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Introduction – parametric / stochastic equations

UQ for deterministic PDE models

Consider the parametric equation (typically a PDE)

find u : F(y, u) = 0 (1)

where y is a vector of N parameters: y = (y1, . . . , yN) ∈ R
N

(N = ∞ when dealing with distributed fields).

Often in applications the parameters y are not perfectly known
or are intrinsically variable. Examples are:

subsurface modeling: porous media flows; seismic waves; basin
evolutions; ...
modeling of living tissues: mechanical response; growth models;
material science: properties of composite materials

Probabilistic approach: y is a random vector with probability
density function ρ : Γ ⊂ R

N → R+.
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Introduction – parametric / stochastic equations

UQ for deterministic PDE models

Assumption: ∀y ∈ Γ the problem admits a unique solution u ∈ V in a
suitable finite or infinite dimensional Hilbert space V . Moreover,

∀y ∈ Γ, ∃C (y) > 0; ‖u(y)‖V ≤ C (y)

Then, equation (1) induces a map u = u(y) : Γ → V .

if
∫
Γ
C (y)pρ(y)dy <∞, then u ∈ Lpρ(Γ,V ).

Goals:

Construct a reduced model uΛ(y) ≈ u(y)
Compute statistics of the solution

Expected value: ū ≈ E[uΛ]
Variance: Var [u] ≈ E[u2Λ]− E[uΛ]

2

two points corr. (if u is a distributed field)

Covu(x1, x2) ≈ E[uΛ(x1)uΛ(x2)]− E[uΛ(x1)]E[uΛ(x2)]
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Introduction – parametric / stochastic equations

Example: Elliptic PDE with random coefficients

{
− div(a(y, x)∇u(y, x)) = f (x) x ∈ D, y ∈ Γ,

u(y, x) = 0 x ∈ ∂D, y ∈ Γ

with amin(y) = infx∈D a(y, x) > 0 for all y ∈ Γ and f ∈ L2(D). Then

∀y ∈ Γ, u(y) ∈ V ≡ H1
0 (D), and ‖u(y)‖V ≤ CP

amin(y)
‖f ‖L2(D).

Inclusions problem
y describes the
conductivitiy in each
inclusion

a(y, x) = a0+
N
∑

n=N

yn✶Dn
(x)

Random fields problem

a(y, x) is a random field,
e.g. lognormal:
a(y, x) = eγ(y,x) with γ
expanded e.g. in
Karhunen-Loève series

γ(y, x) =
∞
∑

n=1

√

λnynbn(x), yn ∼ N(0, 1) i .i .d .

random field with L
c
=1/4
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Stochastic polynomial approximation
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Stochastic polynomial approximation

Stochastic multivariate polynomial approximation

The parameter-to-solution map u(y) : Γ → V is often smooth
(even analytic for the elliptic diffusion model). It is therefore
sound to approximate it by global multivariate polynomials.

Let Λ ⊂ N
N be an index set of cardinality |Λ| = M , and consider

the multivariate polynomial space

PΛ(Γ) = span
{∏N

n=1 y
pn
n , with p = (p1, . . . , pN) ∈ Λ

}

We seek an approximation PΛu ∈ PΛ(Γ)⊗ V .

The optimal choice of Λ depends heavily on the problem at hand
and the “structure” of the map u(y).

Definition. An index set Λ is downward closed (or lower set) if

p ∈ Λ and q ≤ p =⇒ q ∈ Λ
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Stochastic polynomial approximation

Common choices of polynomial spaces
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Anisotropic versions are also possible.
All these index sets are all downward closed.
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Discrete least squares approx. using random evaluations
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Discrete least squares approx. using random evaluations

Approximation using random evaluations

Goal: construct a polynomial approximation using random
evaluations (Monte Carlo sampling):

1 Generate M random i.i.d. samples y(k) ∼ ρ(y)dy, k = 1, . . . ,M

2 Compute the corresponding solutions u(k) = u(y(k))

3 Construct a suitable approximation P
M,ω
Λ u ∈ PΛ(Γ)⊗ V
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Discrete least squares approx. using random evaluations

Notation

given two functions u, v ∈ L2ρ(Γ;V )

Continuous inner product: E[(u, v)V ] =
∫
Γ
(u(y), v(y))Vρ(y)dy

Continuous norm: ‖v‖2
L2
ρ
(Γ;V ) = E[(v , v)V ].

