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Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

Black box functions

Here we mainly focus on cases where a system of interest can be modelled

as (or involves) a costly-to-evaluate deterministic function:

f : x ∈ D ⊂ E −→ f (x) ∈ F

for some given input space E and output space F –often E ⊂ R
d and F ⊂ R.
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Actually, they can serve as prior distribution on function spaces!
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On ANOVA decompositions of kernels and GRF paths

Conditional simulations and Kriging (1D)
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Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

Kriging at a glance: from geostats to machine learning

Originally, Kriging refers to ”optimal” linear prediction of a random field

(Z (x))x∈D (D ⊂ R
2 or R3) based on observations at Xn := {x1, . . . , xn}, i.e.

An := {(Z (x1), . . . ,Z (xn)) = zn}

where zn = (z(x1), . . . , z(xn)) with z(.) = Z (.;ω) for some ω ∈ Ω.
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Originally, Kriging refers to ”optimal” linear prediction of a random field

(Z (x))x∈D (D ⊂ R
2 or R3) based on observations at Xn := {x1, . . . , xn}, i.e.

An := {(Z (x1), . . . ,Z (xn)) = zn}

where zn = (z(x1), . . . , z(xn)) with z(.) = Z (.;ω) for some ω ∈ Ω.

Kriging may be cast as an ancester/a particular or more general case of

various contemporary methods from different fields, including

Gaussian Process Regression

Interpolation Splines

Kernel methods and regularization in RKHS
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Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

A few references about those 3 facets

C. E. Rasmussen and C. K. I. Williams (2006)

Gaussian Processes for Machine Learning

The MIT Press

G. Wahba (1990)

Spline Models for Observational Data

CBMS-NSF Regional Conference Series in Applied Mathematics

A. Berlinet, C. Thomas-Agnan (2004)

Reproducing Kernel Hilbert Spaces in Probability and Statistics

Kluwer Academic Publishers
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Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

Interpolating deterministic functions by Kriging

Prediction by Kriging (based on 9 points) of the Branin-Hoo function.

The covariance is here a stationary anisotropic Matérn kernel (ν = 5/2) with

scale and range parameters estimated by Maximum Likelihood.
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✶

✶ ✶
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✶
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mn(x) = kn(x)
T K−1

n zn + µ̂n(1 − kn(x)
T K−1

n ✶n)

kn(x, x
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... ... .... ....
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
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

 , µ̂n =
✶

T
n K

−1
n zn

(✶T
n K
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.

If µ is known (or with improper uniform prior) and Z − µ is assumed

Gaussian, then mn and kn are Z ’s conditional mean and covariance and

L(Z |An) = GRF
(
mn(·), kn(·, ·′)

)
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Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

More on the Bayesian approach: selected references

H. Omre and K. Halvorsen (1989).

The bayesian bridge between simple and universal kriging.

Mathematical Geology, 22 (7):767-786.

M. S. Handcock and M. L. Stein (1993).

A bayesian analysis of kriging.

Technometrics, 35(4):403-410.

A. O’Hagan (2006)

Bayesian analysis of computer code outputs: a tutorial.

Reliability Engineering and System Safety, 91:1290-1300.

A.W. Van der Vaart and J. H. Van Zanten (2008)

Rates of contraction of posterior distributions based on Gaussian process priors.

Annals of Statistics, 36:1435-1463.
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On ANOVA decompositions of kernels and GRF paths

In second-order random field models with constant mean, prior assumptions

on f are implicitly accounted for through the choice of the covariance

k : (x, x′) ∈ D × D −→ k(x, x′) = cov(Zx,Zx′) ∈ R
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These properties are rather to be understood in a ”mean square” sense.
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In second-order random field models with constant mean, prior assumptions

on f are implicitly accounted for through the choice of the covariance

k : (x, x′) ∈ D × D −→ k(x, x′) = cov(Zx,Zx′) ∈ R

Classical invariance notions for k

Second-order stationarity (k invariant under simultaneous translations

of x and x′)

Isotropy (k invariant under simultaneous rigid motions of x and x′).

These properties are rather to be understood in a ”mean square” sense.

The main focus here is on functional properties of random field paths driven

by k , both in Gaussian and in more general second-order settings.
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Further operators in the Gaussian case. Applications.

Invariance under the action of a finite group

Let us assume that f is known a priori to be left unchanged by a set of

symmetries (e.g., by physical arguments).

Is it possible to incorporate such “structural prior” into a random field model?
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Invariance under the action of a finite group

Let us assume that f is known a priori to be left unchanged by a set of

symmetries (e.g., by physical arguments).

Is it possible to incorporate such “structural prior” into a random field model?

Property

Let G be a finite groupe acting measurably on D via

Φ : (x, g) ∈ D × G −→ Φ(x, g) = g.x ∈ D

and Z be a second-order random field indexed by D with constant mean.

(∀x ∈ D, P(∀g ∈ G, Zx = Zg.x) = 1) ⇔ (∀x ∈ D, ∀g ∈ G, k(g.x, ·) = k(x, ·))
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Further operators in the Gaussian case. Applications.

