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MascotNum 2014 - Computer Experiments and Metamodels for Uncertainty Quantification

Foreword

Dear Colleagues

It is our pleasure to welcome you to the 2014 edition of the MascotNum annual workshop. After eight meetings held in
France (Toulouse (2006), Lyon (2007), Cadarache (2008), Paris (2009), Avignon (2010), Villard-de-Lans (2011,) Bruyères-le-
Châtel (2012), Nice (2013)), this year’s workshop is jointly organized in Zürich by the Chair of Risk, Safety and Uncertainty
Quantification of the Swiss Federal Institute of Technology (ETH Zürich) and by the Institute of Mathematical Statistics and Actuarial
Science of the University of Bern.

Originating from a French initiative, MascotNum had already started to get international recognition with the participation of
numerous invited speakers from overseas in previous editions, and through the joint organization of the annual meeting together
with the 7th International Conference on Sensitivity Analysis of Model Output (SAMO’2013) in Nice last year. The 2014 edition is
for the first time organized outside France and we are happy to have contributing PhD students and invited lecturers from several
neighbouring countries. We hope that this event will foster a number of scientific exchanges between research communities and
new opportunities for international collaborations.

The theme of MascotNum 2014 is “Computer Experiments and Meta-models for Uncertainty Quantification”. Computer ex-
periments can be considered as one of the core interests of MascotNum. With the increase in accessible computational power,
many real-world problems ranging from engineering to natural sciences are tackled today using numerical simulations. Because
some of the parameters necessary to describe such problems (state variables, boundary conditions, etc.) may be unknown or only
partly known to the modeller, computer experiments are needed to get a global picture of how variations in those parameters may
affect the modelling results. This problem setting is now common to a variety of applications, including the optimal design of cars,
aircrafts, etc., the risk analysis of civil structures against natural hazard, the study of climate change, or the search for efficient
molecules and dosing in therapeutic strategies.

Meta-models are a key tool for getting this global picture and guiding new simulations when the computational budget is
limited, as it often is the case when dealing with high-fidelity simulations involving a large number of input parameters. Meta-
models are a wide class of methods including, amongst others, polynomial chaos expansions, reduced-basis approaches, splines
and Gaussian Process modelling techniques. In this workshop, we aim at giving an overview of how meta-models are successfully
used in several research communities, with a special focus on Uncertainty Quantification.

Uncertainty quantification itself has emerged as a well-identified, multi-disciplinary research field in the last few years, which
lies at the boundary of statistics, applied mathematics and engineering applications. Its increasing popularity in the scientific
community has led to the organization of new series of conferences devoted to this topic, and to the launch of not less than
four new journals since 2011 in this area. Among others, scientific groups have emerged in the United Kingdom (Uncertainty in
Computer Models (UCM) conferences), in Germany (GAMM Uncertainty Quantification group) and in the USA (SIAM Conferences
on Uncertainty Quantification). In parallel, joint academic/industrial projects such the Dice and ReDice consortiums in France have
fostered the research in this field.

The organization of MascotNum2014 in Zürich is a step towards our goal of establishing bridges between the MascotNum
network and these various initiatives, especially through invited lectures which highlight the active contribution of Swiss researchers
and institutions in this area.

Such a workshop could not have been possible without the support of the Office for Events & Location Development of ETH
Zürich. The financial support of the MascotNum CNRS research group, the ReDice Consortium, the Department of Civil, Environ-
mental and Geomatic Engineering of ETH Zürich, the City and the Canton of Zürich are also gratefully acknowledged.

On behalf of the Organizing Committee and the MascotNum board we welcome you warmly in Zürich. We wish you a very

fruitful conference and we hope that you will also enjoy the charms of the Lake and of the Old City Centre.

Prof. Dr. Bruno Sudret Dr. David Ginsbourger

Chair of MascotNum 2014 Co-Chair of MascotNum 2014

April 23-25, 2014 5
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General Information

Conference Venue

The conference will take place in the historical main building of ETH Zürich (Hauptgebaüde - HG
Building).

Address: ETH Zürich Hauptgebäude (HG)

Rämistrasse 101

8092 Zürich

Tel: +41 44 632 11 11

TramGStopGDLinesG5M6M9M10z

UBSGPolybahnGUpperGStation

UBSGPolybahnGLowerGStation

HGGBuildingGFrontGEntrance

HGGBuildingGBackGEntrance

HGGDozentenfoyer

UZHGMensa

Pre-registration

There will be a pre-registration on Tuesday April 22nd 2014 from 18:00 to 19:00 followed by a welcome

apéro at Dozentenfoyer, located in the HG Building, J-Floor.

April 23-25, 2014 7



General Information

HG.Front

Entrance

HG.Back

Entrance

HG Building F (1st) Floor

Registration./.Information.Desk.41)

HG F5 Auditorium

Meeting.Room.for.MascotNum

Committee.4HG.F.33.1)

Guest.Computer.Room.

4HG.F.33.2)

Secretariat.4HG.F.33.3)

Wardrobe.for.luggage./

big.belongings.4HG.F.33.4).

Talks/Lectures Room

The talks and lectures will take place in Auditorium F5. There is a wardrobe available inside the

Auditorium with limited space. For luggage or other large-sized belongings please use the wardrobe
in HG F 33.4.

Registration and Information Desk

The registration and information desk is located at the Foyer Audi Max (Floor F of HG building) on

the first day (Wednesday, April 23rd) of the conference and at HG EO Süd (Floor EO of HG building)
on the second and third day (Thursday-Friday, April 24-25th).

8 April 23-25, 2014
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HG Building, EO (entresol) Floor 

HGPFront

Entrance

HGPBack

Entrance

RegistrationP/PInformationPDeskP(2) CoffeePBreaksPandPLunches

PosterPSession

Poster Session

The Poster Session will take place in HG EO Süd. The posters are located in the area denoted by in
the map above.

Coffee Breaks and Lunches

Coffee breaks and lunches will take place in HG EO Süd, in the area denoted by in the map above.

April 23-25, 2014 9



General Information

Conference Dinner

The conference dinner will take place in the Mensa of the University of Zürich, on Thursday, April 24th,
2014, at 19:30. The route to get there from the HG building is shown below.

Address: Mensa UZH Zentrum (1st Floor)

Künstlergasse 10

8001, Zürich

Tel: +41 44 634 23 70/71

10 April 23-25, 2014
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Technical Program

Day 0 - Tuesday April 22nd, 2014

18:00 - 19:00 Registration Dozentenfoyer

18:30 - 21:00 Ice Breaker

April 23-25, 2014 11



Technical Program

Day 1 - Wednesday April 23rd, 2014

08:30 - 09:15 Registration Foyer Audi Max

09:15 - 09:30 Opening Talk, B. Sudret / D. Ginsbourger HG F5

09:30 - 10:30 Opening Lecture by C. Schillings (ETH Zürich)
Chair: C. Schwab

HG F5

10:30 - 10:50 Coffee Break HG EO Süd

10:50 - 11:20 S. Sukys (ETH Zürich). Multi-level Monte Carlo finite vol-
ume methods for stochastic systems of hyperbolic conservation
laws.

Chair: L. Pronzato

HG F5

11:20 - 11:50 D. Jacquemart (University Rennes I). Adaptive particle meth-
ods for rare event simulation in a Markovian framework.