Discrete inner product: EM [(u, v)V ] =
1
M

∑M

i=1(u(y
(i)), v(y(i)))V

Discrete norm: ‖v‖2M,V = EM [(v , v)V ]

Let {ψp}p∈Λ be an orthonormal basis of PΛ w.r.t the weight ρ.
Then, the best approximation of u in PΛ(Γ)⊗ V (exact L2

projection) is

PΛu = argmin
v∈PΛ(Γ)⊗V

E[‖u − v‖2V ] =
∑

p∈Λ
E[uψp]ψp

How to compute an approx. projection using the random sample?
Replace the exact expectation E[·] with the sample average EM [·].
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Discrete least squares approx. using random evaluations

First idea (bad): discrete projection

We construct an approximation as

P
M,ω
Λ u =

∑

p∈Λ
EM [uψp]ψp =

∑

p∈Λ

(
1

M

M∑

i=1

u(y(i))ψp(y
(i))

)
ψp

Error analysis:

‖u − P
M,ω
Λ u‖2L2

ρ
(Γ;V ) =

∑

q/∈Λ
‖E[uψq]‖2V

︸ ︷︷ ︸
L2 projection error

+
∑

p∈Λ
‖E[uψp]− EM [uψp]‖2V︸ ︷︷ ︸
Monte Carlo error∼O(M−1)

from which, setting K (Λ) = supy∈Γ

(∑
p∈Λ |ψp(y)|2

)
, one can deduce

E
ω‖u − P

M,ω
Λ u‖2L2

ρ
(Γ;V ) ≤ inf

v∈PΛ(Γ)⊗V
‖u − v‖2L2

ρ
(Γ;V ) +

K (Λ)

M
‖u‖2L2

ρ
(Γ;V )

Even for smooth functions the convergence is O(
√
M)!
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Discrete least squares approx. using random evaluations

Second idea (good): Discrete least squares

approximation

(see e.g. [Hosder-Walters et al. 2010, Blatman-Sudret 2008,

Burkardt-Eldred 2009, Eldred 2011, Yan-Guo-Xiu 2012,

Cohen-Davenport-Leviatan 2013, Migliorati etal 2011-2014])

P
M,ω
Λ u = argmin

v∈PΛ(Γ)⊗V

1

M

M∑

k=1

‖u(k) − v(y(k))‖2V

Two relevant questions

What is the accuracy of the random discrete least square
approximation?

For a given set Λ, how many samples should one use?
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Discrete least squares approx. using random evaluations

Algebraic formulation

Let Vh ⊂ V be a finite dimensional subspace (e.g. finite
elements) and {φj}Nh

j=1 a basis; mass matrix Mij = (φj , φi)V .

Let {ψp}p∈Λ be an orthonormal basis of PΛ w.r.t the weight ρ;
define the design matrix Dip =

1√
M
ψp(y

(i)).

Then P
M,ω
Λ u(x , y) =

∑
p∈Λ
∑Nh

j=1 cpjφj(x)ψp(y) and the tensor
C = {cpj} satisfies the normal equations

(DTD ⊗M)C = (DT ⊗M)U

with u(y(i)) =
∑Nh

j=1 uj(y
(i))φj and Uij =

1√
M
uj(y

(i)).

Since the matrix M is invertible, the previous problem decouples in
Nh least square problems, one for each spatial dof.

DTDC:,j = DTU:,j

F. Nobile (EPFL) Discrete least squares polynomial approx. MascotNum 2014, Zurich 15
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j=1 a basis; mass matrix Mij = (φj , φi)V .

