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Introduction

• Identify/characterize the statistical properties of functional random
variables.

• The variables are dependent and linked to a scalar (or vectorial)
covariate.

• Propose a methodology of uncertainty characterization in order to:
• get an estimate of the joint probability density function of the variables,
• simulate new samples according to the estimated distribution,
• adapt visualization tools to identify uncertainty characteristics of

dependent functional variables.
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Problem description

• Let f1, . . . , fm : I ×Ω→ R be dependent functional random variables.

• Let Y be a random variable, called covariate.

• Let M be a computer code/simulator such that

Y =M(f1, . . . , fm).

• Let f i
j be the ith realization of the jth functional random variable, for

1 ≤ i ≤ n, 1 ≤ j ≤ m.

Nanty, Helbert, Marrel, Pérot, Prieur MascotNum 2014 April 23rd 2014 3 / 33



Introduction Dimension reduction Density estimation An analytical example A nuclear safety test case Visualization Conclusion

Proposed methodology

• Two main steps:

1. Decomposition on a reduced functional basis, taking into account the
covariate

2. Modeling of the probability density function of the decomposition
coefficients

Functional
variables

realizations

Functional
decomposition

Selection of d

components

Density
estimation
for the d

coefficients

Covariate
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Decomposition on a functional basis

Definition

Let f : I → R, x ∈ I .

f (x) =
+∞
∑

k=1

αkφk(x)

• αk coefficients,

• φk basis functions
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Decomposition on a functional basis

Definition

Let f : I → R, x ∈ I .

f̂ (x) =
d

∑

k=1

αkφk(x)

• αk coefficients,

• φk basis functions,

• d basis size
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Partial Least Squares regression

• Let X (n × p) and Y (n × q) data matrices of respectively observable
and predicted variables.

• X and Y are centered and standardized.

• Principle: linear regression between the projections of X and Y in a
new space, called latent variables, whose correlation is maximal.

Algorithm of PLS regression [Wold, 1975]

• Initialization: X0 = X , Y0 = Y

• At each step h, we are seeking for the latent variables αh = Xh−1uh

and ωh = Yh−1vh solutions of

max
‖uh‖=‖vh‖=1

cov(Xh−1uh , Yh−1vh).

• "Deflation": Xh = Xh−1 − αhφT
h , with φh = Xh−1αh/(αT

h αh)
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Partial Least Squares decomposition

• It can be deduced from the deflation step that X can be written as
follows:

X = AΦT + ǫ

where the column vectors of A and Φ are respectively αh and φh and
ǫ are the residuals.

• Let the column vectors of X be functions discretized on p points and
Y be the covariate.

⇒ A is the matrix of coefficients of the decomposition.
⇒ Φ is the matrix of basis functions.

• Basis functions are fitted to data, and

• adjusted to maximize the correlation between the functions and the
covariate.
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Simultaneous PLS decomposition

• Objective: extend PLS decomposition to deal with multiple functional
dependent variables simultaneously

• We suppose that functions f1 . . . fm are correlated and have common
reduction directions.

• Let t1 < · · · < tp ∈ I

• Let fi = (fi(t1), . . . , fi(tp)) be the discretized version of fi ,
i = 1, . . . , m.

• Let each column vector of X be:

(f1, . . . , fm) ∈ R
dm

• Simultaneous PLS decomposition consists in applying the PLS
decomposition to the previously defined matrix X .

→ SPLS decomposition
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Objectives

• Estimate the probability density function (pdf) of d coefficients from
SPLS decomposition

• High dimension: d > 10

⇒ kernel density estimation not adapted

→ Solution: Gaussian mixture model
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Gaussian Mixture

• Probability density function of a Gaussian mixture:

g(α|µ1, Σ1, . . . , µG , ΣG) =
G

∑

k=1

τkφ(α|µk , Σk), ∀α ∈ R
d

• G clusters
• n sample points
• φ: Gaussian probability density function
• τk , µk , Σk : proportion, mean and covariance matrix of cluster k

• Advantages / drawbacks

+ Fast algorithm for parameter estimation
+ Very fast simulation of a new realization
+ Can be used in dimension d > 10
– parametric model: modeling hypothesis
– Number of clusters to be determined
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EM algorithm

• Expectation-Maximization algorithm (EM) [Dempster et al., 1977]
estimates the parameters of the Gaussian mixture model.