11:50 - 12:20 J. Nagel (ETH Zürich). Bayesian multilevel model calibration
for inversion of “perfect” data in the presence of uncertainty.

12:20 - 13:30 Lunch Break HG EO Süd

13:30 - 15:00 Poster Session HG EO Süd

15:00 - 15:30 A. Ahidar (Université Paul Sabatier). Multivariate quantile
surfaces and application to an aircraft problem.

Chair: F. Gamboa

HG F5

15:30 - 16:00 R. Fischer (Université Paris-Est). Modeling dependence under
constraint.

16:00 - 16:20 Coffee Break HG EO Süd

16:20 - 16:50 F. Zertuche (Université Joseph Fourier). Multi-fidelity regres-
sion using a non-parametric relationship.

Chair: F. Wahl

HG F5

16:50 - 17:20 S. Nanty (Université Joseph Fourier). Uncertainty quantifica-
tion and visualization for functional random variables.

Coffee Break

Lunch Break

Coffee Break

12 April 23-25, 2014
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Day 2 - Thursday April 24th, 2014

08:30 - 09:00 Registration HG EO Süd

09:00 - 09:15 Conference opening - W. Kröger (ETH Risk Center) HG F5

09:15 - 09:30 MascotNum news - C. Prieur (Université Joseph Fourier)

09:30 - 10:30 F. Nobile (EPF Lausanne). Discrete least-square polynomial
approximations for high dimensional uncertainty propaga-
tion.

Chair: B. Sudret

HG F5

10:30 - 10:50 Coffee Break HG EO Süd

10:50 - 11:50 J.P. Vert (Institut Curie). Machine learning for personalised
genomics.

Chair: O. Roustant

HG F5

11:50 - 12:50 A. Krause (ETH Zürich). Focusing exploration with confi-
dence.

12:50 - 14:15 Lunch Break HG EO Süd

14:15 - 15:15 F.S. Koutsourelakis (TU Munich). Simulation-based, high-
dimensional stochastic optimization: application in robust
topology optimization under large material uncertainties.

Chair: P. Koumoutsakos

HG F5

15:15 - 16:00 S. Marelli (ETH Zürich). UQLab: A framework for Uncer-
tainty Quantification in Matlab.

16:00 - 16:20 Coffee Break HG EO Süd

16:20 - 17:20 D. Ginsbourger (University of Bern). Incorporating structural
priors in Gaussian random field models.

Chair: F. Nobile

HG F5

19:30 - 22:30 Conference Dinner Mensa UZH
Zentrum

Coffee Break

Lunch Break

Coffee Break

Conference Dinner

April 23-25, 2014 13



Technical Program

Day 3 - Friday April 25th, 2014

09:00 - 10:00 P. Koumoutsakos (ETH Zürich). Data driven, molecular dy-
namics for nanoscale fluid mechanics.

Chair: C. Prieur

HG F5

10:00 - 10:30 C. Chevalier (University of Bern), Y. Richet (IRSN), O. Rous-
tant (EMS). ReDICE Consortium

10:30 - 10:50 Coffee Break HG EO Süd

10:50 - 11:50 P. Renard (Université de Neuchâtel). Multiple-point statistics
as a tool to assess complex spatial uncertainty.

Chair: H. Monod

HG F5

11:50 - 12:50 J. Irving (University of Lausanne). Stochastic inverse methods
for near-surface geophysical problems.

12:50 - 14:15 Lunch Break HG EO Süd

14:15 - 15:15 J. Wiart (Orange Labs). Contribution of statistics to the nu-
merical assessment of the electromagnetic fields human expo-
sure.

Chair: B. Iooss

HG F5

15:15 - 15:30 Closure HG F5

Coffee Break

Lunch Break

14 April 23-25, 2014
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Invited Speakers

List of Abstracts

1 C. Schillings (ETH Zürich). Exploiting sparsity in Bayesian inverse problems of
parametric operator equations.

17

2 F. Nobile (EPF Lausanne). Discrete least-square polynomial approximations for
high dimensional uncertainty propagation.

18

3 J.P. Vert (Institut Curie). Machine Learning for personalised genomics. 19

4 A. Krause (ETH Zürich). Focusing exploration with confidence. 20

5 F.S. Koutsourelakis (TU Munich). Simulation-based, high-dimensional stochas-
tic optimization: application in robust topology optimization under large mate-
rial uncertainties.

21

6 S. Marelli (ETH Zürich). UQLab: A framework for Uncertainty Quantification in
Matlab.

22

7 D. Ginsbourger (University of Bern). Incorporating structural priors in Gaussian
random field models.

24

8 P. Koumoutsakos (ETH Zürich). Data driven, molecular dynamics for nanoscale
fluid mechanics.

25

9 P. Renard (Université de Neuchâtel). Multiple-point statistics as a tool to assess
complex spatial uncertainty.
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10 J. Irving (University of Lausanne). Stochastic inverse methods for near-surface
geophysical problems.
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the electromagnetic fields human exposure.
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Exploiting Sparsity in Bayesian Inverse Problems of
Parametric Operator Equations

Dr. Claudia Schillings and Prof. Dr. Christoph Schwab

ETH Zürich

Affiliation: Seminar für Angewandte Mathematik, ETH Zürich, Rämistrasse 101, CH-8092 Zürich,
Switzerland

Email: christoph.schwab@sam.math.ethz.ch – URL: http://www.sam.math.ethz.ch/~schwabp

Abstract:

In this talk, we will discuss a parametric deterministic formulation of Bayesian inverse problems with
distributed parameter uncertainty from infinite dimensional, separable Banach spaces, with uniform prior
probability measure on the uncertain parameter. The underlying forward problems are parametric,
deterministic operator equations, and computational Bayesian inversion is to evaluate expectations of
quantities of interest under the Bayesian posterior, conditional on given noisy observational data. For
forward problems belonging to a certain sparsity class, we quantify analytic regularity of the Bayesian
posterior and prove that the parametric, deterministic density of the Bayesian posterior belongs to the
same sparsity class. These results suggest in particular dimension independent convergence rates for data-
adaptive Smolyak integration algorithms. The proposed approach is applicable for instance for definite
or indefinite elliptic and for parabolic evolution problems, with scalar or tensorial unknowns and also
with uncertainty in domains, and to highdimensional initial value problems with uncertain coefficients.

This work is supported by the European Research Council under FP7 Grant AdG247277.

MascotNum 2014 - Computer Experiments and Metamodels for Uncertainty Quantification
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Discrete least square polynomial approximations for high
dimensional uncertainty propagation

Prof. Dr. Fabio Nobile

EPFL Lausanne

Affiliation: CADMOS Chair of Scientific Computing and Uncertainty Quantification, EPFL Lausanne,
Station 8, CH-1015 Lausanne, Switzerland

Email: fabio.nobile@epfl.ch – URL: http://csqi.epfl.ch/

Abstract:

We consider a general problem F (u, y) = 0 where u is the solution of the problem and y a set of uncertain
parameters. We specifically address the situation in which the parameter-to-solution map u(y) is smooth,
however y could be very high (or even infinite) dimensional. In particular, we are interested in cases in
which F is a differential operator and y a distributed, space and/or time varying, random field. We aim
at effectively propagate the input uncertainty on y onto the solution u of the problem.

In this talk, we consider polynomial approximations of the parameter-to-solution map u(y), obtained by
discrete least square approximation starting from random evaluations.