Let {ψp}p∈Λ be an orthonormal basis of PΛ w.r.t the weight ρ;
define the design matrix Dip =

1√
M
ψp(y

(i)).

Then P
M,ω
Λ u(x , y) =

∑
p∈Λ
∑Nh

j=1 cpjφj(x)ψp(y) and the tensor
C = {cpj} satisfies the normal equations

(DTD ⊗M)C = (DT ⊗M)U

with u(y(i)) =
∑Nh

j=1 uj(y
(i))φj and Uij =

1√
M
uj(y

(i)).
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Discrete least squares approx. using random evaluations Convergence analysis

Error analysis

The error analysis goes through the equivalence of norms on the
polynomial space. Remind:

continuous norm: ‖v‖2
L2
ρ
(Γ;V ) =

∫
Γ
‖v(y)‖2Vρ(y)dy

discrete norm: ‖v‖2M,V = 1
M

∑M

i=1 ‖v(y(i))‖2V
Define the random variable

δ := sup
v∈PΛ(Γ)⊗V

∣∣∣∣∣
‖v‖2M,V

‖v‖2
L2
ρ
(Γ,V )

− 1

∣∣∣∣∣.

Whenever δ < 1, we have norm equivalence

(1− δ)‖v‖2L2
ρ
(Γ,V ) ≤ ‖v‖2M,V ≤ (1 + δ)‖v‖2L2

ρ
(Γ,V ), ∀v ∈ PΛ(Γ)⊗ V

(analogous to RIP in compressed sensing, see [Candès-Tao 2006,
Rahout-Ward 2012, ...])
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Discrete least squares approx. using random evaluations Convergence analysis

Theorem [Migliorati-Nobile-von Schwerin-Tempone ’11]

1 δ → 0 almost surely when M → ∞

2 ‖u − P
M,ω
Λ u‖L2

ρ
(Γ,V ) ≤ (1 +

√
1

1− δ
) inf
v∈PΛ(Γ)⊗V

‖u − v‖L∞(Γ,V )

Proof: for any v ∈ PΛ ⊗ V :

‖u − P
M,ω

Λ u‖L2
ρ
(Γ,V ) ≤ ‖u − v‖L2

ρ
(Γ,V ) + ‖v − P

M,ω

Λ u‖L2
ρ
(Γ,V )

≤ ‖u − v‖L2
ρ
⊗V +

√
1

1− δ
‖v − P

M,ω

Λ u‖M,V

≤ ‖u − v‖L2
ρ
(Γ,V ) +

√
1

1− δ
‖u − v‖M,V

A first bound on the constant Cδ = 1/
√
1− δ has been given in

[Migliorati-Nobile-von Schwerin-Tempone ’11] in the case of 1 uniform

random variable y ∼ U([−1, 1]) using order statistics: ∀α ∈ (0, 1), if

M ∝ #Λ2, then Cδ ≤ 3 log M+1
α with probability larger than 1− α.
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Discrete least squares approx. using random evaluations Convergence analysis

A general result
[Cohen-Davenport-Leviatan ’12], [Chkifa-Cohen-Migliorati-Nobile-Tempone ’13]

Let {ψp} be any orthonormal basis of L2ρ(Γ) and define

K (Λ) := sup
y∈Γ

(
∑

p∈Λ
|ψp(y)|2

)
= sup

v∈PΛ

‖v‖2L∞(Γ)

‖v‖2
L2
ρ
(Γ)

Theorem [Cohen-Davenport-Leviatan ’13]

For any γ > 0, and 0 < δ < 1, and βδ = δ + (1− δ) log(1− δ), if

M

logM
≥ 1 + γ

βδ
K (Λ), (2)

Then P
(
(1− δ)‖v‖2

L2
ρ
(Γ;V ) ≤ ‖v‖2M,V ≤ (1 + δ)‖v‖2

L2
ρ
(Γ;V )

)
≥ 1− 2M−γ

The result is based on properties of random matrices.
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Discrete least squares approx. using random evaluations Convergence analysis