Invariant kernels enable invariant simulations
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Further operators in the Gaussian case. Applications.

Another invariance: random fields with additive paths

Let D =
∏d

i Di where Di ⊂ R. f ∈ R
D is called additive when there exists

fi ∈ R
Di (1 ≤ i ≤ d) such that f (x) =

∑d
i=1 fi(xi) (x = (x1, . . . , xd) ∈ D).
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Another invariance: random fields with additive paths

Let D =
∏d

i Di where Di ⊂ R. f ∈ R
D is called additive when there exists

fi ∈ R
Di (1 ≤ i ≤ d) such that f (x) =

∑d
i=1 fi(xi) (x = (x1, . . . , xd) ∈ D).

GRF models possessing additive paths (with k(x, x′) =
∑d

i=1 ki(xi , x
′
i )) have

been considered in Nicolas Durrande’s Ph.D. thesis (2011):
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Pathwise properties of fields with invariant kernels

Definition: Composition operator

Let us consider a (non-necessarily bi/in/sur-jective) function

v : x ∈ D −→ v(x) ∈ D.

Tv : f ∈ R
D −→ Tv (f ) = f ◦ v ∈ R

D

defines the composition operator associated with v .
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Pathwise properties of fields with invariant kernels

Definition: Composition operator

Let us consider a (non-necessarily bi/in/sur-jective) function

v : x ∈ D −→ v(x) ∈ D.

Tv : f ∈ R
D −→ Tv (f ) = f ◦ v ∈ R

D

defines the composition operator associated with v .

Property

Let Z be a centred second-order RF with covariance kernel k and T be a

finite linear combination of composition operators. Then k is T-invariant, i.e.

T (k(., x′)) = k(., x′) (x′ ∈ D)

If and only if P (Zx = T (Z )x) = 1 (x ∈ D).
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On ANOVA decompositions of kernels and GRF paths

Kernels invariant under a combination of compositions

Further operators in the Gaussian case. Applications.

Particular case of additivity

One can show that f is additive ⇐⇒ f is invariant under

T (f )(x) =
d∑

i=1

f (vi(x))− (d − 1)f (a)

where a ∈ D is arbitrary and vi(x) = (a1, . . . , ai−1, xi︸︷︷︸
ith coordinate

, ai+1, . . . , ad)

This leads to Z additive if and only if k (is positive definite and) writes

k(x, x′) =

d∑

i=1

d∑

j=1

kij(xi , x
′
j )
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Particular case of additivity

One can show that f is additive ⇐⇒ f is invariant under

T (f )(x) =
d∑

i=1

f (vi(x))− (d − 1)f (a)

where a ∈ D is arbitrary and vi(x) = (a1, . . . , ai−1, xi︸︷︷︸
ith coordinate

, ai+1, . . . , ad)

This leads to Z additive if and only if k (is positive definite and) writes

k(x, x′) =

d∑

i=1

d∑

j=1

kij(xi , x
′
j )

Particular case of group invariance

T (f )(x) =
∑#G

i=1
1

#G
f (vi(x)) with vi(x) := gi .x

leads to Z Φ-invariant if and only if k is argumentwise invariant.
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Extension to further operators in the Gaussian case

In the Gaussian case, the last results can be extended to a wider class of

operators using the Loève isometry Ψ between L(Z ) (The Hilbert space

generated by Z ) and the RKHS associated with k , H(k).
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In the Gaussian case, the last results can be extended to a wider class of

operators using the Loève isometry Ψ between L(Z ) (The Hilbert space

generated by Z ) and the RKHS associated with k , H(k).

Let T be an operator defined on the paths of Z such that

T (Z )x ∈ L(Z ) (x ∈ D). T induces an operator T from H(k) to R
D , defined by

T (h)(x) = cov(T (Z )x,Ψ(h))
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Kernels invariant under a combination of compositions

Further operators in the Gaussian case. Applications.

Extension to further operators in the Gaussian case

In the Gaussian case, the last results can be extended to a wider class of

operators using the Loève isometry Ψ between L(Z ) (The Hilbert space

generated by Z ) and the RKHS associated with k , H(k).

Let T be an operator defined on the paths of Z such that

T (Z )x ∈ L(Z ) (x ∈ D). T induces an operator T from H(k) to R
D , defined by

T (h)(x) = cov(T (Z )x,Ψ(h))

Theorem

(∀x ∈ D, P (Zx = T (Z )x) = 1) ⇔ (T = IdH)
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Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

Kernels invariant under a combination of compositions

Further operators in the Gaussian case. Applications.

Examples (Gaussian case)

a) Let ν be a measure on D s.t.
∫

D

√
k(u,u)dν(u) < +∞.

Then Z has centred paths iff
∫

D
k(x,u)dν(u) = 0, ∀x ∈ D.

For instance, given any p.d. kernel k , k0 defined by

k0(x, y) = k(x, y)−

∫

k(x,u)dν(u)−

∫

k(y,u)dν(u) +

∫

k(u, v)dν(u)dν(v)

satisfies the above condition.
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Examples (Gaussian case)

a) Let ν be a measure on D s.t.
∫

D

√
k(u,u)dν(u) < +∞.