We discuss the stability and convergence properties of the method as well as possible strategies to select,
either a-priori or by adaptive algorithms, sequences of approximating polynomial spaces that allow to
reduce, and in some cases break, the curse of dimensionality.

Invited Speakers

18 April 23-25, 2014



Machine learning for personalized genomics

Prof. Dr. Jean-Philippe Vert

Mines ParisTech

Affiliation: Centre for Computational Biology, Mines ParisTech, 35 rue Saint-Honore, 77305 Fontaine-
bleau cedex, France

Email: Jean-Philippe.Vert@mines.org – URL: http://cbio.ensmp.fr/~jvert/

Abstract:

The development of DNA sequencing technologies allow us to collect large amounts of molecular data
about the genome of each individual, and opens the possibility to predict drug response or evaluate the
risk of various diseases from one’s molecular identity. In this talk I will discuss some regularization-based
approaches we have developed to estimate complex, high-dimensional predictive models from relatively
few samples, in particular in cancer prognosis and toxicogenetics.

MascotNum 2014 - Computer Experiments and Metamodels for Uncertainty Quantification
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Focusing exploration with confidence

Prof. Dr. Andreas Krause

ETH Zürich

Affiliation: Learning & Adaptive Systems Group, ETH Zürich, Universitätstrasse 6, CH-8093 Zürich,
Switzerland

Email: krausea@ethz.ch – URL: http://las.ethz.ch/krausea.html

Abstract:

In many applications, ranging from autonomous experimental design to robotic monitoring to system
tuning, we wish to gather information about some unknown function. Often, acquiring samples is noisy
and expensive. In this talk, I will discuss how Bayesian confidence bounds can play a natural role
in focusing exploration: Reducing uncertainty in a structured way to reliably estimate properties of
interest such as extremal values, location of critical regions, Pareto-frontiers etc. First, I will show
how a simple confidence-guided sampling rule attains near-minimal regret for bandit problems involving
objectives modeled via Gaussian process priors. I will further demonstrate how the approach allows
to scale up through parallelization, effectively localize level-sets, and address multi-objective tradeoffs.
I will illustrate the approach in several real-world applications. Applied to experimental design for
protein structure optimization, our approach enabled engineering of active P450 enzymes that are more
thermostable than any previously made by chimeragenesis, rational design, or directed evolution.

Invited Speakers

20 April 23-25, 2014



Simulation-based, high-dimensional stochastic optimiza-
tion: application in robust topology optimization under
large material uncertainties

Prof. Dr. Faidon-Stelios Koutsourelakis

Technische Universität München

Affiliation: Continuum Mechanics Group, Technische Universität München, Boltzmannstr. 15, DE-
85748 Garching, Germany

Email: p.s.koutsourelakis@tum.de – URL: http://www.contmech.mw.tum.de/

Abstract:

This talk is concerned with the optimization/design/control of complex systems characterized by high-
dimensional uncertainties and design variables. While analogous problems in a deterministic setting, and
particularly in the context of PDE-based models, have been extensively studied and several algorithmic
tools have been developed, their extension to stochastic settings poses several challenges. We discuss two
alternative strategies. The first is based on stochastic approximation tools [1]. We discuss Variational
Bayesian approximations that enable the estimation of gradients in a manner that reduces the sampling
noise and the computational effort. The second approach reformulates the problems as one of probabilistic
inference [2] and employs sampling tools suitable for high-dimensions [3, 4]. We are especially concerned
with problems relating to random heterogeneous materials where uncertainties arise from the stochastic
variability of their properties.

References:

[1] H. Robbins and S. Monro (1951). “A stochastic approximation method.” The Annals of Mathematical
Statistics, 22(3), 400–407.

[2] P. Müller (1998). “Simulation based optimal design.” Proceedings of the Sixth Valencia International
Meeting, pp. 323–341.

[3] H. Kück and N. de Freitas and A. Doucet (2006). “SMC Samplers for Bayesian Optimal Nonlinear
Design.” Nonlinear Statistical Signal Processing Workshop (NSSPW).

[4] R. Sternfels and P. S. Koutsourelakis (2011). “Stochastic design and control in random heterogeneous
materials.” Journal of Multiscale Computational Engineering, 9(4), 425–443.

MascotNum 2014 - Computer Experiments and Metamodels for Uncertainty Quantification
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UQLab: a framework for Uncertainty Quantification in
Matlab

Dr. Stefano Marelli and Prof. Dr. Bruno Sudret

ETH Zürich

Affiliation: Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Stefano-Franscini-Platz
5, CH-8093 Zürich, Switzerland

Email: marelli@ibk.baug.ethz.ch – URL: http://www.ibk.ethz.ch/su/people/marellis

Abstract:

The general formulation of Uncertainty Quantification covers a vast field of applications including, among
others, structural reliability, sensitivity analysis, reliability-based design optimization and Bayesian tech-
niques for calibration and validation of computer models. Many computational tools have been developed
by the main scientific communities involved (i.e., engineering, statistics and applied mathematics) but
only a few are readily available (e.g. free software like FERUM[2], OpenTURNS[1] and Dakota[3], or
commercial ones like COSSAN and Nessus) while none of them covers the broad scope mentioned above.

Adopting the global theoretical framework developed in [4] and [5], theUQLab project aims at developing
a complete Matlab-based software framework for uncertainty quantification. Such software would allow
researchers and field engineers to easily use and further develop uncertainty quantification algorithms on
a variety of distributed high-performance computing (HPC) environments.

The platform comprises a highly modular, optimized core probabilistic modelling engine (schematized in
Figure 1) and a content management system that allows users to develop additional custom modules to
suit their needs.

Figure 1: The modular core at the heart of the UQLab framework architecture. An arbitrary number
of elements can be connected at any stage of the uncertainty quantification problem.

Ease of use and development for both academic researchers and industrial end-users without extensive
information technology (IT) background are central to the design philosophy of UQLab, resulting in the
choice of Matlab as the main programming language. Efficient re-use of existent modelling/analysis

Invited Speakers
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codes is promoted by the possibility of easily adding interfaces (wrappers) to existing software (e.g., FEM
modelling codes), and by extensive import/export facilities.

At the current state of development, UQLab includes state-of-the art modules for the representation
of random vectors (many marginal types, copula-based dependence structure), for structural reliability
analysis (FORM, SORM, Importance Sampling, etc.), for sensitivity analysis (Sobol’ indices, principal
effects, etc.) and a powerful HPC-ready modelling infrastructure (including metamodelling tools like
Polynomial Chaos Expansions, Kriging, etc.).

References:

[1] G. Andrianov, Burriel, S., Cambier, S., Dutfoy, A., Dutka-Malen, I., de Rocquigny, E., Sudret, B.,
Benjamin, P., Lebrun, R., Mangeant, F. & Pendola, M., Open TURNS, an open source initiative
to Treat Uncertainties, Risks’N Statistics in a structured industrial approach. Proceedings of the
ESREL’2007 Safety and Reliability Conference, Stavenger: Norway, 2007

[2] J.-M. Bourinet, Mattrand, C. and Dubourg, V. A., Review of recent features and improvements
added to FERUM software, Proceedings of the 10th International Conference on Structural Safety
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Abstract:

Gaussian random field models have become commonplace in the design and analysis of costly experiments.
Thanks to convenient properties of associated conditional distributions, Gaussian field models not only
allow approximating deterministic functions based on scarce evaluation results, but can also be used as a
basis for evaluation strategies dedicated to optimization, inversion, uncertainty quantification, probability
of failure estimation, etc.