Implications

Convergence in probability: with probability greater than 1− 2M−γ

‖u − P
M,ω
Λ u‖L2

ρ
(Γ;V ) ≤ (1 +

√
1

1− δ
) inf
v∈PΛ⊗V

‖u − v‖L∞(Γ,V )

Convergence in expectation: assume ‖u‖L∞(Γ,V ) ≤ τ and define the
truncation operator

Tτ : V → V , Tτ (v) =

{
v if ‖v‖V ≤ τ

τ
‖v‖V v , if ‖v‖V > τ

Then E
ω(‖u − TτP

M,ω
Λ u‖2L2

ρ
(Γ;V )) ≤ C‖u − PΛu‖2L2

ρ
(Γ,V ) + 8τ 2M−γ

Stability of discrete least squares: cond(DTD) ≤ 1+δ
1−δ

.
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Discrete least squares approx. using random evaluations Convergence analysis

Uniform random vector in [−1, 1]N

Let y1, . . . , yN be i.i.d. uniform random variables in [−1, 1].

Theorem [Chkifa-Cohen-Migliorati-Nobile-Tempone ’13]

For any N and any downward closed set Λ ⊂ N
N it holds

K (Λ) ≤ (#Λ)2.

Therefore, the discrete L2 projection is stable and optimally convergent
under the condition

M

logM
≥ 1 + γ

βδ
(#Λ)2

The result uses expansion on Legendre polynomials for which

|ψp(y)| ≤
N∏

n=1

√
2pn + 1, ∀y ∈ [−1, 1]N .
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Discrete least squares approx. using random evaluations Convergence analysis

Uniform random vector in [−1, 1]N

For specific sets Λ the condition can be improved.

For instance for the Total Degree polynomial space of degree w

the bound K (Λ) ≤ (#Λ)2 is very conservative
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Discrete least squares approx. using random evaluations Numerical results

Some numerical examples – 1D function

Condition number of DTD
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Discrete least squares approx. using random evaluations Numerical results

Some numerical examples – 1D function

Approximation of the meromorphic function φ(y) = 1
1+0.5y
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Some numerical examples – 1D function

Approximation of the meromorphic function φ(y) = 1
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Discrete least squares approx. using random evaluations Numerical results

Some numerical examples

Condition number of DTD – multiD – Total Degree poly. space
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Discrete least squares approx. using random evaluations Numerical results

Improvements on the quadratic relation
Improvements can be obtained by sampling from a different distribution ρ̂.
Let us consider the weighted least squares approx.

PM
Λ u = argmin

v∈PΛ(Γ)⊗V

1

M

M∑

k=1

ρ(y(k))

ρ̂(y(k))
‖u(k) − v(y(k))‖2V

where the sample {y(k)}k is drawn from the distribution ρ̂(y)dy.

ρ(y) = ρ̂(y) = Chebyshev distribution in [−1, 1]N , then the relation

M ∝ min{2N#Λ, (#Λ)
log(3)
log(2) } is enough to guarantee optimal

convergence [Chkifa-Cohen-Migliorati-N.-Tempone ’13]

ρ(y)=uniform and ρ̂(y)=Chebyshev distribution in [−1, 1]N , then, the
relation M ∝ 2N#Λ guarantees optimal convergence [Rauhut-Ward

’12]. However, the constant depends on N [Yan-Guo-Xiu ’12].

ρ(y)=Gaussian: still unclear. Numerically, the situation seems
to be worse. Improvements suggestd in [Tang-Zhou ’14]
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Discrete least squares approx. using random evaluations Numerical results

Numerical example with Chebyshev preconditioning

Expansion in Legendre polynomials (ρ(y)=uniform) and samples from
Chebyshev distribution (ρ̂(y)=Chebyshev)

condition number cond(DTD)
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Adaptive algorithms

Adaptive construction of polynomial spaces

{Λk}k≥0 sequence of downward closed multi-index sets, with Λ0 = {0}.
The sequence is adaptively computed by means of greedy algorithms
based on the random discrete L2 projection.

