \nabla \cdot (c(\mathbf{x}, \omega) \nabla p(\mathbf{x}, t, \omega)) = 0$$



Coefficient $c(\mathbf{x}, \omega)$ is assumed to be **log-normal**, determined by its covariance

$$\mathsf{Cov}(\log c(\mathbf{x}, \cdot), \log c(\mathbf{y}, \cdot)) = k(\|\mathbf{x} - \mathbf{y}\|_{\eta}) = \sigma^2 \exp\left(-\sqrt{\sum_{r=1}^d \frac{|\mathbf{x}_r - \mathbf{y}_r|^2}{\eta_r^2}}\right)$$

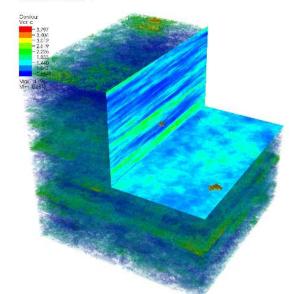
where

- ▶ covariance kernel $k : \mathbb{R} \to \mathbb{R}_+$
- ightharpoonup correlation lengths in each direction $\eta=\{\eta_1,\ldots,\eta_d\}\in\mathbb{R}^d_+$ (anisotropy)

Log-normal anisotropically correlated coefficient in 3d

One realization - 2 million sources of uncertainty

DB: c at time 1

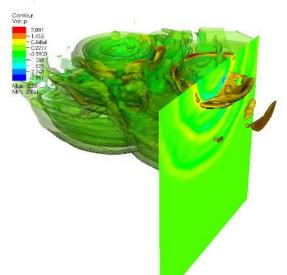


L	0		
M_L	1		
grid size	1024 ³		
CFL	0.475		
cores	4096		
runtime	2:45:36		
efficiency	99.9%		

Wave equation with log-normal coefficient in 3d

One realization, reflecting/periodic b.c.

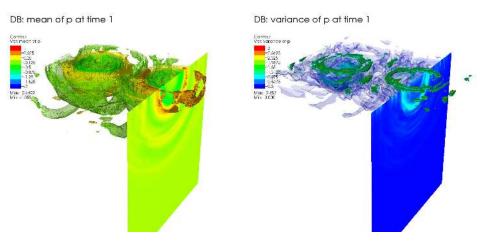
DB: p at time 1



L	0		
M_L	1		
grid size	1024 ³		
CFL	0.475		
cores	4096		
runtime	2:45:36		
efficiency	99.9%		

Wave equation with log-normal coefficient in 3d

MLMC-FVM, reflecting/periodic b.c., adaptive load balancing



L	M_L	grid size	CFL	cores	runtime	efficiency
6	8	1024×1024×1024	0.475	43680	2:48:50	98.1%

Figure: Solution of wave equation using MLMC-FVM and reflecting/periodic b.c.

Summary for MLMC-FVM method

- ▶ notion of random weak entropy solution is formulated
- ▶ the resulting stochastic hyperbolic system of CLs is shown to be well-posed
- ▶ applications: Euler, MHD, shallow water, Buckley-Leverett, wave, etc.
- ▶ flexible w.r.t. the origin of the uncertainty: U_0 , S, c, F
- ▶ optimal computational complexity (same as for deterministic systems)
- ▶ 2-3 orders of magnitude speed-up of MLMC-FVM vs. MC-FVM
- ► linear complexity w.r.t. stochastic dimension (unlike in gPC)
- ► low regularity requirements
- ▶ non-intrusive deterministic FVM solvers can be reused
- ► easily parallelizable and scalable (tested up to 40 000 cores)
- ► algorithmic fault tolerant parallelization: ¹⁰
 - ▶ lost samples (due to node failures) are dropped (NO checkpoint/restore)
- MLMC-FVM error bound is still valid, in the sense of expected accuracy

¹⁰Pauli, Arbenz and Schwab (SAM Report No. 2012-24, PARCO 2013)

Joint work in progress with

- ► Siddhartha Mishra
 - SAM, ETH Zürich, Switzerland
- ► Christoph Schwab
 - SAM, ETH Zürich, Switzerland
- Other collaborators:
 - Florian Müller
 - Stefan Pauli
 - ► Svetlana Tokareva
 - ► Luc Grosheintz
 - Manuel Kohler
 - ► Franziska Weber
- ▶ Part of ETH interdisciplinary research grant
 - ► CH1-03 10-1
- ► Grant from the Swiss National Supercomputing Centre (CSCS)
 - Project ID S366

Publications (JŠ, S. Mishra, Ch. Schwab, A. Barth)

List available at: http://pub.sukys.lt

- ► ALSVID-UQ: http://www.sam.math.ethz.ch/alsvid-uq.
- ► MLMC approximations of statistical solutions to the Navier-Stokes equation. In review, 2014.
- ► MLMC-FVM: uncertainty quantification in nonlinear systems of balance laws. Springer LNCSE (92), 225–294, 2013.
- ► MLMC-FVM for stochastic linear hyperbolic systems.

 MCQMC 2012, Springer Proc. Math. Stat. (65), 649–666, 2013.
- ► Adaptive load balancing for massively parallel multi-level Monte Carlo solvers. PPAM 2013 (to appear).
- ► MLMC-FVM for shallow water equations with uncertain topography. SIAM J. Sci. Comput., 34(6), B761–B784, 2012.
- ► MLMC-FVM for nonlinear systems of conservation laws in multi-dimensions. J. Comp. Phys., 231(8), 3365–3388, 2012.
- ► Sparse tensor MLMC-FVM for conservation laws with random initial data. Math. Comp., 280, 1979–2018, 2012.
- Static load balancing for multi-level Monte Carlo finite volume solvers.
 PPAM 2011, Part I, LNCS 7203, 245–254. Springer, Heidelberg 2012.