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Outline

Introduction to the domain of near-surface applied
and environmental geophysics

Motivation for uncertainty quantification

Bayesian-MCMC inversion approach
= extended Metropolis algorithm

Two example applications and corresponding
challenges

= Use of crosshole ground-penetrating radar data to estimate
unsaturated hydraulic parameters

= Joint use of crosshole geoelectrical and tracer-test
measurements to estimate the spatial configuration of
saturated hydraulic conductivity

Future needs and research directions



My hopes with this presentation

Introduce a new research domain (for many/most of you)
where there exists a strong need for robust uncertainty
guantification and related research.

Highlight through the two examples some key aspects of
geophysical inverse problems that make UQ particularly
challenging, which may have parallel challenges/solutions
in your various fields of research.

Summarize what | believe to be some of the critical issues
that must be addressed in the future with regard to UQ in
near-surface environmental geophysical work.

Generate some discussion, ideas, and potential
collaborative opportunities.



What is geophysics?
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Geophysical Survey

Property Inferred

seismic
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imaging

Analogous to medica




Some motivation for near-surface
applied environmental geophysics
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Some motivation for near-surface
applied environmental geophysics
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Geophysics fills a niche in terms of
resolution and subsurface coverage...

Drilling / Direct Larger Volume
Sampling Aquifer Tests
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What’s the catch?
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property

inversion : : : :
e relationship may exist on a site,

scale, and/or facies specific basis
HOWEVER...

¢ often complex and non-unique

e can be difficult to establish




Why do | care about uncertainty
quantification in my work?

essential for making meaningful hydrological and
environmental predictions

= risk assessment
= decision making
= groundwater management and remediation

allows us to evaluate worth of data

= how much can geophysics help?
= how should we best carry out our measurements?

provides a framework for data assimilation
= many diverse sources of information available

= how can we bring them together and build a consistent and
useful representation of the subsurface?



Challenges we face in UQ for near-surface
geophysical inverse problems

o high-dimensionality
= unknowns are usually spatially distributed subsurface property
fields (1D, 2D, 3D)
o long forward simulator computation times

o highly non-linear and non-unique relationships between
measured data and model parameters
= common in many geophysical problems

= coupling geophysical simulators to other process-based models
(e.g., flow and transport) only makes it worse

o must respect complex geological prior knowledge

» Wide variety of data to be considered / integrated

= e.g., borehole measurements, multiple geophysical and/or
hydrological and other data sets, outcrop studies, etc.



Bayesian approach

most common means of UQ in geophysical studies
o(m) = k L(m)p(m)

intuitive framework for stochastic parameter estimation
naturally suited to the assimilation of various types of data

Markov chain Monte Carlo sampling

prior data likelihood posterior
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(from Tarantola, 2005)



MCMC sampling from o(m)

Metropolis-Hastings

/ v/
ER— [1, o(m') Q(mi|m )]
o(m;) Q(m’|my)
Metropolis
! Q(mz’|m/) = Q(m/|mi)
P,.. = min [1, ol )] <
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Extended Metropolis
(Mosegaard and Tarantola, 1995)
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Dynamic geophysical measurements

geophysical hydrological
model model
/)

time-lapse :
geophysical data hg?ggleorg:: |
{dy.diy,-. i}

state variables vs. time

coupled geophysical
+ hydrological model




Problem 1: Arrenaes test site

» developed to study flow and transport processes in the
unsaturated zone using geophysical and hydrological methods

o water table at ~30 m depth

o 8 shallow boreholes installed and equipped for hydrological and
geophysical measurements
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Scholer, M., Irving, J., Looms, M., Nielsen, L., and Holliger, K. Bayesian Markov-chain-Monte-Carlo inversion of time-lapse
crosshole ground-penetrating radar data to characterize the vadose zone at the Arrenaes field site, Denmark.
Vadose Zone Journal, 11(4), 2012.



Unsaturated hydraulic properties

Water retention curve Unsaturated hydraulic conductivity

log(h (cm)) log(h (cm))
VGM gy =g, ¢ 20 K(h) = K.8.% [1= (1= S.7)m]
model: (") (1 + |ah|™) (") o [ ( ™) }
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Field experiment

forced infiltration experiment

E
23

. \ conducted by by irrigating 95,000 L
J—sand@clay | of clean water overa 7 x 7 m area
over 20 days (Looms et al., 2008)
coarse sand__|, » collect zero-offset-profile (ZOP)
crosshole GPR traveltime data once
: per day until Day 10, and then on
15 frerBand—b Days 13, 15, 17, and 20
m >
> o estimate VGM parameters of each
_ subsurface layer (K., 6, a, n) from
St ‘ the time-lapse GPR traveltime data
. using MCMC posterior sampling
coars@sand o i.e., characterize in situ field-scale
| . soil hydraulic properties and their

corresponding uncertainties
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Linking model parameters to data

assume 1D vertical infiltration into the subsurface

couple hydrological and geophysical numerical models to
link soil VGM parameters to dynamic GPR traveltime
measurements