Then Z has centred paths iff
∫

D
k(x,u)dν(u) = 0, ∀x ∈ D.

For instance, given any p.d. kernel k , k0 defined by

k0(x, y) = k(x, y)−

∫

k(x,u)dν(u)−

∫

k(y,u)dν(u) +

∫

k(u, v)dν(u)dν(v)

satisfies the above condition.

b) Solutions to the Laplace equation are called harmonic functions. Let us

call harmonic any p.d. kernel solving the Laplace equation argumentwise:

(∆k(·, x′)) = 0 (x′ ∈ D).

An example of such harmonic kernel over R2 × R
2 can be found in the recent

literature (Schaback et al. 2009):

kharm(x, y) = exp

(

x1y1 + x2y2

θ2

)

cos

(

x2y1 − x1y2

θ2

)

.
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Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

Kernels invariant under a combination of compositions

Further operators in the Gaussian case. Applications.

Example sample paths invariant under various T ’s
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(a) Zero-mean paths of the

centred GP with kernel k0.
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(b) Harmonic path of a GRF

with kernel kharm.
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On ANOVA decompositions of kernels and GRF paths

Kernels invariant under a combination of compositions

Further operators in the Gaussian case. Applications.

Kriging with invariant kernels: example a)
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(c) GPR with kernel k
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(d) GPR with kernel k0

Figure: Comparison of two kriging models. The left one is based on a

Gaussian kernel. The right one incorporates the zero-mean property.
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Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

Kernels invariant under a combination of compositions

Further operators in the Gaussian case. Applications.

Kriging with invariant kernels: example b)

(a) Mean predictor and 95%

confidence intervals
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(b) prediction error

Figure: Example of kriging model based on a harmonic kernel.

david.ginsbourger@stat.unibe.ch Structural priors in GRF models 27 / 58



Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

State of the art

Some recent contributions
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1 Introduction: Background and motivations

2 Covariance kernels and invariances
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Further operators in the Gaussian case. Applications.
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Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

State of the art

Some recent contributions

Set up: Functional ANOVA decomposition

Specific assumptions on D and f : D = D1 × · · · × Dd , where each Di ⊂ R is

endowed with a probability measure µi , D is endowed with the product

measure µ := µ1 × · · · × µd , and f ∈ L2(µ).

The Functional ANOVA (or Sobol’-Hoeffding ) decomposition consists in

expanding f into a sum of orthogonal terms of increasing complexity:

f =
∑

u⊆{1,...,d}

fu
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Set up: Functional ANOVA decomposition

Specific assumptions on D and f : D = D1 × · · · × Dd , where each Di ⊂ R is

endowed with a probability measure µi , D is endowed with the product

measure µ := µ1 × · · · × µd , and f ∈ L2(µ).

The Functional ANOVA (or Sobol’-Hoeffding ) decomposition consists in

expanding f into a sum of orthogonal terms of increasing complexity:

f =
∑

u⊆{1,...,d}

fu

By orthogonality, ||f ||2
L2(µ) =

∑
u⊆{1,...,d} σ

2
u, where σ2

u := ||fu||2L2(µ).

The ratios Su := σ2
u/(

∑
v6=∅ σ

2
v) are referred to as Sobol’ indices (u 6= ∅).
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Some recent contributions

Before going further: A few fundamental references

W. Hoeffding (1948)

A class of statistics with asymptotically normal distribution

Annals of Mathematical Statistics, 19, 293-325

B. Efron and C. Stein (1981)

The jacknife estimate of variance

The Annals of Statistics, 9:586-596

A. Antoniadis (1984)

Analysis of variance on function spaces

Math. Oper. Forsch. und Statist., series Statistics, 15(1):59-71

I.M. Sobol’ (1993)

Sensitivity estimates for nonlinear mathematical models

Mathematical Modelling and Computational Experiments, 1:407-414.
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State of the art

Some recent contributions

Revisiting FANOVA: an operator approach

Let F be a subspace of RD , Pj (1 ≤ j ≤ d) be set of commuting projections on

F s.t. Pj(f ) = f if f does not depend on xj , and Pj(f ) does not depend on xj .
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Revisiting FANOVA: an operator approach

Let F be a subspace of RD , Pj (1 ≤ j ≤ d) be set of commuting projections on

F s.t. Pj(f ) = f if f does not depend on xj , and Pj(f ) does not depend on xj .

The identity operator IF : F −→ F can be decomposed as

IF =
d∏

j=1

[(I − Pj) + Pj ] =
∑

u⊆{1,...,d}

Tu︷ ︸︸ ︷


∏

j∈u

(I − Pj)








∏

j∈{1,...,d}\u

Pj



,

david.ginsbourger@stat.unibe.ch Structural priors in GRF models 31 / 58



Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

State of the art

Some recent contributions

Revisiting FANOVA: an operator approach

Let F be a subspace of RD , Pj (1 ≤ j ≤ d) be set of commuting projections on

F s.t. Pj(f ) = f if f does not depend on xj , and Pj(f ) does not depend on xj .

