
MULTIPLE-POINT STATISTICS 

TO ASSESS COMPLEX SPATIAL 

UNCERTAINTY

Philippe Renard

Stochastic Hydrogeology Group 
University of Neuchâtel

SwitzerlandMascotNum, 25th of April 2014, Zürich



J. Kerrou, G. Mariethoz, 

J. Straubhaar, A. Comunian, 

G. Pirot,  F. Oriani



MOTIVATION FOR MPS
What is our problem / limits of current approaches



Will the contamination reach drinking water supply?

Kölliken



Confining building



Waste excavation

Total cost > 770 M. CHF



170 boreholes 5-50 m  deep

Extensive investigations



Characterization issue

Volume to characterize : 850 x 400 x 70 = 24 millions m3

Volume sampled by the boreholes: 6700 x 0.01 x  = 200 m3

Volume to 

characterize

Volume 

sampled



Understanding groundwater flow

• Well established PDE / Numerical models

• Huge uncertainty due to

• rock heterogeneity + lack of data (field of parameter)

• badly controlled boundary conditions / source terms

• Long tradition (>30 years) to use Gaussian random fields

• Interpolating parameters 

• Understanding the physics of heterogeneous materials

• Estimating uncertainty 

• Heavy numerical forward models (e.g.CO2 sequestration)

• Today  how to build random fields of input parameter



Gedeon Dagan (2002)

• “The stochastic modeling of groundwater 

has developed considerably ... [but it] 

hasn’t yet become a routine tool”

• Debate in the community

• Situation is more subtle

• Various issues

• Education: lack of people 

• Structural issues: consulting market

• Relevance of the models

Dagan, 2002, EOS Transactions, 83(53) Renard, 2007, Groundwater, 45(5): 531-541 
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Transmissivity field

Characterization data set Forecasts data set

A synthetic example

Kerrou, Renard, Hendricks-Franssen, and Lunati (2008) AWR, 31(1): 147-149 



21 T

d = lm / Ix = 3.5

Y = log10 (T)

N = f ( Y )

Sampling the reference



Simulation of N 

conditional to 21 values

one simulation of log10 (T)

Back transform to get Y 

= log10 (T)

ensemble average of log10 (T)

Turning bands method

Heterogeneity characterization 



21 T

250 T

1000 T

Adding information T measurements



21 T, 0 heads

21 T, 1000 heads

21 T, 21 heads

21 T, 250 heads

100 simulations

Sequential self calibration method

inverto code (Hendricks-Franssen, 2001)

Variogram from the data – 2 master blocks per correlation length

Adding head data



True value belongs to 

the ensemble 

forecasts

Head conditioning 

reduces 

uncertainty

and increases 

accuracy

Reliability of transport forecasts



Adding transmissivities reduces uncertainty and increases bias

The bias is partly compensated by conditioning to head

Limits of the multi-Gaussian approach



Covariances are well reproduced by the simulations

Connectivity are not

Conditioning to head improves connectivity

Multi-Gaussian approach is insufficient

Kerrou, Renard, Hendricks-Franssen, and Lunati (2008) AWR, 31(1): 147-149 



The results show that conditioning to a large number of small-scale 

measurements does not significantly improve model predictions, and may lead 

to biased or overly confident predictions. 

Same observations with field data

However, conditioning to geophysical interpretations with larger spatial 

support significantly improves the accuracy and precision of model 

predictions.

Scheibe and Chien (2003) Groundwater 41(2): 128-241 



MULTIPLE POINT 

STATISTICS
What is it? / Principle of the method



Data set

Sand

ClayI(x) = 0

I(x) = 1

Map of geological samples
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Indicator variogram
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Sequential indicator simulation 

Honors the variogram and proportions of the data



Braided chanel

Ohau river, New Zealand.

Renard (2007) Groundwater, 45(5): 531-541 



Multiple-points  simulation

Renard (2007) Groundwater, 45(5): 531-541 



Meanders

Citronelle oil field, Alabama

Renard (2007) Groundwater, 45(5): 531-541 



Multiple-points  simulation

Renard (2007) Groundwater, 45(5): 531-541 



Importance of the conceptual model

Renard (2007) Groundwater, 45(5): 531-541 



3 innovations

• Field data are not sufficient: 

Training Image (TI)

• Two point statistics are not sufficient: 

Multiple-point statistics (MPS)

• Analytical statistical model not tractable:

non parametric approach

Guardiano and Srivastava (1993) in Soares (Ed) Geostatistics Troia 1992:133-144. 



Principle of the method
Domain to model

Data: geological observations

Sand

Clay

Indicator variable I(x)

I(x) = 1

I(x) = 0



Sequential simulation method

Choice of a location x

Find the n closest nodes

data event

Principle of the method

We want to find I(x)

Find the corresponding 

values of I

Sand

Clay



Analysis of the Training image

Event

Counter 0 0

O
X

?