Definitions:

Margin M(Λ) associated to a multi-index set Λ:

M(Λ) = {p : p /∈ Λ and ∃j > 0 : p− ej ∈ Λ}

Reduced margin R(Λ) associated to a multi-index set Λ:

R(Λ) = {p : p /∈ Λ and ∀j = 1, . . . , d : pj 6= 0 ⇒ p− ej ∈ Λ}

set Λ and its Margin set Λ and its Reduced margin
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Adaptive algorithms

The Dörfler marking
Idea proposed by W. Dörfler in 1996 for Adaptive Finite Elements.

Given a multi-index set Λ, a subset R ⊆ R(Λ), a (continuous) function
e : R → R and a parameter θ ∈ (0, 1], we define a procedure

Dörfler = Dörfler(R , e, θ)

that computes a set F ⊆ R ⊆ R(Λ) of minimal cardinality such that
∑

p∈F
e(p)2 ≥ θ

∑

p∈R
e(p)2.

In practice, for any p ∈ R , the error indicator e(p) will be either an
estimator of the coefficient cp of the function u expanded over the
Legendre basis or the projected residual on the p-th Legendre basis
function.

This corresponds to choose a fraction θ of the energy associated

with the (estimates of the) coefficients in the set R .
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Adaptive algorithms

Orthogonal Matching Pursuit with Dörfler marking
Algorithm 1 Orthogonal Matching Pursuit with Dörfler marking

Set r0 = u(y), u0 ≡ 0 and Λ0 = {0},
for k = 1, . . . , kmax do

F1 = Dörfler(R(Λk−1), {|(rk−1, ψp)M,V |}p, θ1)
Λ̃k = Λk−1 ∪ F1

uk = argminv∈P
Λ̃k

‖u − v‖M,V , uk =
∑

p∈Λ̃k
c
(k)
p ψp

F2 = Dörfler(F1, {c(k)p }p, θ2)
Λk = Λk−1 ∪ F2
rk = u − uk |Λk

end for

θ1 ∈ (0, 1) and θ2 = 1: Dörfler marking only with the correlations.

θ1 = 1 and θ2 ∈ (0, 1): Dörfler marking only with the random discrete L2

projection on Λk−1 ∪R(Λk).
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Adaptive algorithms

Some remarks and open issues

The first Dörfler marking performs a screening of the reduced
margin, to avoid an L2 discrete minimization over a too large
polynomial space.

At each step the correlations {|(rk−1, ψp)M,V | : p ∈ R(Λk)} are
mutually uncoupled and cheap to compute, but might provide only a
rough estimate of the coefficients (depending on the choice of Mk).

The second Dörfler marking performs a selection based on the more
accurate estimates of the coefficients coming from the L2 projection.

At each step the adaptive algorithm remains stable and accurate by
choosing Mk ∝ (#Λk)

2 (consequence of the theory in the first part).

The adaptive algorithm generates a sequence {Λk}k≥0 of only quasi
best N-term sets.

Rate of convergence? Choice of θ1, θ2? What if Mk ∝ #Λk?
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Adaptive algorithms

A numerical test

Approximation of a meromorphic function (16-variables)

φ(y) =
1

1− γ · y , y ∼ U([−1, 1]16)

γ = 0.3 ∗ (1, 5 · 10−1, 10−1, 5 · 10−2, . . . , 5 · 10−8)
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Conclusions

Conclusions

We have derived conditions under which the random discrete least squares
approximation is stable and optimally convergent.

The condition M ≥ C (#Λ)2 for uniform random variables holds in any
dimension and for any “shape” of the polynomial space, opening the
possibility for adaptive algorithms.

The condition M ∼ (#Λ)2 seems to be too stringent in high dimension and
a linear scaling is often enough, making this technique more attractive for
high dimensional problems.

Still open questions on preconditioned least squares or unbounded random
variables.

We have proposed an adaptive algorithm based on a double Dörfler marking
that performs very well. The analysis is still ongoing.
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Conclusions

Thank you for your attention!
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