0 Oh 00 (h
1D Richards’ equation: 5, K(h)% + K(h)| = %
Topp equation: e, = 3.03 + 9.30 + 1466% — 76.76°

o
low-loss approximation: U= Ver
9 1
eikonal equation: VT (r)|” =




MCMC details

20-parameter problem
= 5layers x 4 VGM parameters in each layer

layer interfaces assumed known from borehole data

3 different Bayesian prior distributions considered
= flat priors (same in each layer)

= refined priors based on observed soil type
= correlated
= uncorrelated

assume zero-mean, identically normally distributed,
uncorrelated residuals

= corresponds to estimated errors in measured GPR traveltimes
= results in simple (and standard) Gaussian likelihood function

multiple parallel chains run to assess burn-in and speed the
generation of independent posterior samples



Flat prior distributions

2
b=
£
—_ 0
5«0
jo2]
o

o (m™)

2 0 20 005 01 5 15 25 2

log(K,) (m.d™") 0 a (m™)



log(K) (m.d”™")

o (m™)

Refined prior distributions

Carsel, R.F., and R.S. Parrish (1988),
Developing joint probability distributions
of soil water retention characteristics,
Water Resources Research, 24, 755-769.
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Results:
VGM
parameters

(flat priors)

prior

- posterior
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Results:
VGM
parameters

(refined priors)

prior

- posterior (uncorrelated)

- posterior (correlated)
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Results:
Water
retention
functions
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Uniform

Results:
Unsaturated
hydraulic
conductivity
functions
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Problem 2: Saturated zone

o natural-gradient NaCl groundwater
tracer experiment conducted over
a period of 25 days

o tracer concentration measured at 4
locations every 3 hours in right
(observation) well

o geoelectrical measurements taken
once per day using 36 borehole and
surface electrodes

15m

o estimate K(x,z) and quantify its
uncertainty using

= tracer concentration data

—

dh/dx = 0.02
= electrical resistivity data

= concentration + resistivity data

Irving, J. and Singha, K. Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities.
Water Resources Research, 46(11), 2010.



Depth (m)

True model and MCMC assumptions

True log,,(K) model (m/d)

Position (m)

MCMC assumptions

coarser 20 x 30 mesh (0.5 m cells)
binary distribution of facies having
constant hydrological properties

= facies1: K=10m/d, 6 =0.2

= facies2: K=100m/d, 6=0.3
facies indicators are spatially

correlated, but correlation lengths
are unknown

allow for uncertainty in relationship
between solute concentration and
soil electrical resistivity

zero-mean, Gaussian, IID residuals
again assumed



Keep X% of K values from previously accepted model as hard data

Simplified inversion flowchart

| Generation of proposed binary K model
conditional to last accepted model

'

Forward simulation of groundwater flow

v

Forward simulation of solute transport

concentration

Decision rule

Forward simulation of time-lapse
electrical resistivity data

data

electrical

A

Decision rule

Accept proposed transition

resistivity data

Based on cascaded Metropolis algorithm
proposed by Mosegaard and Tarantola (1995)



Keep X% of K values from previously accepted model as hard data

Prior distribution (no data)

| Generation of proposed binary K model

conditional to last accepted model

v

Forward simulation of groundwater flow

v

Forward simulation of solute transport

concentration

Decision rule

Forward simulation of time-lapse
electrical resistivity data

data

electrical

A

Decision rule

Accept proposed transition

resistivity data

Based on cascaded Metropolis algorithm
proposed by Mosegaard and Tarantola (1995)



Prior distribution (no data)
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Prior distribution (no data)

True facies distribution
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Tracer concentration data only

Keep X% of K values from previously accepted model as hard data

| Generation of proposed binary K model
conditional to last accepted model

v

Forward simulation of groundwater flow

v

Forward simulation of solute transport

Decision rule

concentration

electrical resistivity data

Forward simulation of time-lapse

Decision rule

data

electrical

A

Accept proposed transition

resistivity data

Based on cascaded Metropolis algorithm
proposed by Mosegaard and Tarantola (1995)



Tracer concentration data only




Depth (m)

Tracer concentration data only

True facies distribution
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Keep X% of K values from previously accepted model as hard data

Electrical resistivity data only

| Generation of proposed binary K model
conditional to last accepted model

v

Forward simulation of groundwater flow

v

Forward simulation of solute transport

Decision rule

concentration

electrical resistivity data

Forward simulation of time-lapse

Decision rule

data

electrical

A

Accept proposed transition

resistivity data

Based on cascaded Metropolis algorithm
proposed by Mosegaard and Tarantola (1995)



Electrical resistivity data only
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Electrical resistivity data only
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Concentration + resistivity data

Keep X% of K values from previously accepted model as hard data

| Generation of proposed binary K model
conditional to last accepted model

v

Forward simulation of groundwater flow

v

Forward simulation of solute transport

Decision rule

concentration

electrical resistivity data

Forward simulation of time-lapse

Decision rule

data

electrical

A

Accept proposed transition

resistivity data

Based on cascaded Metropolis algorithm
proposed by Mosegaard and Tarantola (1995)



data

Concentration + resistivit
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Depth (m)