The identity operator IF : F −→ F can be decomposed as

IF =
d∏

j=1

[(I − Pj) + Pj ] =
∑

u⊆{1,...,d}

Tu︷ ︸︸ ︷


∏

j∈u

(I − Pj)








∏

j∈{1,...,d}\u

Pj



,

whereof ∀f ∈ F , f =
∑

u⊆{1,...,d} fu with fu := Tu(f ).

F.Y. Kuo, I.H. Sloan, G.W. Wasilkowski, and H. Wozniakowski (2010)

On decompositions of multivariate functions

Mathematics of Computation, 79, 953 - 966
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The standard FANOVA is obtained when F is the set of square integrable

functions on D = [0, 1]d , and the Pj ’s are partial integration operators:

Pj(f )(x) =

∫ 1

0

f (x1, . . . , xj−1, t , xj+1, . . . , xd)dµj(t),

leading to the following operators:

Tu(f ) =
∑

v⊆u

(−1)|u|−|v|

∫

[0,1]d−|v|
f (x)dµ−v(x−v)

where µ−v denotes
∏

j∈[1...d ]\v µj and x−v is defined accordingly.
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The standard FANOVA is obtained when F is the set of square integrable

functions on D = [0, 1]d , and the Pj ’s are partial integration operators:

Pj(f )(x) =

∫ 1

0

f (x1, . . . , xj−1, t , xj+1, . . . , xd)dµj(t),

leading to the following operators:

Tu(f ) =
∑

v⊆u

(−1)|u|−|v|

∫

[0,1]d−|v|
f (x)dµ−v(x−v)

where µ−v denotes
∏

j∈[1...d ]\v µj and x−v is defined accordingly.

Example: Low order terms of the decomposition (i, j ∈ {1, . . . , d})

T∅(f ) =
∫

[0,1]d f (x)dµ(x)

T{i}(f )(xi ) =
∫

[0,1]d−1 f (x)dµ−{i}(x−{i})−
∫

[0,1]d f (x)dµ(x)

T{i,j}(f )(xi , xj ) =
∫

[0,1]d−2 f (x)dµ−{i,j}(x−{i,j})−
∫

[0,1]d−1
f (x)dµ−{i}(x−{i})

−
∫

[0,1]d−1 f (x)dµ−{j}(x−{j}) +
∫

[0,1]d f (x)dµ(x)
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Example on a simple test function

We consider the following test function over [0, 5]2:

f (x) = sin(x1) + x1 cos(x2)

x1

 0

 0  1  2
 3

 4
 5

 4

-2

-4

-6 5

 4

 3

 1

 2

x2

 0

 2
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Example on a simple test function

The FANOVA decomposition of f can be obtained analytically:

f∅(x) = 0.2(1 − cos(5)) + 0.5 sin(5)

f{1}(x) = sin(x1) + 0.2x1 sin(5)− f∅

f{2}(x) = 0.2(1 − cos(5)) + 0.1 cos(x2)− f∅

f{1,2}(x) = f (x)− f{1}(x)− f{2}(x)− f∅

x1
 0

 1

 2

 3

 4
 5

x2
 0

 5

 5 4
 2  3

 1 0

15

10
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Back to the set up: how do deal with a costly f?

Assuming that the value of f at points Xn = {x1, . . . , xn} ⊂ D is known, how

to estimate ANOVA decompositions terms and Sobol’ indices?
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Back to the set up: how do deal with a costly f?

Assuming that the value of f at points Xn = {x1, . . . , xn} ⊂ D is known, how

to estimate ANOVA decompositions terms and Sobol’ indices?

Popular workflow: replace f in ANOVA decompositions and global SA by a

(cheaper) approximation f̃ based on {(xi , f (xi)), 1 ≤ i ≤ n}, e.g.,

Standard linear models

Polynomial chaos models (Sudret et al.)

Smoothing spline models (Wahba et al.)
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Back to the set up: how do deal with a costly f?

Assuming that the value of f at points Xn = {x1, . . . , xn} ⊂ D is known, how

to estimate ANOVA decompositions terms and Sobol’ indices?

Popular workflow: replace f in ANOVA decompositions and global SA by a

(cheaper) approximation f̃ based on {(xi , f (xi)), 1 ≤ i ≤ n}, e.g.,

Standard linear models

Polynomial chaos models (Sudret et al.)

Smoothing spline models (Wahba et al.)