In this talk, we will mainly focus on two recent contributions that concern the incorporation of so-called
structural priors in Gaussian random field models.

First, results on covariance-driven pathwise invariances of random fields will be presented. Simulation
and regression examples will illustrate how Gaussian random field models can incorporate a number of
structural priors such as group invariances or harmonicity.

Second, these results will be extended and applied to global sensitivity analysis. In particular, we will
present a functional ANOVA decomposition of covariance kernels, and discuss the interplay between
sparsity properties of the covariance kernel and of corresponding Gaussian random field paths.

Based on scientific collaborations with Nicolas Durrande, Nicolas Lenz, Olivier Roustant, and Dominic
Schuhmacher.
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Abstract:

For over five decades, molecular dynamics (MD) simulations have helped to elucidate critical mechanisms
in a broad range of physiological systems and technological innovations. MD simulations are synergetic
with experiments, relying on measurements to calibrate their parameters and probing “what if scenar-
ios” for systems that are difficult to investigate experimentally. However, in certain systems, such as
nanofluidics, the results of experiments and MD simulations differ by several orders of magnitude. This
discrepancy may be attributed to the spatiotemporal scales and structural information accessible by ex-
periments and simulations. Furthermore, MD simulations rely on parameters that are often calibrated
semiempirically, while the effects of their computational implementation on their predictive capabilities
have only been sporadically probed. In this work, we show that experimental and MD investigations can
be consolidated through a rigorous uncertainty quantification framework. We employ a Bayesian prob-
abilistic framework for large scale MD simulations of graphitic nanostructures in aqueous environments.
We assess the uncertainties in the MD predictions for quantities of interest regarding wetting behavior
and hydrophobicity. We focus on three representative systems: water wetting of graphene, the aggrega-
tion of fullerenes in aqueous solution, and the water transport across carbon nanotubes. We demonstrate
that the dominant mode of calibrating MD potentials in nanoscale fluid mechanics, through single values
of water contact angle on graphene, leads to large uncertainties and fallible quantitative predictions. We
demonstrate that the use of additional experimental data reduces uncertainty, improves the predictive
accuracy of MD models, and consolidates the results of experiments and simulations.

References:
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Neuchâtel, Switzerland

Email: philippe.renard@unine.ch – URL: http://www2.unine.ch/cms/lang/fr/pid/28514

Abstract:

In most engineering applications related to the underground, heterogeneity associated with lack of data
implies uncertainties. When in addition one has to predict fluid flow (groundwater, oil, gaz, CO2) in
those environments, a key controlling factor is the connectivity of the highly permeable or impermeable
structures. Even if major progresses have been done over the last 50 years in the field of multi-Gaussian
random processes to estimate uncertainty, a broader class of random functions is required to be able to
better describe geological uncertainty. In this talk, I will introduce the multiple-points statistic framework
and some of its recent advances. The basic principle is to start from a training data set from which
non parametric statistics are derived on pattern occurrences. Those statistics control the generation of
random fields which are able to mimic realistic structures present in the training set. While the algorithm
is pretty obvious, it allows simulating a broad range of random processes. Examples will be shown for
the simulation of porous medium, geomorphology of braided rivers, rainfall time series, or multivariate
satellite images.
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Abstract:

Geophysical methods have wide-reaching applications in near-surface environmental and hydrological re-
search because of their ability to provide estimates of spatially distributed subsurface physical properties
at a scale and resolution that are often highly relevant to corresponding modeling and prediction needs.
Over the past two decades, significant advancements have been made in terms of obtaining hydrologi-
cally and/or environmentally relevant information from geophysical data, most notably addressing the
challenge that geophysically derived properties (e.g., electrical conductivity, seismic wave velocity) are
typically poorly linked with the subsurface properties of direct interest to the problem at hand (e.g.,
permeability, contaminant concentration). One key area of near-surface geophysical research that is still
in its infancy, however, involves uncertainty quantification of the corresponding inverse problems. Knowl-
edge regarding spatially distributed parameter uncertainty is absolutely essential for making predictions
based on geophysical data, which in turn serves as the basis for effective decision-making.

Uncertainty quantification (UQ) for geophysical problems is notoriously challenging because of the typi-
cally high dimension of the model parameter space combined with the computational complexity of the
associated numerical simulation processes. Although a wide variety of UQ approaches have been devel-
oped, one methodology that has become increasingly popular in recent years involves stochastic sampling
from the Bayesian posterior parameter distribution using Markov-chain-Monte-Carlo (MCMC) methods.
In this presentation, I will summarize work that we have conducted in this overall domain of research
with applications to vadose and saturated zone hydrological problems. In addition, I will present recent
developments with respect to the incorporation of geostatistical information into Bayesian inverse prob-
lems through sequential resampling, along with an evaluation of the numerical efficiency of this approach.
Finally, the issue of model error in Bayesian-MCMC inverse approaches will be investigated, with a view
towards potential strategies for accounting for the bias of simplified, computationally efficient forward
models in the calculated posterior statistics.
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Abstract:

Exposure Assessment and Deterministic Methods

In spite of the existing international protection limits (e.g. those of the ICNIRP International Commis-
sion) and despite the fact that none of the research results have, today, proven any health effects below
these limits, the public fears towards electromagnetic fields (EMF) and the radiofrequencies in particular,
remains important even if in the same time there is an increasing and intensive use of wireless commu-
nication systems. Today billions of people are using wireless systems such as mobile phone, tablet or
computer. In such context the EMF exposure, quantified using the Specific Absorption Rate (SAR),
must be monitored carefully. The works that have been conducted for twenty years [1, 2], have shown
that morphologies, postures, source location and Radio Frequency (RF) bands used are influencing the
human exposure. In the 90’s the first objective was to define methodologies able to check the compliance
(to the recommended limits) of the EMF emitted by wireless communication equipment (e.g. mobile
or base station). To achieve this objective and overcome the possible large variability of the exposure,
”worst-case” scenarios (e.g. phantom head) have been designed by international bodies such as CEN-
ELEC, IEC or IEEE. These protocols and methods have been successfully used to define such compliance
tests. Unfortunately such approach, if useful for compliance checking, is not suitable to assess the real
personal exposure [3]. Such “worst case” approach has been first challenged with the epidemiological
studies (e.g. the international INTERPHONE study) that request the real exposure and not a maximum.
The need of a comprehensive exposure assessment has been reinforced with the increasing and versatile
use of the wireless communication systems. Today these systems can emit in different RF bands and in
different ways depending on the application, they can be used in versatile use (listening, watching, ...).