O

data event

Sand

Clay
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Analysis of the Training image
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Counter 0 1
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Analysis of the Training image
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Counter 0 2

data event
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Analysis of the Training image
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Analysis of the Training image
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Counter 0 4

data event
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Analysis of the Training image



data event

Sand

Clay

Event Total

Counter 0 4 4

Probability 0 / 4 = 0 4 / 4 = 1

Analysis of the Training image



Sampling the cpdf

I(x) is drawn from the conditional distribution

Another point is randomly selected, simulated, and so on until 

the whole domain is filled

Sand

Clay



Technical difficulties

• Scanning the TI for every pixel is inefficient

• Solutions

• Analyzing the TI and storing the events within a 

predefined neighborhood (limited dimension)

snesim / impala

Implies additional algorithmic tricks (multigrids, 

subgrids, data migration, etc)

• Directly sample the training image



Direct sampling (Deesse)

• Does not use a catalog of patterns

• Allows to extend the technique to 

continuous and multiple variables

• Allows to get rid of the fixed template size and multigrids

• Our main tool today



Direct sampling
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Basic Direct Sampling algorithm

• Distance :

• DS algorithm consists in scanning the Training Image

• Until we find the first data event such that

• Or until a certain fraction f of the training image has been 

scanned, then the best data event is selected
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Mariethoz, Renard, Straubhaar (2010) WRR, doi:10.1029/2008WR007621



Direct Sampling parameters

• Size of the neighborhood: n

• Depends on space dimension, 10 to 100

• Acceptance threshold for the distance:  t

• A value between 0 and 1

• Maximum scan fraction of the Training Image: f

• Between 0.1 and 0.5



Parameter sensitivity

Simulations with f=0.3

Training image

Meershman, Pirot, et al. (2013) Computers and Geosciences, 52: 307-324



Simulation
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Examples of simulations

Ice wedge polygonal soil Snow Thin slice marble

Meershman, Pirot, et al. (2013) Computers and Geosciences, 52: 307-324



Training image stationarity

Training image (TI) Simulation

Boucher (2009) Computers and Geosciences, 35: 1151–1158



Multiple variables
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Multivariate

simulation

Training data set

3 SimulationsConditioning variable

Variable 1 Variable 2

Variable 1 Variable 2



A FEW EXAMPLES OF 

APPLICATIONS
3D geology / Rainfall simulation / Reconstruction of 

missing data / etc. 



Reconstructions from sections

Data provided by Dell’Arciprete, Felleti, Bersezio

Mariethoz, Renard (2009) Mathematical Geosciences. 42(3): 245–268



One simulation

Mariethoz, Renard (2009) Mathematical Geosciences. 42(3): 245–268



Sections in the simulation

Mariethoz, Renard (2009) Mathematical Geosciences. 42(3): 245–268



Rainfall simulation

Alice Spring (1941-2013)
Hot desert

Mean monthly precipitation

Sydney (1858-2013)
Temperate

Darwin (1941-2013)
Tropical savannah



Rainfall simulation (Darwin)

Training data

Simulation



Training data Simulation

Rainfall simulation (Darwin)



Rainfall simulation procedure



Wet days probability

Alice SpringsSydney Darwin
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Reconstruction of gaps caused by orbital 

passages on remote sensing images

Mariethoz, Mc Cabe and Renard (2013) WRR, 48: doi:10.1029/2012WR012115



Error analysis



Dependence between reference values



Dependence between simulated values



Jha, et al (2013) WRR, 49: doi: 10.1029/2012WR012602

Downscaling

Surface

Temperature



Topography simulations

• High resolution DEM
• Multiple‐point statistics to model 
successive topographies

• Stack them
• Fill the volumes with sediments

Pirot et al (2014) Geomorphology, 214: doi: doi:10.1016/j.geomorph.2014.01.022



Pirot et al (2014) Geomorphology, 214: doi: doi:10.1016/j.geomorph.2014.01.022



Porous media

Comunian, Straubhaar and Renard (2013) Computers and Geosciences, 40: 49-65

2D sections in perpendicular directions

Berea Sandstone

Example of a 3D volume simulated from 2D data sets: 



CONCLUSION



Active field of research

• Guardiano and Srivastava (1993)

• First efficient implementation:

• Strebelle (2002), probability tree, multi-grid, etc.

• Since then: 
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MPS Pros / Cons

• Well suited to model complex structures

• General (same code for different structures)

• Easy conditioning

• Integration of secondary data

• Not a well defined Random Function model

• CPU time is longer than other methods

• Where to get the training image?



Current research directions

• Applications / demonstrations

• Braided river systems

• Spatio-temporal fields (Precipitation)

• Algorithmic improvements / acceleration

• Multi-scale

• Inverse problem

http://members.unine.ch/philippe.renard/biblio.html



The ability to simplify means to eliminate the 

unnecessary so that the necessary may speak. 

Hans Hoffman