Concentration + resistivity data

True facies distribution Estimated probabilities

Depth (m)

5 10 0 5 10
Position (m) Position (m)




Depth (m)

Results: Posterior facies probabilities
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Model validation

inject extract
it o .
% | o investigate how realizations predict
1 a new and different hydrological
3 experiment

o linear injection/extraction test
simulated over a period of 25 days

solute having a concentration of
1000 mg/L is continuously injected
15m at 4 L/min into source well and
pumped out at sampling well

] o concentration and ERT data were
simulated as before

o natural hydraulic gradient
perturbed by injection/extraction
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Conclusions

o in the context of both near-surface geophysical problems
examined, Bayesian-MCMC appears to be a useful tool

= reasonable estimates of subsurface hydrological parameters and
their corresponding uncertainties

= successful integration of different data

o HOWEVER...

= approximations were made for computational tractability!
= simplified forward model (e.g., 1D unsaturated flow)

= reduced parameterization (e.g., larger cell size; binary distribution)

= corresponding modelization errors are not accounted for through
the simple Gaussian likelihood functions assumed

= true residuals will be correlated, heteroscedastic, and non-Gaussian

= we are also pushing the limits of our modest computational
resources with these admittedly “simple” geophysical problems

o this naturally leads us to question...

= can we trust our results? (decision making, risk assessment, etc.)
= can we expect MCMC to be practical for more complex problems?



Current research directions

o Mmodelization errors

= can we use synthetic modeling combined with knowledge of our
model approximations/simplifications to build a statistical model
for the modelization errors?

= use to build a more appropriate Bayesian likelihood function, and
thus be more “honest” about the nature of the residuals

= develop bias corrections for simplified models

o dealing with dimensionality

= how can we best deal with the high-dimension of spatially
distributed geophysical inverse problems with MCMC methods?

= model space compression (e.g., PCA, DCT, ...)

= how to avoid bias in the prior specification?

= how to condition to complex geological scenarios?
= sequential geostatistical simulation

= flexibility to condition to a wide range of prior geostatistical
constraints through the extended Metropolis algorithm

= still has efficiency issues for high-dimensional problems



Water content errors resulting from the
1D unsaturated flow assumption

Full 3D physics 1D approximation Difference
0.5 0.5
0.45 0.45 ——
0.4 0.4 0.3
=+0.35 - 10.35 L 1025
= =03 = B 03 ¢+
E E E - H0.2
oy ey K oy
a a a
()] [0)] [0}
o - 40.25 O Bl 0.25 O
- 10.15
B 0.2 0.2
0.1
0.15 0.15
0.05
0.1 0.1
0.05 0.05 L
510152025 510152025 510152025

Time (h) Time (h) Time (h)



Depth (m) Depth (m) Depth (m) Depth (m) Depth (m)
B S T B N How oo =

£ oW o =

Depth (m)
Howo™N

Errors resulting from a 1D flow assumption
for different VGM parameter configurations

Depth (m)
Depth (m)
BowoNn =
Depth (m)
BowoNn =
Depth (m)
Depth (m)
How o0 =

10 15 10 15 20 10 15 0 1m0 15 20 25 1m0 15 10 15
Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)

Depth (m)
T N
Depth (m)

T N
Depth (m)
BowoN =
Depth (m)
BowoN =
Depth (m)
BowoN =

I

- W,
20 25 0 5 10

5 10 15 20 25 0 5 10 15 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20
Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)
1 1 1 1 1
Eo E2 E2 E2 E>
£ £ ] ] ]
g3 g3 g3 g3 g3
Oy Oy Sy Sy Oy
10 15 10 15 20 10 15 0 10 15 20 25 10 15 10 15
Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)
1 1 1 1 1
Eo Eo Eo Eo E>
£ £ £ £ £
g 3 g3 g3 g3 g3
S 4 S 4 S 4 S 4 S 4
5 10 15 20 25 0 S 10 15 20 25 0 S 10 1 20 25 0 S 10 15 20 25 0 S 10 15 20 25 0 S 10 15 20
Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)
1 1 1 1
E. Eo E. E. E
£ £ £ ] £
g3 g3 g3 g3 &
Q, Q, o, o, a
10 15 10 15 20 10 15 0 10 15 20 25 10 15 10 15
Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)
1 1 1 1 1
E2 E2 E2 E2 E2
£ £ £ £ £
g 3 g3 g3 g3 g3
S 4 © 4 S 4 S 4 © 4

10 15

10 15 20 10 15 10 15 20 10 15

Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)

10 15 20

25

25




Depth (m)
AW o =

Depth (m) Depth (m) Depth (m)
AW o = HowoNn = Howo™N

Depth (m)

Depth (m)

B oW o =

Errors plotted relative to the arrival time
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Leading 36 principal components
accounting for 98% of the error variance
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Basis weight statistics for the top 10 PCs
(uncorrelated but not independent)
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irst try, independent component analysis
with 98% of the error variance captured
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Basis weight statistics for the 36 ICs
Can we use

ICA to build an error model?
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