Contribution of Statistics to Human Exposure Assessment

In the 2000s new approaches, involving statistics, have been investigated to respond to these questions and
be able to handle new usages such as those of children who, at earlier and earlier ages, use tremendously
wireless communication systems. The numerical method, mainly used in bio-electromagnetism, to esti-
mate the human exposure induced by EMF, is the finite difference in time domain (FDTD). This method
is based on an explicit iterative calculation of the electric and magnetic field (linked by the well known
Maxwell equations) over an orthogonal grid. The main advantage of the FDTD is to proceed without any
matrix inversion that can be cumbersome. The main problem of the FDTD is the time computation that
can be very large (i.e. few hours if calculation involved the whole body). Large efforts have been achieved
toward high performance calculation using parallel computation and recently graphic processors unit.
But even with these efforts, the time computation is still important and is not compatible with Monte
Carlo Method. To overcome this issue, efforts have been dedicated to build simplified surrogate models.
Works have be done to use the polynomial expansion with the coefficient of the polynomials estimated
using projection methods and sparse grids[4]. The results of these studies showed that this approach is
still not compatible with the FDTD even when reducing the number of computation. For instance a quite
simple problem such as a phone close to the head, involving 4 input parameters, governing angles and
location, can request a few hundred of simulations. To reduce the number of simulations and taking into
account previous work carried out in mechanics, a sparse polynomial chaos (PC) expansion (using a least
angle regression method) combined with a regression and an iterative planning of experiments has been
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used to build a surrogate model with a minimum calculation [5]. This approach has been able to reduce
significantly the number of simulations but has limited ability to manage the accuracy of quantile estima-
tion. Due to the influence of the morphology [2] this quantile estimation is a key question to determine
the threshold of the Whole Body SAR (WBSAR) at 95 % for a given population [6]. A similar problem is
the fetus exposure induced by plane wave having arbitrary incidence [7]. In these cases the challenge is to
build a parsimonious iterative planning experiments able to select additional calculations increasing the
accuracy of the quantile estimation. To achieve this objective, Gaussian Process and sequential planning
numerical experiments method [6, 7] have been studied. Gaussian Process Shrunk and existing Stepwise
Uncertainty Reduction have been studied to select iteratively new calculations with a strong constraint
on the minimum of calculations to be performed. The uncertainty estimation obtained with PC is often
a global one (using bootstrap or leave one out methods) and since method such as Kriging has shown a
good ability to address this problem, on going work are performed to combine Kriging and PC to build
an efficient and parsimonious iterative planning able to assess quantiles and the associated uncertainties.

Conclusions

With the versatile use of wireless, the exposure assessment have to handle complex and variable con-
figurations. The usual deterministic approaches are not able to handle such variability and dosimetric
calculations can be cumbersome. As described in previous sections, statistical methods allow one to
handle complex and variable configurations that cannot be managed using the regular deterministic ap-
proaches, These methods have shown a good capability, in bio-electromagnetism where the number of
input can be important. During the presentation, examples will be given to illustrate the challenges and
methods used to characterize statistical distribution of the local and whole body human exposure.
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ETH Zürich

Affiliation: Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
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Abstract:

A large number of problems in physics and engineering such as global climate, propagation of tsunamis
and avalanches, waves in the solar atmosphere, design of efficient aircraft, and the structural mechanics
are modeled by systems of non-linear partial differential equations termed as systems of balance laws:

{

Ut(x, t) + div(F(x,U)) = S(x, t,U),

U(x, 0) = U0(x),
∀(x, t) ∈ D× R+. (1)

Examples of conservation laws include the shallow water equations of oceanography, the Euler equations
of aerodynamics, the Magnetohydrodynamics (MHD) equations of plasma physics and the equations of
elasticity. In general, solutions of (1) develop shock waves in finite time even for smooth initial data.
Hence, solutions are sought in the sense of distributions, additionally imposing entropy conditions to
ensure uniqueness. For fluxes that are non-linear or with varying coefficients, analytical solution formulas
are only available in very special cases. Apart from many other numerical methods, Finite Volume
methods (FVM) emerged as the the most successful paradigm for practical computations in geophysics,
aerodynamics and astrophysics. In FVM, the corresponding numerical fluxes are based on (approximate)
solutions of Riemann problems at mesh cell interfaces. Higher order spatial accuracy is obtained by non-
oscillatory reconstruction procedures such as TVD limiting, (W)ENO or by the Discontinuous Galerkin
(DG) method; higher order temporal accuracy is obtained by SSP-RK method.

Uncertainty quantification. A Finite Volume scheme requires the initial data, fluxes, and source terms
as inputs. These inputs are, in general, uncertain, i.e., initial condition U0 = U0(x, ω), source term
S = S(x, ω,U) and fluxes F = F(x, ω,U) are random fields where ω ∈ Ω and (Ω,Σ,P) denotes a
complete probability space. Consequently, the solution U is sought as the random entropy solution of
the random balance law :

{

U(x, t, ω)t + div(F(x, ω,U)) = S(x, ω,U),

U(x, t, ω) = U0(x, ω),
(x, t) ∈ D× R+, ω ∈ Ω. (2)

Under certain assumptions on input data U0, S, F, the existence of the k-th statistical moments Mk(U)
of the random entropy solution is established. The next step is the design of efficient numerical methods
for the approximation of the random balance law (2). These methods include the stochastic Galerkin,
stochastic collocation and stochastic Finite Volume. Currently these methods are not able to handle large
number of uncertainty sources, are intrusive (existing deterministic solvers need to be reconfigured) and
hard to parallelize. Hence, we focus on the sampling-type Monte Carlo methods.

Multi-Level Monte Carlo Finite Volume Method
Due to the slow convergence of the conventional Monte Carlo FVM sampling methods, we propose the

Multi-Level Monte Carlo method (MLMC-FVM). MLMC was introduced by Giles for Itô SPDE. The
key idea is to simultaneously draw MC samples on a hierarchy of nested grids:
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0. Nested meshes: Consider nested meshes {Tℓ}
∞
ℓ=0 of the domain D with corresponding mesh

widths ∆xℓ = 2−ℓ∆x0, where ∆x0 is the mesh width of the coarsest resolution.

1. Sample: For each level ℓ ∈ N0, we draw Mℓ independent identically distributed (i.i.d) samples Iiℓ
with i = 1, . . . ,Mℓ from the random input data I(ω) and approximate these by cell averages.

2. Solve: For each level ℓ and each realization Iiℓ, the balance law (1) is solved for Ui,n
∆xℓ

and Ui,n
∆xℓ−1

by the FVM method on meshes Tℓ and Tℓ−1 with mesh widths ∆xℓ and ∆xℓ−1, respectively.

3. Estimate Statistics: Fix L <∞ corresponding to the highest level. Denoting MC estimator with
M =Mℓ by EMℓ

, the expectation of the random solution field U is estimated by

EL[Un
∆xL

] :=
L
∑

ℓ=0

EMℓ
[Un

∆xℓ
−Un

∆xℓ−1
]. (5)

To equilibrate the statistical and the spatio-temporal errors, we require Mℓ = O(22(L−ℓ)s) for 0 ≤ ℓ ≤ L.
Notice that that the largest number of MC samples is required on the coarsest mesh level ℓ = 0, whereas
only a few MC samples are needed for ℓ = L. Using such Mℓ, we obtained the error vs. work estimate

‖E[U(tn)]− EL[Un
∆xL

](ω)‖L2(Ω,·) .

{

(Work)min{−s/(d+1),1/2} · log(Work) if s 6= (d+ 1)/2,

(Work)−1/2 · log (Work)
3/2

if s = (d+ 1)/2.
(7)

The above estimate (7) shows that the MLMC-FVM is superior to the MC-FVM. For s < (d + 1)/2,
estimate (7) is exactly of the same order (modulo a log term) as the estimate for the deterministic FVM.

