Machine Learning for Personalized Medicine

Jean-Philippe Vert

MascotNum 2014, ETH Zurich, April 24, 2014

Complexity of life

1 body = 10^{14} cells 1 cell = 6×10^{9} ACGT coding for 20,000 genes

Sequencing revolution

A flood of omics data

Interactome

Mutations Structural variations

Genome

Phenome

Transcriptome

Cancer

A cancer cell

- What is your risk of developing a cancer? (prevention)
- After diagnosis and treatment, what is the risk of relapse? (prognosis)
- What specific treatment will cure your cancer? (*personalized medicine*)

Learning molecular classifiers with network information

2 Kernel bilinear regression for toxicogenomics

Learning molecular classifiers with network information

2 Kernel bilinear regression for toxicogenomics

Breast cancer prognosis

Learning with regularization

Given a training set $(x_i, y_i)_{i=1,...,n}$ where $x_i \in \mathbb{R}^p$ (typically, n = 200, p = 20,000), we estimate a linear predictor

$$f_{\beta}(\mathbf{x}) = \beta^{\top} \mathbf{x}$$

by solving

$$\min_{\beta \in \mathbb{R}^{p}} \boldsymbol{R}(\beta) + \lambda \Omega(\beta)$$

where:

• $R(\beta)$ is a convex empirical risk, typically

$$\boldsymbol{R}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{\beta}^{\top} \boldsymbol{x}_i, \boldsymbol{y}_i)$$

for some loss function ℓ (squared error, logistic loss, hinge loss...)

Ω(β) is a regularization term, typically || β ||₂ (ridge regression, SVM...) or || β ||₁ (lasso...)

Gene selection, molecular signature

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology

Haury et al. (2011)

Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

Graph based penalty

$$f_{\beta}(x) = \beta^{\top} x$$
 $\min_{\beta} R(f_{\beta}) + \lambda \Omega(\beta)$

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

$$egin{aligned} \Omega(eta) &= \sum_{i \sim j} (eta_i - eta_j)^2 \,, \ \min_{eta \in \mathbb{R}^p} eta(f_eta) + \lambda \sum_{i \sim j} (eta_i - eta_j)^2 \end{aligned}$$

Graph based penalty

$$f_{\beta}(x) = \beta^{\top} x \qquad \min_{\beta} R(f_{\beta}) + \lambda \Omega(\beta)$$

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2,$$

$$\min_{\beta \in \mathbb{R}^p} R(f_{\beta}) + \lambda \sum_{i \sim j} (\beta_i - \beta_j)^2 \,.$$

Definition

The Laplacian of the graph is the matrix L = D - A.

Spectral penalty as a kernel

Theorem

The function $f(x) = \beta^{\top} x$ where β is solution of

$$\min_{\beta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\beta^{\top} x_{i}, y_{i}\right) + \lambda \sum_{i \sim j} \left(\beta_{i} - \beta_{j}\right)^{2}$$

is equal to $g(x) = \gamma^{\top} \Phi(x)$ where γ is solution of

$$\min_{\gamma \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell\left(\gamma^\top \Phi(\mathbf{x}_i), \mathbf{y}_i\right) + \lambda \gamma^\top \gamma,$$

and where

$$\Phi(x)^{\top}\Phi(x') = x^{\top}K_Gx'$$

for $K_G = L^*$, the pseudo-inverse of the graph Laplacian.

	/ 0.88	-0.12	0.08	-0.32	-0.52 \
	-0.12	0.88	0.08	-0.32	-0.52
L* =	0.08	0.08	0.28	-0.12	-0.32
	-0.32	-0.32	-0.12	0.48	0.28
	\ −0.52	-0.52	-0.32	0.28	1.08 /

Classifiers

b)

$$\Phi(x)^{\top}\Phi(x') = x^{\top}K_Gx'$$

with:

• $K_G = (c + L)^{-1}$ leads to

$$\Omega(\beta) = c \sum_{i=1}^{p} \beta_i^2 + \sum_{i \sim j} (\beta_i - \beta_j)^2$$

• The diffusion kernel:

 $K_G = \exp_M(-2tL)$.

penalizes high frequencies of β in the Fourier domain.