Kriging and Gaussian random field (GRF) models
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On ANOVA decompositions of kernels and GRF paths

State of the art

Some recent contributions

About Oakley and O’Hagan’s contributions

O&O’H have suggested to estimate ANOVA terms in the Bayesian

framework, where a GRF model, say (Zx)x∈D , is assumed for f . Analytical

expressions of the posterior means of ANOVA terms were derived in

J.E. Oakley and A. O’Hagan (2004)

Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach

Journal of the Royal Statistical Society (Series B), 66(3):751-769
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State of the art

Some recent contributions

About Oakley and O’Hagan’s contributions

O&O’H have suggested to estimate ANOVA terms in the Bayesian

framework, where a GRF model, say (Zx)x∈D , is assumed for f . Analytical

expressions of the posterior means of ANOVA terms were derived in

J.E. Oakley and A. O’Hagan (2004)

Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach

Journal of the Royal Statistical Society (Series B), 66(3):751-769

Posterior means computed by multi-dimensional numerical integration.

k is by default a stationary Gaussian kernel

Su’s are estimated through a ratio of posterior means.
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On ANOVA decompositions of kernels and GRF paths

State of the art

Some recent contributions

About Marrel et al.’s contribution

Marrel et al. have proposed to investigate (approximate) posterior

distributions of the Su’s by appealing to conditional simulations.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant (2009)

Calculations of Sobol indices for the Gaussian process metamodel

Reliability Engineering and System Safety 94:742-751
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About Marrel et al.’s contribution

Marrel et al. have proposed to investigate (approximate) posterior

distributions of the Su’s by appealing to conditional simulations.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant (2009)

Calculations of Sobol indices for the Gaussian process metamodel

Reliability Engineering and System Safety 94:742-751

σ2
u’s are simulated by combining the known distributions of the Tu(Z )’s and

numerical approximation schemes for the integrals.
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About Marrel et al.’s contribution

Marrel et al. have proposed to investigate (approximate) posterior

distributions of the Su’s by appealing to conditional simulations.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant (2009)

Calculations of Sobol indices for the Gaussian process metamodel

Reliability Engineering and System Safety 94:742-751

σ2
u’s are simulated by combining the known distributions of the Tu(Z )’s and

numerical approximation schemes for the integrals.

Again, k is chosen among standard stationary covariance kernels

The approach proves useful on a 20-dimensional test case

Links between the chosen k and Sobol’ indices are not discussed
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Back to our simple test function

Here the test function f (x) = sin(x1) + x1 cos(x2) is evaluated at a 9-point

grid design, and a GRF model with Gaussian kernel is fitted to the data.
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GRF conditional simulations
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Back to our simple test function

Following Marrel et al., posterior distributions of Sobol’ indices are

approximated relying on numerical integration and Monte Carlo :
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State of the art
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About Durrande et al.’s contribution

Durrande et al. have focused on the choice of k , and showed that for a

particular class of so-called ANOVA kernels

k(x, x′) =

d∏

i=1

(1 + k0(xi , x
′
i )),

the FANOVA decomposition of the kriging mean predictor m can be

calculated without numerical integration.
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About Durrande et al.’s contribution

Durrande et al. have focused on the choice of k , and showed that for a

particular class of so-called ANOVA kernels

k(x, x′) =

d∏

i=1

(1 + k0(xi , x
′
i )),

the FANOVA decomposition of the kriging mean predictor m can be

calculated without numerical integration. Further, m’s Sobol’ indices write:

Su(m) =
Z t

Xn
K

−1
(⊙

i∈u Γi

)
K

−1ZXn

Z t
Xn

K−1

(⊙d
i=1(1n×n + Γi)− 1n×n

)
K−1ZXn

where Γi is the n × n matrix Γi =
∫

Di
ki

0(xi)k
i
0(xi)

t
dµi(xi).

N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro (2013)

ANOVA kernels and RKHS of zero mean functions for model-based sensitivity
analysis

Journal of Multivariate Analysis, 155:57-67
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Back to our simple example

Using an ad hoc ANOVA kernel, the FANOVA decomposition of the GRF

posterior mean is obtained analytically:

 0

 1

 2
 3

 4
 5

 0

 5

10

 5 4
 0  1  2  3

15

david.ginsbourger@stat.unibe.ch Structural priors in GRF models 41 / 58



Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

State of the art

Some recent contributions

Focus and starting research questions

Claim: Assuming that f is some realization of a centred GRF Z with kernel k

goes with implicit assumptions concerning f ’s FANOVA decomposition. . .
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Focus and starting research questions

Claim: Assuming that f is some realization of a centred GRF Z with kernel k

goes with implicit assumptions concerning f ’s FANOVA decomposition. . .

How are the different FANOVA terms (jointly) distributed?

What is the interplay between k and this distribution?

How does conditioning on data affect those results?

What consequences for Sobol’ indices estimation under a GRF prior?
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A fundamental decomposition result for GRFs

Let (Zx)x∈D be a centred GRF with squared-integrable paths (a.s.) and

denote by k : D × D → R its covariance kernel.

Then Z admits the following pathwise ANOVA decomposition almost surely:

Z· =
∑

u⊆{1,...,d}

Tu(Z )·

where the (Tu(Z )x)x∈D are centred GRFs with respective covariance kernels

Tu ⊗ Tu(k) (u ⊆ {1, . . . , d}).

Moreover, (Tu(Z )x;u ⊆ {1, . . . , d})x∈D defines a 2d -dimensional

vector-valued GRF with cross-covariances Tu ⊗ Tv(k) ((u, v) ⊆ {1, . . . , d}2).
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A fundamental decomposition result for GRFs

Let (Zx)x∈D be a centred GRF with squared-integrable paths (a.s.) and

denote by k : D × D → R its covariance kernel.