Parallel implementation. We have developed a massively parallel code ALSVID-UQ, which implements
the MLMC-FVM algorithm to solve the systems of stochastic balance laws (2). We designed novel static
and adaptive load balancing procedures and achieved linear (strong and weak) scaling up to 40 000 cores.

Numerical example. We consider three-dimensional Euler equations in domain D = [0, 1]3 and the so-
called cloud-shock initial data with 11 sources of uncertainty, i.e. with random initial shock at random
location (near x = 0.1) heading towards high density cloud with uncertain shape of its boundary and
uncertain inner density. The mean and variance for the density of the solution at time t = 0.06 are shown
in Figure 1. The results are from a MLMC-WENO run with 7 nested levels of resolution (L = 6) and
the finest resolution is set to 10243 mesh. The flow in this case consists of the supersonic initial shock
moving to the right, interacting with the high density bubble and leading to a complex flow pattern that
consists of a leading bow shock, trailing tail shocks and a very complex center region possessing sharp
gradients as well as turbulent like smooth features. Runtime: 5 hours on 21 844 cores.

Figure 1: Mean and variance of density in the cloud-shock estimated with MLMC-FVM.

Short biography – I have obtained my BSc in Mathematics in Jacobs University Bremen, Germany, and
my MSc in ETH Zürich. My scientific interests are: hyperbolic nonlinear stochastic partial differential
equations, numerical analysis and simulations, massively parallel high performance computing, finite
volume methods, multi-level Monte Carlo methods. More information under: http://cv.sukys.lt.

Sources of funding: ETH grant CH1-03 10-1, Swiss National Supercomputing Center project S366.
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Abstract:

In recent decades, standards of quality and safety requirements is increasingly demanding in numerous
industrial and scientific areas. Thus, the estimation of probability of rare events is become of great
interest. Two popular methods in this regards are the splitting algorithm [1] and a weighted importance
resampling algorithm (WIR) [2]. Despite a deep theoretical study of these two algorithms, the practical
side has not been handled completely. The choice of a good tuning often proves to be fastidious and
may decrease their usefulness. This study aims at answering this point. More precisely, we propose
some adaptive methods to make the implementation of the splitting algorithm and the WIR algorithm
automatic. Furthermore, we enlarge the area of application of the WIR algorithm to make WIR and the
splitting estimating the same kind of probability.

Firstly, we focus on the splitting algorithm. The main goal of this algorithm is to estimate the probability
that a Markov process Xt enters a critical set B before some stopping time T . Namely, it gives some
numerical approximations of

P(TB ≤ T ) = P(Xt ∈ B, for some t ∈ [0, T ]), (1)

where TB is the first time Xt enters B. This kind of problems typically arises in air traffic management
[3], telecommunication networks [4] and electrical grid reliability estimation [5].
The principle of the splitting is to consider a sequence of decreasing supersets of B, B1 ⊃ · · · ⊃ Bm−1 ⊃
Bm = B, and to estimate each probability of reaching Bk starting from Bk−1. Consequently, we first
have to determine the sequence of decreasing supersets Bk. To this aim, the existing algorithms [6, 4]
are too restrictive. Indeed, they can only be used with time-homogeneous Xt process and T random.
Moreover, the algorithm proposed in [6] is only made for a process Xt that takes its value in R. That is
why we propose a general adaptive splitting algorithm for T random or deterministic, Xt possibly time-
homogeneous and multi-dimensional. For that purpose, we assume that the rare event is characterized
by some exceedance over a given threshold S of a real valued function Φ, B = {x, Φ(x) ≥ S}. For all we
know, all the problems addressed in the scientific literature ([4, 3, 5]) can be expressed in such a way. In
that case, we derive an adaptive algorithm for the choice of the supersets Bk, as concisely detailed in [7].
To this end, the proposed algorithm is based on some quantile estimation of the random variable of the
maxima of a trajectory of Φ(Xt) over final time T . Thus, the supersets Bk are implicitly defined with Φ.
Finally, we give some numerical estimations of the conflict probability between aircraft.

Secondly, we proposed some improvement of the WIR algorithm [2]. The goal of the WIR algorithm is
to estimate

P(Ψ(Zn) ∈ C), (2)

where (Zk, k = 0, . . . , n) is a Markov chain, n a fixed integer, Ψ a real valued function and C a subset of
R. Such problems appears in the estimation of credit portfolio losses [8] and in fiber optic [2].

To estimate the probability (2), WIR consists in a set of N random paths (Z(i)
0:n, 1 ≤ i ≤ N). The

construction of these paths is performed in two steps. First, at each iteration time, the trajectories which
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are more likely to reach the rare set C are multiplied and the others are killed. This is made through
a selection function. Secondly, the Markov transition kernel of (Zk, k = 0, . . . , n) is applied for the
trajectory evolution.

To our knowledge, all the selection functions used in the scientific literature for the WIR algorithm
only depend on a real parameter, denoted here by α [2]. Indeed, the choice of α strongly influences
the variance of the estimated probability. However, there is no formula neither rules on the choice of
some good parameters. We thus propose an algorithm to compute some good parameter for the WIR
algorithm. This procedure is motivated by an original characterisation of the parameters that should be
used. This characterisation is made with the proportion of the trajectories that reach the rare set at final
time. Moreover, we numerically show that this procedure achieves to determine the optimal parameters.
Then we test the proposed algorithm with the estimation of outage probability in optic fiber and the
estimation of large credit portfolio losses.

At first sight, the splitting and WIR algorithms cannot be used for the same estimation problem. Indeed,
the first one estimates the probability (1) that a critical event occurs during the evolution of a Markov
process whereas the second one estimates the probability (2) that a critical event occurs at the deter-
ministic final evolution time of a Markov chain. However, if one considers the process of the maxima of
Φ(Xt), namely Mt = max

0≤s≤t

Φ(Xs) we show that the WIR algorithm can indeed be used for the estimation

of (1). Finally, we compare the efficiency of our modified version of the WIR algorithm and the splitting
algorithm on the estimation of the conflict probability. We conclude that the WIR algorithm gives better
variance than the splitting algorithm.
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Abstract:

Hierarchical or multilevel modeling establishes a convenient framework for solving complex inverse prob-
lems [1, 2] in the presence of uncertainty. In the last two decades it has been studied from a frequentist
[3] and a Bayesian perspective [4]. We will adopt a Bayesian point of view to statistical inversion and
uncertainty quantification and present a Bayesian multilevel framework that allows for inversion and
optimal analysis of “perfect” or noise-free data in the presence of aleatory and epistemic types of uncer-
tainty and in experimental situations when data is scarce or expensive to acquire. In this contribution
to the annual MascotNum workshop we will discuss the abovementioned framework on the basis of an
application example within the domain of aerospace engineering [5]. We will not only illustrate the very
potential of Bayesian multilevel modeling as well as ways to overcome its immanent major challenges,
but more importantly we will discuss the main observations, considerations and key questions that the
practical problem solution [6] has given rise to.

