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Hyperbolic nonlinear
conservation laws















Stochastic (non)linear systems of balance laws

U0(x), c(x), F(·, ·), S(x, t, ·) are uncertain −→ solution U(x, t) is also uncertain:






∂

∂t
U(x, t, ω) + divF(c(x, ω),U, ω) = S(x, t,U, ω),

U(x, 0, ω) = U0(x, ω),
∀ω ∈ Ω, (Ω,F ,P).

Well-posedness

Determine required statistical regularity of uncertain input I = {U0, c,F,S}
such that random entropy solution U(x, t, ω) has finite mean and variance.

Goals
◮ Theory for the existence of U(x, t, ω) and its statistical moments

◮ Numerical methods for approximation of statistical moments (e.g. E[U])

◮ Massively parallel implementation using efficient load balancing



Theory and numerical results on MLMC-FVM
for hyperbolic conservation laws

Scalar stochastic PDE System of stochastic PDE

Linear

◮ Linear advection ◮ Acoustic wave

◮ Linear elasticity

Theory + numerical results 1 Theory + numerical results 2

Nonlinear

◮ Burgers’

◮ Buckley-Leverett

◮ Euler

◮ Magneto-hydrodynamics

◮ Shallow water 3

Theory + numerical results 1 Theory4, Numerical results5 6

1Mishra, Schwab (Math. Comp., 2012)
2Šukys, Mishra, Schwab (MCQMC 2012, Springer Proc. Math. Stat., 2013)
3Mishra, Schwab, Šukys (SIAM J. Sci. Comput., 2012)
4Fjordholm, Käppeli, Mishra, Tadmor. Entropy Measure Valued Solutions (arXiv, 2014)
5Mishra, Schwab, Šukys (J. Comput. Phys., 2012)
6Mishra, Schwab, Šukys (Springer LNCSE, 2013)
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Short review of
MC-FVM and MLMC-FVM



Monte Carlo FVM algorithm (MC-FVM)

We are interested in E[U(x, t)] and V[U(x, t)] with (x, t) ∈ D× T ⊂ R
d × R+.

1. Draw M i.i.d. samples of random quantities (input data)

Ii = {Ui
0(·), c

i (·),Fi (·),Si (·)}, i = 1, . . . ,M.

2. For each draw, solve for approximate (FVM with ∆x) entropy solutions

Ii −→ Ui
∆x(x, t

n) = (Un
j )

i , ∀x ∈ Cj.

3. Estimate statistics of E[U] with

E[U] ≈ EM [U∆x ] :=
1

M

M∑

i=1

Ui
∆x .

Drawback: slow convergence + costly FVM −→ extremely expensive for d > 1.
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Multi-Level Monte Carlo FVM method (MLMC-FVM)

1. Draw Mℓ i.i.d. samples of random quantities (input data) for each level ℓ

Iiℓ = {Ui
0,ℓ(·), c

i
ℓ(·),F

i
ℓ(·),S

i
ℓ(·)}, i = 1, . . . ,M.

2. For each draw i and level ℓ, solve for approximate (FVM with ∆xℓ) solutions

Iiℓ −→ Ui
∆xℓ

.

3. Estimate statistics:

E[U] ≈ E[U∆xL
] = E [U∆x0 ] +

L∑

ℓ=1

E
[
U∆xℓ

−U∆xℓ−1

]
.

Estimate each term in the telescoping sum using MC-FVM

EL[U∆xL
] = EM0

[U∆x0
] +

L∑

ℓ=1

EMℓ
[U∆xℓ

−U∆xℓ−1
︸ ︷︷ ︸

variance→0 as ℓ→∞

].
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Error vs. Work for Multi-Level Monte Carlo FVM

Theorem 8

◮ scalar conservation laws: I = {U0}, E = L1 ∩ L∞(D), H = TV (D).

U0 ∈ L2 ∩ L∞(Ω,E ∩ H), F ∈ L∞(Ω,C1(−‖U0‖∞, ‖U0‖∞)).

◮ linear hyperbolic systems: I = {K ,U0,S}, E = L2 ∩ L∞(D), H = Hs(D).

U0,S ∈ L2(Ω,E ∩ H), Ar ∈ L0(Ω,C 1(D)m×m) : K ∈ L2(Ω).