Then Z admits the following pathwise ANOVA decomposition almost surely:

Z· =
∑

u⊆{1,...,d}

Tu(Z )·

where the (Tu(Z )x)x∈D are centred GRFs with respective covariance kernels

Tu ⊗ Tu(k) (u ⊆ {1, . . . , d}).

Moreover, (Tu(Z )x;u ⊆ {1, . . . , d})x∈D defines a 2d -dimensional

vector-valued GRF with cross-covariances Tu ⊗ Tv(k) ((u, v) ⊆ {1, . . . , d}2).

Remark: The same would hold for any finite additive decomposition of the

identity operator on a space containing the paths with probability 1.
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Example: The 1-dimensional Brownian Motion

Let (Bt)t∈[0,1] be a Brownian Motion on [0, 1], i.e. a centred Gaussian field

(d = 1 → “process”) with kernel (s, t) ∈ [0, 1]2 → k(s, t) = min(s, t).

The 1-dimensional pathwise ANOVA decomposition of B writes

Bt =

∫ 1

0

Bv dv

︸ ︷︷ ︸
(T∅B)

t

+

(
Bt −

∫ 1

0

Bv dv

)

︸ ︷︷ ︸
(T{1}B)

t
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Example: The 1-dimensional Brownian Motion

Let (Bt)t∈[0,1] be a Brownian Motion on [0, 1], i.e. a centred Gaussian field

(d = 1 → “process”) with kernel (s, t) ∈ [0, 1]2 → k(s, t) = min(s, t).

The 1-dimensional pathwise ANOVA decomposition of B writes

Bt =

∫ 1

0

Bv dv

︸ ︷︷ ︸
(T∅B)

t

+

(
Bt −

∫ 1

0

Bv dv

)

︸ ︷︷ ︸
(T{1}B)

t

T∅B is a centred Gaussian process with covariance kernel

(T∅ ⊗ T∅k)(s, t) =

(∫ 1

0

∫ 1

0

min(s, t)dsdt

)
1[0,1]2(s, t) =

1

3
1[0,1]2(s, t)

david.ginsbourger@stat.unibe.ch Structural priors in GRF models 44 / 58



Introduction: Background and motivations

Covariance kernels and invariances

On ANOVA decompositions of kernels and GRF paths

State of the art

Some recent contributions

Example: The 1-dimensional Brownian Motion

Let (Bt)t∈[0,1] be a Brownian Motion on [0, 1], i.e. a centred Gaussian field

(d = 1 → “process”) with kernel (s, t) ∈ [0, 1]2 → k(s, t) = min(s, t).

The 1-dimensional pathwise ANOVA decomposition of B writes

Bt =

∫ 1

0

Bv dv

︸ ︷︷ ︸
(T∅B)

t

+

(
Bt −

∫ 1

0

Bv dv

)

︸ ︷︷ ︸
(T{1}B)

t

T∅B is a centred Gaussian process with covariance kernel

(T∅ ⊗ T∅k)(s, t) =

(∫ 1

0

∫ 1

0

min(s, t)dsdt

)
1[0,1]2(s, t) =

1

3
1[0,1]2(s, t)

T{1}B is a centred Gaussian process with covariance kernel

(T{1} ⊗ T{1}k)(s, t) =

(
min(s, t)− (t − t2

2
)− (s − s2

2
) +

1

3

)
1[0,1]2(s, t)
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Associated ANOVA decomposition of p.d. kernels

Likewise, starting from a squared-integrable p.d. kernel k : D × D → R, we

obtain the following ”double” (tensor product) decomposition :

k =
∑

u⊆{1,...,d}

∑

v⊆{1,...,d}

Tu ⊗ Tv(k).
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Associated ANOVA decomposition of p.d. kernels

Likewise, starting from a squared-integrable p.d. kernel k : D × D → R, we

obtain the following ”double” (tensor product) decomposition :

k =
∑

u⊆{1,...,d}

∑

v⊆{1,...,d}

Tu ⊗ Tv(k).

Remark: This decomposition may be seen as consequence of the previous

result, or directly obtained by identifying IL2(D×D) with IL2(D) × IL2(D).

Comments

This decomposition consists of 22d terms! (e.g., 16 terms for d = 2)

Tu ⊗ Tv(k) can actually be interpreted as the orthogonal projection of k

onto Ran(Tu ⊗ Tv), in the sense of the tensor product structure.
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Example: Back to the 1-dimensional Brownian Motion

The two projected processes (T∅B)t and
(
T{1}B

)
t

are correlated, with

cross-covariance kernels

(T∅ ⊗ T{1}k)(s, t) =

(
t − t2

2
− 1

3

)
1[0,1]2(s, t)

(T{1} ⊗ T∅k)(s, t) =

(
s − s2

2
− 1

3

)
1[0,1]2(s, t)
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Example: Back to the 1-dimensional Brownian Motion