• Let us introduce zik , the probability of the ith point to be in the kth

cluster.

Expectation Minimization algorithm:

1. Initialize parameters τ
(0)
k , µ

(0)
k et Σ

(0)
k

2. Expectation Step: Compute z
(j)
ik

3. Maximization Step: Compute τ
(j+1)
k , µ

(j+1)
k , Σ

(j+1)
k

4. Repeat steps 2− 3 until convergence
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Number of parameters reduction

• Total number of Gaussian mixture parameters:
NT = G − 1 + Gd + G

d(d+1)
2

• G: number of clusters in the model

• NT increases quickly with the dimension d

→ Solution: sparse covariance matrices estimation

Two methods

• sEM method: penalizing the inverses of covariance matrices
[Krishnamurthy, 2011]

• sEM2 method: penalizing the covariance matrices
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sEM method

Penalizing the inverses of covariance matrices

• A lasso penalization on the inverses of the covariance matrices is
added in the maximization step:

Σ̂k = argmaxΣk
(ℓ) 99K Σ̂k = argmaxΣk

(

ℓ− λ‖Σ−1
k ‖1

)

• ‖M‖1 =
∑p

i,j=1 Mi,j .

• The penalization parameter λ is chosen bycross-validation.

• The penalized maximization is solved by [Friedman et al., 2008]
coordinate descent-based algorithm.
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sEM method

Penalizing the inverses of covariance matrices

sEM algorithm [Krishnamurthy, 2011]

1. Initialize parameters τ
(0)
k , µ

(0)
k et Σ

(0)
k

2. Expectation Step: Compute z
(j)
ik

3. Maximization Step: Compute τ
(j+1)
k , µ

(j+1)
k

4. Σ
(j+1)
k ← argmaxΣ

(

ℓ− λ
∥

∥Σ−1
∥

∥

1

)

5. Repeat steps 2− 4 until convergence
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sEM2 method

Penalizing the covariance matrices

• A lasso penalization on the covariance matrices is added in the
maximization step:

Σ̂k = argmaxΣk
(ℓ− λ‖P ∗ Σk‖1)

• ∗ stands for Hadamard product.

• P: penalization matrix.

• The penalization parameter λ is chosen by cross-validation.

• The penalized maximization is solved by [Wang, 2013] coordinate
descent-based algorithm.
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sEM2 method

Penalizing the covariance matrices

• Several proposed matrices P:
• sEM2.1: Equal weights to all matrix elements. All elements are

penalized in the same way.
Pij = 1

• sEM2.2: Diagonal elements are not penalized. All others are penalized
equally.

Pij =

{

1 if i 6= j

0 if i = j

• sEM2.3: The lower the off-diagonal element, the more penalized.
Diagonal elements are not penalized.

Pij =

{

1

Σij
if i 6= j

0 if i = j
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sEM2 method

Penalizing the covariance matrices

sEM2 algorithm

1. Initialize parameters τ
(0)
k , µ

(0)
k et Σ

(0)
k

2. Expectation Step: Compute z
(j)
ik

3. Maximization Step: Compute τ
(j+1)
k , µ

(j+1)
k

4. Σ
(j+1)
k ← argmaxΣ (ℓ− λ ‖P ∗ Σ‖1)

5. Repeat steps 2− 4 until convergence
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Illustration on an analytical example

• Hypothesis
• Learning dataset: 600 curves
• Test dataset: 1000 curves
• SPLS decomposition + Gaussian mixture model
• Optimal number G∗ of clusters chosen with Bayesian Information

Criterion (BIC)

• Proposed criteria to select the basis size d and assess the quality of
the characterization method:

• Criterion C1: Goodness-of-fit of estimated coefficients pdf and the
real pdf with1 [Fromont et al., 2012] test.

• Criterion C2: Goodness-of-fit of estimated covariate pdf and the pdf
computed with known covariates with Kolmogorov-Smirnov (KS) test.

• Criterion C3: Relative mean square between correlation on estimated
functions and realizations of the variables.

→ First step: use of EM algorithm
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Illustration on an analytical example

Criterion C1: Comparison of coefficients densities
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Acceptation rate (coefficients)

• Maximal median at d = 8 components.