Other penalties without kernels

• Gene selection + Piecewise constant on the graph

$$\Omega(\beta) = \sum_{i \sim j} \left| \beta_i - \beta_j \right| + \sum_{i=1}^{p} \left| \beta_i \right|$$

• Gene selection + smooth on the graph

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2 + \sum_{i=1}^p |\beta_i|$$

Two solutions

$$egin{aligned} &\Omega_{\textit{intersection}}(eta) = \sum_{i \sim j} \sqrt{eta_i^2 + eta_j^2} \,, \ &\Omega_{\textit{union}}(eta) = \sup_{lpha \in \mathbb{R}^p: orall lpha > j, \mid lpha_j^2 + lpha_j^2 \mid \leq 1} lpha^ op eta \, . \end{aligned}$$

Generalization: Group lasso with overlapping groups

$$\Omega_{\text{latent}}^{\mathcal{G}}(\boldsymbol{w}) \triangleq \begin{cases} \min_{\boldsymbol{v}} \sum_{g \in \mathcal{G}} \|\boldsymbol{v}_{g}\|_{2} \\ \boldsymbol{w} = \sum_{g \in \mathcal{G}} \boldsymbol{v}_{g} \\ \text{supp}(\boldsymbol{v}_{g}) \subseteq \boldsymbol{g}. \end{cases}$$

Properties

- Resulting support is a *union* of groups in G.
- Possible to select one variable without selecting all the groups containing it.
- Equivalent to group lasso when there is no overlap

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega_{\text{latent}}^{\mathcal{G}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{latent}}^{\mathcal{G}}(w)$.

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g\in\mathcal{G}}$ such that

 $ig\{ g\in \mathcal{G}|\hat{v}_g
eq 0ig\} =ig\{ g\in \mathcal{G}|ar{v}_g
eq 0ig\}$.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega_{\text{latent}}^{\mathcal{G}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{latent}}^{\mathcal{G}}(w)$.

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g\in\mathcal{G}}$ such that

$$ig\{ oldsymbol{g} \in \mathcal{G} | \hat{oldsymbol{v}}_{oldsymbol{g}}
eq 0 ig\} = ig\{ oldsymbol{g} \in \mathcal{G} | oldsymbol{ar{v}}_{oldsymbol{g}}
eq 0 ig\} \,.$$

Experiments

Synthetic data: overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups :{1,...,10}, {9,...,18},...,{73,...,82}.
- Support: union of 4th and 5th groups.
- Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and $\Omega^{\mathcal{G}}_{\text{latent}}(.)$ (middle), comparison of the RMSE of both methods (right).

Lasso signature (accuracy 0.61)

Graph Lasso signature (accuracy 0.64)

CDC45L - ORC6L VEGFA - VEGFB PC5K6 - BTG2 ALDH3A2 - C6orf3S AURKB - BIRC5 PSMD2 - ZBTB16 PLP2 - BCAP31 FADS1 - FADS2

2 Kernel bilinear regression for toxicogenomics

Pharmacogenomics / Toxicogenomics

DREAM8 Toxicogenetics challenge

156 chemicals

Genotypes from the 1000 genome project RNASeq from the Geuvadis project

- Cell line X, chemical Y, toxicity Z.
- Bilinear regression model:

$$Z = f(X, Y) + b(Y) + \epsilon,$$

• Estimation by kernel ridge regression:

$$\min_{f \in \mathcal{H}, b \in \mathbb{R}^p} \sum_{i=1}^n \sum_{j=1}^p \left(f(x_i, y_j) + b_j - z_{ij} \right)^2 + \lambda \|f\|^2,$$