The two projected processes (T∅B)t and
(
T{1}B

)
t

are correlated, with

cross-covariance kernels

(T∅ ⊗ T{1}k)(s, t) =

(
t − t2

2
− 1

3

)
1[0,1]2(s, t)

(T{1} ⊗ T∅k)(s, t) =

(
s − s2

2
− 1

3

)
1[0,1]2(s, t)

To sum up, the double FANOVA decomposition of k(s, t) = min(s, t) writes

k(s, t) =
1

3
1[0,1]2(s, t) +

(
s − s2

2
− 1

3

)
1[0,1]2(s, t) +

(
t − t2

2
− 1

3

)
1[0,1]2(s, t)

+

(
min(s, t)− (t − t2

2
)− (s − s2

2
) +

1

3

)
1[0,1]2(s, t)
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Sparsity and independence properties

Let (Zx)x∈D be a centred GRF as before. Then, for any given u ⊆ {1, . . . , d}
the two following assertions are equivalent:

Tu ⊗ Tu(k) = 0 (µ⊗ µ− a.e.)

P(TuZ = 0) = 1

Furthermore, for any v ⊆ {1, . . . , d}, we have the second equivalence

Tu ⊗ Tv(k) = 0 (µ⊗ µ− a.e.)

TuZ and TvZ are two independent GRFs
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Sparsity and independence properties

Let (Zx)x∈D be a centred GRF as before. Then, for any given u ⊆ {1, . . . , d}
the two following assertions are equivalent:

Tu ⊗ Tu(k) = 0 (µ⊗ µ− a.e.)

P(TuZ = 0) = 1

Furthermore, for any v ⊆ {1, . . . , d}, we have the second equivalence

Tu ⊗ Tv(k) = 0 (µ⊗ µ− a.e.)

TuZ and TvZ are two independent GRFs

Fundamental example: ANOVA kernels based on a zero-mean 1d kernel

Let Z be a centred GRF with kernel of the form k(x, x′) =
∏d

i=1(1+ k0(xi , x
′
i )).

Property: If k0 is argumentwise zero-mean, then the ”non-diagonal”

Tu ⊗ Tvk ’s are null, and so Z decomposes as a sum of independent TuZ ′s.
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Spectral interpretation

Let (Zx)x∈D be decomposable as Zx =
∑+∞

i=1 ξiφi(x), where ξi ∼ N (0, λi)
independently, and the φi ’s form an orthonormal basis of L2(µ). Then,

(TuZ )x =
+∞∑

i=1

ξi(Tuφi)(x) (u ⊂ {1, . . . , n})
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Spectral interpretation

Let (Zx)x∈D be decomposable as Zx =
∑+∞

i=1 ξiφi(x), where ξi ∼ N (0, λi)
independently, and the φi ’s form an orthonormal basis of L2(µ). Then,

(TuZ )x =
+∞∑

i=1

ξi(Tuφi)(x) (u ⊂ {1, . . . , n})

From σ2
u(Z ) := ||TuZ ||2

L2(µ) =
∑+∞

i=1

∑+∞
j=1 ξiξj〈Tuφi ,Tuφj〉L2(µ), we then get

E[σ2
u(Z )] =

+∞∑

i=1

λi ||Tuφi ||2L2(µ)
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Spectral interpretation

Let (Zx)x∈D be decomposable as Zx =
∑+∞

i=1 ξiφi(x), where ξi ∼ N (0, λi)
independently, and the φi ’s form an orthonormal basis of L2(µ). Then,

(TuZ )x =
+∞∑

i=1

ξi(Tuφi)(x) (u ⊂ {1, . . . , n})

From σ2
u(Z ) := ||TuZ ||2

L2(µ) =
∑+∞

i=1

∑+∞
j=1 ξiξj〈Tuφi ,Tuφj〉L2(µ), we then get

E[σ2
u(Z )] =

+∞∑

i=1

λi ||Tuφi ||2L2(µ)

Using that (P(TuZ = 0) = 1) ⇔ (E[σ2
u(Z )] = 0), both are then equivalent to

(∀i : λi 6= 0, Tuφi = 0 µ− a.e.)

which is in turn also equivalent to Tu ⊗ Tu(k) = 0 (µ⊗ µ− a.e.).
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About the distribution of Sobol’ indices

Property

For a Gaussian random field Z possessing a Karhunen-Loève expansion∑+∞
i=1

√
λiεiφi(·), the Sobol’ indices form a 2d -dimensional random vector

which probability distribution is characterized by

Su(Z ) =
Qu(ε, ε)∑

v 6=∅ Qv(ε, ε)

where the Qu’s are the quadratic forms on ℓ2(R) defined by

Qu(ei , ej) =
√

λiλj〈Tuφi ,Tuφj〉L2(µ),

and {ek , k ∈ N} is the canonical basis of ℓ2(R).
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Sparsity is stable under conditioning

Property

Let Z be a centred GRF with kernel k , Xn = {x1, . . . , xn} ⊂ D, ZXn be the

vector of evaluations of Z at Xn, and u ⊂ {1, . . . , n}. Then, the sparsity of Z

with respect to Tu is preserved by conditioning, i.e.