A forward model M : (m,x, ζ,d) 7→ ỹ describes a system or phenomenon under consideration. Through-
out a number of i = 1, . . . , n experiments forward model inputs may be represented corresponding to
a certain model of epistemic and aleatory uncertainty. There are fixed albeit insufficiently well-known
model parameters m, model inputs x and ζ that are subject to imperfectly or perfectly known variability,
respectively, and experimental conditions d that are known with certainty. Constant yet unknown model
parameters are represented as random variables M ∼ πM (m) where πM (m) is a Bayesian prior belief
about their true values. Model inputs with perfectly known variability are modeled as experiment-specific
realizations ζi of random variables (Zi |θZ) ∼ fZ |ΘZ

(ζi |θZ) with known hyperparameters θZ that pre-
scribe the variability. Model inputs with imperfectly known variability are modeled as experiment-specific
realizations xi of exchangeable random variables (Xi |θX) ∼ fX |ΘX

(xi |θX) with hyperparameters θX
about which only Bayesian prior knowledge ΘX ∼ πΘX

(θX) is available. Experimental conditions di

possibly differ throughout the experiments yet they are (deterministic) perfectly known values.

A “complex” inverse problem is posed when model responses ỹi = M(m,xi, ζi,di) are measured in
n experiments, forward model inputs comply with the aforementioned uncertainty model and inference
focuses on the unknowns (m,θX). While classical Bayesian multilevel modeling deals with the analysis of
“imperfect” data yi = ỹi+εi, i.e. model-measurement discrepancy is accounted for by residual terms that
are modeled as outcomes εi of a random variables Ei ∼ fEi

(εi) with distributions fEi
(εi), the problem

formulation at hand deals with “perfect” data ỹi. Interestingly, in the context present the analysis of
“perfect” data is more involved than the analysis of “imperfect” data in mathematical and numerical
terms. Thus firstly we will devise a Bayesian multilevel model involving “perfect” data. Subsequently we
will show how Bayesian calibration of the formulated multilevel model can be accomplished by analyzing
the entirety of collected data 〈ỹi〉 = (ỹ1, . . . , ỹn). The inferential prior distribution π(m,θX), that
represents the knowledge about the quantities of interest (m,θX) prior to analyzing the data, will be
updated in order to obtain the posterior distribution π(m,θX |〈ỹi〉). To that end a likelihood function
L(〈ỹi〉|m,θX ;θZ) has to be formulated as well as a means for its efficient evaluation.
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Figure 1: DAG of the generic multilevel model. Vertices symbolize unknown ( ) or known ( ) quantities and directed edges
represent their deterministic ( ) or probabilistic ( ) relations. Quantities are shown in a way that reflects their uncertainty.

Since for the specific problem at hand such a likelihood function is not available in closed-form, we will
propose a statistical simulator of the likelihood which is based on Monte Carlo (MC) sampling and kernel
density estimation (KDE). Moreover, in order to explore the posterior of the quantities of interest, we
will devise dedicated Markov chain Monte Carlo (MCMC) algorithms. The very principle of MCMC is
to construct a Markov chain whose long-run distribution approaches the desired posterior. By virtue of
Bayes’ law closed-form approximations of the likelihood directly induce approximations on the level of the
posterior. However, if calls to the likelihood function L, over the course of the Markov chain, are replaced
by calls to a statistical estimator L̂, an approximation is introduced on the level of the Markov chain
transition kernel. This raises the distinctly important question as to which degree the induced equilibrium
distribution is in conformity with the true posterior, i.e. the issue of posterior fidelity. In turn the practical
question becomes how to “optimally” tune free algorithmic parameters, e.g. the number of MC samples,
the bandwidth of the KDE and parameters of the MCMC simulation. We will present a heuristic way
of approaching those delicate issues. Beyond that, we will demonstrate how data augmentation [7] can
be utilized in the outlined multilevel context. Data augmentation is a powerful technique from the vast
MCMC toolkit that traditionally aims at enhancing MCMC efficiency by introducing hidden data as
auxiliary variables. Instead we will herein introduce latent data as auxiliary variables in order to enhance
the adequacy of likelihood estimations and the fidelity of the posterior densities that are eventually
obtained.
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Affiliation: - Institut de Mathématiques de Toulouse (IMT), Université Paul Sabatier 118, route de
Narbonne 31062 Toulouse, France
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Abstract:

Introduction During an aircraft design process, an engineer would be interested to distribute margins
on different suppliers in an optimal way, i.e. giving more margins to those who do not control their own
design process (because of a new technology for instance) and less margins to those who can easily or
cheaply commit on a good confidence. The design, influenced by the uncertainty of the suppliers margins,
has to comply to some performance constraints taking into account a risk measure. In the case of multiple
criteria, this leads to the definition of a multivariate quantile. The main contribution of this PhD thesis
is on a new definition and on the associated convergence theroem of a multivariate quantile.

Multivariate Quantile Let X1, ..., Xn be i.i.d. Rd valued random variables with common law P = PX .
Many approaches in multivariate data analysis have been proposed to describe the structure of such a
data cloud. In connection with our work it is worth mentioning spatial quantiles, data depth, level sets,
mode localization, shorth sets, classification, k-means, trimming, among others.

In this presentation we introduce an original notion of multivariate quantiles that is not based on a
global M -estimation but rather on a directional M -estimation which is also a natural generalization of
the univariate quantiles.

For d = 1, let’s first recall the definition of the univariate quantile Q(α) = inf {y ∈ R : P (X ≤ y) ≥ α}

Facing the usual fact that Rd is not ordered our idea is simply to admit subjectivity and thus to define
a local viewpoint rather than a global one, anchored at some point of reference O and arbitrary shape ϕ
with the motivation of crossing information gathered by changing viewpoint O, shape ϕ and α-th order
of quantile. Since these viewpoints are correlated, the next key steps will be to properly compare them
to automatically learn about P , but this is beyond our current scope. In this presentation we mainly
focus on the special case of half-spaces instead of the general shape ϕ.

For d ≥ 1, we define the half-space standing at distance y ∈ R from O ∈ Rd in the direction u ∈ Sd−1

H(O, u, y) =
{

x ∈ R
d : 〈x−O, u〉 ≤ y

}

now, given α ∈ (1/2, 1], we define the α-th quantile range from O in the direction u

Y (O, u, α) = inf {y ∈ R : P (H(O, u, y)) ≥ α}

and the α-th quantile point seen from O in the direction u

Q(O, u, α) = O + Y (O, u, α) · u

Imagine an observer located in O ∈ Rd looking at the sample in all directions u ∈ Sd−1 where Sd−1 is the
unit sphere of Rd. How can he picture out the empirical mass localization in Rd ? We propose to draw a
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(a) in pink: space region of mass α
in black: half-space H(O,y,α) (b) in red: The quantile surface

Q(O,α) = {Q(O, u, α) : Sd−1}

collection of u-directional α-th quantile points that we call a subjective α-th quantile surface, for a fixed
α ∈ (1/2, 1).

Each point of this surface (b) is the univariate α-th quantile of the projected distribution on the line
(O, u). How can the observer catch more information on the law P? Keeping O fixed and letting α vary
determines P . Thus analyzing a collection of such surfaces can be viewed as some purely non-parametric
and non-linear data analysis approach in which we keep track of more than a few orthogonal directions. A
second motivation for these α-th quantile surfaces is that the algorithms computing them at a reasonable
precision are simple and fast, even for large samples, faster than level sets estimators or plug-in estimators
based on density estimators – however density may even not exist.