Theorem 1. Let $Z \in \mathbb{R}^{n \times p}$ be the response matrix, and $K_X \in \mathbb{R}^{n \times n}$ and $K_Y \in \mathbb{R}^{p \times p}$ be the kernel Gram matrices of the *n* cell lines and *p* chemicals, with respective eigenvalue decompositions $K_X = U_X D_X U_X^{\top}$ and $K_Y = U_Y D_Y U_Y^{\top}$. Let $\gamma = U_X^{\top} \mathbf{1}_n$ and $S \in \mathbb{R}^{n \times p}$ be defined by $S_{ij} = 1/(\lambda + D_X^i D_Y^j)$, where D_X^i (resp. D_Y^i) denotes the *i*-th diagonal term of D_X (resp. D_Y). Then the solution (f^*, b^*) of (2) is given by

$$b^* = U_Y Diag \left(S^\top \gamma^{\circ 2} \right)^{-1} \left(S^\top \circ \left(U_Y^\top Z^\top U_X \right) \right) \gamma \tag{3}$$

and

$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \quad f^*(x,y) = \sum_{i=1}^n \sum_{j=1}^p \alpha^*_{i,j} K_X(x_i,x) K_Y(y_i,y), \qquad (4)$$

where

$$\alpha^* = U_X \left(S \circ \left(U_X^\top \left(Z - \mathbf{1}_n b^{*\top} \right) U_Y \right) \right) U_Y^\top.$$
(5)

£. SNP AG cell line descriptors CI-NH_a

drug descriptors

drug descriptors

$\bullet \ \textbf{K}_{\text{cell}}:$

- \implies 29 cell line kernels tested
- \implies 1 kernel that *integrate all information*
- \implies deal with missing data

• K_{cell} :

- \implies 29 cell line kernels tested
- \implies 1 kernel that *integrate all information*
- \implies deal with missing data

Kdrug :

- \implies 48 drug kernels tested
- ⇒ multi-task kernels

Cell line data integration

Covariates . linear kernel

SNPs . 10 gaussian kernels

RNA-seq . 10 gaussian kernels

Cell line data integration

Covariates . linear kernel

SNPs . 10 gaussian kernels

RNA-seq . 10 gaussian kernels

- Multi-Task
- Feature-based
- Empirical
- Integrated

independent regression for each drug

Multi-Task

- Feature-based
- Empirical

Integrated

sharing information across drugs

- Multi-Task
- Feature-based
- Empirical
- Integrated

Linear kernel and 10 gaussian kernels based on features:

- CDK (160 descriptors) and SIRMS (9272 descriptors)
- Graph kernel for molecules (2D walk kernel)
- Fingerprint of 2D substructures (881 descriptors)
- Ability to bind human proteins (1554 descriptors)

Multi-task drug kernels

Empirical correlation

Dirac

- Multi-Task
- Feature-based
- Empirical
- Integrated

- Multi-Task
- Feature-based
- Empirical
- Integrated

Integrated kernel:

• Combine all information on drugs

29x48 kernel combinations: CV results

CI

1) Alse filter and the second second

29x48 kernel combinations: CV results

KsnpRbf6.txt KsnpRbf7.txt KsnpRbf8.txt KrnaseqRbf1.txt KsnpRbf5.txt KsnpBbf4 txt KcovariatesSex.txt KsnpRbf2.txt KsnpRbf3.txt KsnpRbf1.txt integrated KrnaseqRbf3.txt KrnaseqRbf2.txt KsnpMean and uniform dirac KrnaseqRbf6.txt KrnaseqRbf7.txt KrnaseqRbf5.txt KrnaseqRbf8.txt covariates kernels KrnaseqRbf10.txt KrnaseqRbf9.txt KrnaseqRbf4.txt KrnasegMean KcovariatesBatch.txt Kint Kcovariates.txt kRbf5.tx kRbf4.tx kRbf6.tx άŢ KsirmsRbf6.1 KsirmsRbf7.1 3053. Kmultitask (e mpir Kmultita Kmultita KsirmsRbf KsirmsRbf KpredtargetM KcdkM P-KpredtargetF KpredtargetF Kpredtarg Apredta Apredt

CI

29x48 kernel combinations: CV results

CI

Kernel on cell lines: CV results

Kernel on drugs: CV results

Mean CI for chemicals kernels

Final Submission (ranked 2nd)

Mean CI for chemicals kernels

Empirical kernel on drugs

Integrated kernel on cell lines

Thanks