• After d = 8, model quality decreases.
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Illustration on an analytical example

Criterion C2: Comparison of covariates densities
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• Maximal median at d = 6, 8, 10, 18 components.

• Low variance for d = 8.

• Very close acceptance rates for all basis sizes.
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Illustration on an analytical example

Criterion C3: Comparison of correlations between variables
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Relative error

• The correlation decrease is very even.

• Relative error is about 40% for d = 8.
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Illustration on an analytical example: conclusions

• Based on the three criteria → optimal basis size d∗ = 8:
• Good acceptance rates are obtained with EM algorithm.
• The relative errors on correlation are still quite high.

• The same criteria have been computed for other estimation
algorithms → similar results obtained (same d∗ and criteria values).

• For the analytical example, the EM algorithm seems to be the best
choice (efficient, easy and fast): as the number of parameters is quite low
in this example (n = 89 for d = 8), the use of sparse algorithms does not
improve the estimation.

• In practice, if no test basis is available, criteria C1, C2 and C3 are
computed by cross-validation.
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A nuclear safety test case (1)

Scalar parameters

Thermal-hydraulic
computer code

Functional
Variables

Scalar
parameters

Themal-mechanical
computer code

Safety criterion

}

Computation time :
several hours

}

Functional random

variables

}

Computation time :
∼ 5 minutes

}

Scalar covariate

}

31 random variables
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A nuclear safety test case (2)

Dataset:

• 3 functional random variables depending on time

• Scalar covariate: a safety criterion

• Learning sample: 400 samples

• Logarithmic transformation of the sample (positivity constraint)

Methodology:

• SPLS decomposition + Gaussian mixture model + EM algorithm

• Optimal G∗ determined by BIC

• Criteria C1, C2 and C3 computed by cross-validation

• Optimal d∗ chosen by the analysis of the three criteria
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A nuclear safety test case (3)

• Criterion 1:
• optimal d∗ = 4
• acceptance rates under 80% for d > 8
• fast decrease of acceptance rates for d > 10
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• Criterion 2: low acceptance rates for all basis sizes
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A nuclear safety test case (4)

• Criterion 3: quite good approximation of functional variable
correlations for d∗ = 4.
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Visualization: High Density Region boxplot (HDR)

• Proposed by [Hyndman and Shang, 2010] and based on
• Principal Component Analysis
• First two basis functions selected
• Kernel density estimation
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Explained Variance :  69.05 %

• Application on the analytical example:
• Black curve: functional median
• Colored curves: outliers
• Dark (resp. light) gray zone: 50% (resp. 95%) highest density region
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Visualization: Modified HDR boxplot

• Combination of the HDR boxplot and our proposed characterization
methodology (SPLS + Gaussian mixture model)
⇒ Simultaneous visualization of multiple functions
⇒ Taking into account a covariate
⇒ Decomposition on higher basis

• Illustration on the analytical example:
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Conclusion and perspectives

• Development of a global methodology to simultaneously characterize
dependent functional random variables linked to a covariate.

→ Simultaneous PLS decomposition + Gaussian mixture with
sparse covariance matrices

⇒ Estimation of probabilities for the variables to exceed a threshold.
⇒ Simulation according to the estimated pdf.
⇒ Visualization of the uncertainty of the variables.

• Different proposed criteria to assess the methodology efficiency:
• Application on an analytical example: good results
• Application on a nuclear safety test case: functions and correlations

quite well reproduced but the covariate pdf not well fitted

Perspectives:

• Computing probabilities and quantiles to exceed a threshold.

• Using this methodology to run uncertainty propagation and sensitivity
analysis studies.
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Appendix

Analytical example definition

f1(t, a1, a2, a3) = 0.8a2BB(t) + a1 + c1(t) + h(t)

f2(t, a1, a2, a3) = a2BB(t) + a1 + c2(t)

with
a1 ∼ U(0, 0.05) ; a2 ∼ U(0.05, 0.2) ; a3 ∼ U(2, 3)

c1(t) =

{

t − 1 if t < 70
512

372
512 − t otherwise

c2(t) =











1− t if t < 0.5
64
5a3
− 0.5t if 0.5 < t < 0.5 + 10a3

512

0.5− t otherwise

h(t) = 0.15

(

1−

∣

∣

∣

∣

t − 100a3

60

∣

∣

∣

∣

)
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