Denoting FVM convergence rate by s,

∥
∥E[U]− EL[U∆xL

]
∥
∥
L2(Ω,E)

≤ C1∆x sL + C2

L∑

ℓ=1

M
−

1
2

ℓ ∆x sℓ + C3M
−

1
2

0 .

Constants C1,2,3 depend on D× T, s, U0,Ar ,F,S, but not on L,∆xℓ,Mℓ.

8Mishra, Schwab (Math. Comp., 2012); Šukys, Mishra, Schwab (MCQMC 2012 Proc., 2013)



Choosing number of samples

Asymptotic MLMC-FVM error (denoting ‖I‖V = K
(
‖U0‖V + T‖S‖V

)
):

C1∆x sL‖I‖L1(Ω,H) + C2

L∑

ℓ=1

M
−

1
2

ℓ ∆x sℓ‖I‖L2(Ω,H) + C3M
−

1
2

0 ‖I‖L2(Ω,E)

Equilibrate MC and FVM errors:

Mℓ = ML · 2
2(L−ℓ)s

Error . E[Work]−s/(d+1) log(E[Work])

Optimize9 MC and FVM errors for Mℓ:

Mℓ = ML · 2
2
3 (L−ℓ)(s+d+1)

Error . E[Work]−s/(d+1)

! Same complexity as a single FVM solve. Constants differ by
√

ML.

To find ML, equilibrate first error term with error terms in the sum:

ML =

(
C2‖I‖L2(Ω,H)

C1‖I‖L1(Ω,E)

)2

≈

(
C2

C1

)2

=

{

16 scalar (C1 = 1,C2 = 4)

4 linear systems (C1 = 1,C2 = 2)

9Giles (Oper. Res., 2008); Pauli and Arbenz (2014)



Numerical experiments
and

error convergence







MHD: Orszag-Tang vortex - convergence for mean
with 2 sources of uncertainty
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Convergence rates coincide with the rigorous theory for SCL!
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MHD: Orszag-Tang vortex - convergence for variance
with 2 sources of uncertainty
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Euler: FVM for cloud shock - one sample
with uncertain shock location/magnitude and geometry of the cloud

L 0

ML 1

cells 1 Billion

CFL 0.475

cores 4096

runtime 4:29:44

eff. 95.7%



Euler: MLMC-FVM for cloud shock - mean and variance
with uncertain shock location/magnitude and geometry of the cloud





MLMC algorithm is non-intrusive
↓

Parallelization











Do we ever need more than
10 or even 100 sources of uncertainty?

If yes, does MLMC-FVM still work?







Log-normal anisotropically correlated coefficient in 3d
One realization - 2 million sources of uncertainty

L 0

ML 1

grid size 10243

CFL 0.475

cores 4096

runtime 2:45:36

efficiency 99.9%



Wave equation with log-normal coefficient in 3d
One realization, reflecting/periodic b.c.

L 0

ML 1

grid size 10243

CFL 0.475

cores 4096

runtime 2:45:36

efficiency 99.9%



Wave equation with log-normal coefficient in 3d
MLMC-FVM, reflecting/periodic b.c., adaptive load balancing

L ML grid size CFL cores runtime efficiency
6 8 1024x1024x1024 0.475 43680 2:48:50 98.1%

Figure : Solution of wave equation using MLMC-FVM and reflecting/periodic b.c.



Summary for MLMC-FVM method
◮ notion of random weak entropy solution is formulated

◮ the resulting stochastic hyperbolic system of CLs is shown to be well-posed

◮ applications: Euler, MHD, shallow water, Buckley-Leverett, wave, etc.

◮ flexible w.r.t. the origin of the uncertainty: U0,S, c ,F

◮ optimal computational complexity (same as for deterministic systems)

◮ 2-3 orders of magnitude speed-up of MLMC-FVM vs. MC-FVM

◮ linear complexity w.r.t. stochastic dimension (unlike in gPC)

◮ low regularity requirements

◮ non-intrusive - deterministic FVM solvers can be reused

◮ easily parallelizable and scalable (tested up to 40 000 cores)

◮ algorithmic fault tolerant parallelization: 10

◮ lost samples (due to node failures) are dropped (NO checkpoint/restore)
◮ MLMC-FVM error bound is still valid, in the sense of expected accuracy

10Pauli, Arbenz and Schwab (SAM Report No. 2012-24, PARCO 2013)
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