If P(TuZ = 0) = 1, then P(TuZ = 0|ZXn = zn) = 1 (∀zn ∈ R
n)
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Sparsity is stable under conditioning

Property

Let Z be a centred GRF with kernel k , Xn = {x1, . . . , xn} ⊂ D, ZXn be the

vector of evaluations of Z at Xn, and u ⊂ {1, . . . , n}. Then, the sparsity of Z

with respect to Tu is preserved by conditioning, i.e.

If P(TuZ = 0) = 1, then P(TuZ = 0|ZXn = zn) = 1 (∀zn ∈ R
n)

Practical consequence: if one takes a “sparse” kernel without u component

from the beginning, the corresponding ANOVA terms and Sobol’ indices will

remain null forever, whatever the strength of the u component in the data.
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Extraction of subkernels

In the following applications, we will extract subkernels corresponding to

prescribed sparse structures by appealing to operators of the form

a) (IF − πQ)⊗ (IF − πQ) where πQ is the orthogonal projector

onto Q ⊂ F for removing the Q-component of Z ’s trajectories
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Extraction of subkernels

In the following applications, we will extract subkernels corresponding to

prescribed sparse structures by appealing to operators of the form

a) (IF − πQ)⊗ (IF − πQ) where πQ is the orthogonal projector

onto Q ⊂ F for removing the Q-component of Z ’s trajectories

b) IF×F −∑
u,v∈W:u 6=v Tu ⊗ Tv where

W = {w1, . . . ,wq} ⊂ P({1, . . . , n}), for removing all

cross-covariances between contributions among W.
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Let kG(x, y) = exp

(
− ||x−y||2

Rd

θ2

)
with θ = 0.5 and let

kanova(x, y) =
∏d

j=1(k1 + k0(xj , yj)) be the associated ANOVA kernel.

We consider hereafter the following sparse kernels built upon kanova:

kspa(x, y) := σ2
spa

(
k

d
1 + k

d−1
1 (k0(x1, y1) + k0(x2, y2))

+k
d−2
1 (k0(x2, y2)k0(x3, y3) + k0(x4, y4)k0(x5, y5))

)

kadd(x, y) := σ2
add

(
k

d
1 +

d∑

j=1

k
d−1
1 k0(xj , yj)

)

kinter (x, y) = σ2
inter

(
k

d
1 + k

d−1
1

d∑

j=1

k0(xj , yj) +
∑

i<j

k
d−2
1 k0(xi , yi)k0(xj , yj)

)
.

Note: The σ2 factors are chosen so as to ensure that
∫

D
k·(x, x)dx = 1.
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Selected numerical experiment (d = 50)

Experimental design

Training set: A 10d-point Latin hypercube design

Test set: 200 points uniformly distributed over [0, 1]d .

Fitness: Q2

(
1 −

∑200
i=1(ztest,i−ẑ(xtest,i ))

2

∑200
i=1

(ztest,i−
¯ztest)

2

)
, averaged over 100 replications.

Results

kspa kadd kinter kanova kG

Zspa 1 (0) 0.77 (0.31) 0.8 (0.19) 0.59 (0.19) 0.53 (0.17)

Zadd -0.06 (0.13) 1 (0) 0.93 (0.01) 0.7 (0.04) 0.63 (0.05)

Zinter -0.03 (0.13) 0.19 (0.1) 0.47 (0.07) 0.27 (0.09) 0.25 (0.1)

Zanova 0.29 (0.27) 0.25 (0.23) 0.31 (0.26) 0.34 (0.26) 0.34 (0.26)

ZG -0.03 (0.1) -0.03 (0.11) -0.01 (0.1) 0.02 (0.1) 0.03 (0.1)
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Conclusions and perspectives

1 The kernel FANOVA decomposition explains the distribution of the

whole vector-valued field of projected fields

2 Almost sure sparsity properties of GRF paths are characterized by k .

Such sparsity properties are ”stable” by conditioning.
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2 Almost sure sparsity properties of GRF paths are characterized by k .

Such sparsity properties are ”stable” by conditioning.

3 Some results have been obtained towards posterior distributions of

Sobol’ indices. Calculating their moments is ongoing research.
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2 Almost sure sparsity properties of GRF paths are characterized by k .

Such sparsity properties are ”stable” by conditioning.

3 Some results have been obtained towards posterior distributions of

Sobol’ indices. Calculating their moments is ongoing research.

4 ANOVA-like kernels and associated extracted (“sparsified”) kernels

seem to provide a flexible family for high-dimensional problems.
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Conclusions and perspectives

1 The kernel FANOVA decomposition explains the distribution of the

whole vector-valued field of projected fields

2 Almost sure sparsity properties of GRF paths are characterized by k .

Such sparsity properties are ”stable” by conditioning.

3 Some results have been obtained towards posterior distributions of

Sobol’ indices. Calculating their moments is ongoing research.

4 ANOVA-like kernels and associated extracted (“sparsified”) kernels

seem to provide a flexible family for high-dimensional problems.

Thank you :-)

Questions?
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