Convergence Results The graphical representations of these spatial quantiles are random closed
surfaces generated by the sample for which we establish the following theorems:

1- Almost sure consistency ; 2- Uniform central limit theorem with some rate ; 3-Uniform Strong approx-
imation with rate ; 4- Bahadur-Kiefer type representation

Back to the industrial problem The industrial problem can be reformulated (or generalized) in the
folowing way:

{

maxσ∈Rn C(σ)
s.t. Zα

σ ⊂ M

C : σ 7→ C(σ) is a controlability function and Zα
σ some transformation of our quantile of level α and the

set M can be seen as a confident region.

In other words, on the space of the outputs some regions are critical (in a weaker version we only consider
some critical points) and one wants to calibrate σ such that with high probability the outputs are far
from the critical region.

(a) in red: boundary of critical region
in blue: Sample points

(b) in red: critical points
in blue: Sample points

We show that the quantiles introduced in the previous part are well-suited to handle with this type of
applied problems.
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Ph.D. (2013-2016): Université Paris-Est
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Abstract:

In various cases of modelling the propagation of uncertainity in complex numerical simulation schemes,
the engineer needs to create a probabilistic model that takes into consideration the available statistical
information (or expert judgement). In most of the cases this means that the marginal distribution of each
uncertain quantity is determined, but it can also be a physical constraint between these quantities, for
example an order relationship. The construction of such a model is quintessential if we want to evaluate
a probabilistic reliability criterion by Monte Carlo methods. In order to estimate the expectation of a
random variable derived from the uncertain quantities, or the probability that it exceeds a certain thresh-
old, we need to generate i.i.d. samples, which requires the complete knowledge of the joint distribution
of these quantities.

My thesis focuses on the modelling of multivariate random vectors where the marginal distributions of
the components are given and the components verify certain deterministic constraints. As a first problem
we consider ordering constraits, that is the components of the random vector are ordered almost surely.
Among the possible joint distributions (if there exists any), our aim is to find the most “random” possible.
To measure the uncertanity of our joint model, we use the Shannon entropy defined for a d-dimensional
random variable X = (X1, ... , Xd) as:

H(X) = −

∫

fX(x) log (fX(x)) dx,

where fX denotes the density of X. We are looking for the joint distribution of X that maximizes this
measure. From an information theory point of view, this is the distribution that adds the least amount
of information in addition to the initial constraints, leading to a more realistic modelling of the random
vector.

Since the marginal distributions are fixed, the theory of copula functions seems appropriate to model the
dependence structure between the uncertain quantities. Copulas are multivariate distribution functions
whose marginals are uniformly distributed on [0, 1]. Sklar’s theorem states that the distribution function
F of a d-dimensional random variable X with continuous marginal distribution functions Fi, i = 1 ... d
can be written as:

F (x1, ... , xd) = C (F1(x1), ... , Fd(xd))

where C is a uniquely determined copula. This allows us to decompose the information on the marginals
and the information on the dependence, which is incorporated in the copula. Furthermore, we have the
following decomposition of the entropy of X:

H(X) =
d

∑

i=1

H(Xi) +H(U),

where H(Xi) is the entropy of the univariate random variable Xi, and H(U) is the entropy of a d-
dimensional random variable U whose distribution function is C, the copula associated to X. Since the
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marginals Xi are given, we can observe that H(X) is maximal if and only if H(U) is maximal. Therefore
we turned our attention to finding the copula that maximizes the entropy under the constraints imposed
by the marginals and the ordering. We have found that in the case of d = 2, this copula can be expressed
with the help of the copula which maximizes the entropy under the constraint that its diagonal section,
defined by δ(t) = C(t, t), t ∈ [0, 1], is given. The function δ only depends on the marginals distribution
functions of X. We present the explicit density of the unique optimal copula with given diagonal section
δ. We give an explicit criterion on the diagonal section for the existence of the optimal copula as well as
the closed formula for its entropy. Using this copula we determine explicitly the distribution function of
the random variable X which maximizes the entropy under the ordering and marginal constraints. For
d > 2, we have shown that the maximum entropy copula of ordered random vectors with given marginals
is related to the maximum entropy symmetric copula whose order statistics have fixed distributions.
That is, if U is a random variable with distribution function C, then the distribution function of the i-th
largest element of U is fixed and given by δ(i) for all 1 ≤ i ≤ d. As in the case of d = 2, we give the
explicit density of the optimal copula with a closed formula for its entropy for a special class of marginal
distributions. We also present the density of the random variable X which maximizes the entropy under
the ordering and marginal constraints for general d ≥ 2 for this special class of marginals.

The results will be illustrated on various choices for the marginal distributions, and an example arising
from an industrial problem will also be presented.

Short biography – I’m a second-year Ph.D. student in Applied Probability from Hungary at Univer-
sité Paris-Est, affiliated to the laboratories CERMICS of ENPC and LAMA of UPE-MLV. My work is a
collaboration between the Department of Industrial Risk Management of EDF R&D and the aforemen-
tioned laboratories under a CIFRE contract. My studies are jointly funded by the organization ANRT
and EDF R&D.
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Master: Université Jean Monnet, Saint-Etienne

Ph.D. (2012-2014): Université Joseph Fourier, Grenoble
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Abstract:

We study the synthesis of data from different experiments. These experiments are very complex com-
puter simulations that take several hours to produce a response for a given input. Understanding the
phenomenon modeled by the simulation requires a large number of responses and in practice having all
of them is unfeasible due to time constraints. This is why the computer simulation is often replaced by
a simpler probabilistic model, also known as metamodel, that is faster to run.

The studied metamodel is based on the hypothesis that the computer simulation is in fact the realization
of a gaussian process indexed by the inputs and defined by a parametric mean function and a parametric
covariance function. A small number of responses produced by the computer code are used to determine
the values of the parameters of the mean and covariance functions. Given a new input, the predicted
value is the expectation of the stochastic process at that input conditioned by the responses available.
Since the stochastic process is gaussian, there is a formula for this expectation and the error of prediction.

When the precision of the output produced by the computer code can be tuned it is possible to incorporate
responses with different levels of fidelity to enhance the prediction of the most accurate simulation at
a new input while respecting the time constraints. This is usually done by adding several imprecise
responses instead of a few precise ones. The main example for this type of computer experiments are the
numerical solutions of differential equations. The precision can depend on the size of the mesh of the
domain of resolution used to produce the response; on the space where the solution is projected or even
whether a part of the physical model involved is left aside. The problem is how to take into account all
the information available. This problem has been studied by many authors, most notably by LeGratiet
in [1] and by Kennedy and O’Hagan in [3].

In the present work, we propose a new approch that is different from the existing ones.

For ease of notation only two precision or fidelity levels are considered: 1 for the least accurate and 2
for the most precise. First we will assume that the most precise level is a function of the least accurate.
The difference between the two will be modeled by the gaussian process Z(2,x). If we suppose that Y(1,x)
is the gaussian process related to 1, then Y(2,x) defined by equation (1) is also a gaussian process. It will
model the outcomes of 2.

Y(2,x) = ϕ(Y(1,x)) + Z(2,x) (1)

Generalizing the results in [1], we propose a non-parametric approach where we compute a locally linear
approximation of the function ϕ. We estimate the relationship and build a predictor by using all the
responses to compute the conditional expected values for Y(1,x) and Z(2,x). The prediction error is built
using the predicting errors of Y(1,x) and Z(2,x).

Then, we study an analog model based in [2] where the difference between the two levels is no longer
a gaussian process. This time the difference between the two computer simulations will be modeled by
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Figure 1: Estimated relationship between two successive levels of a computer code that simulates the
pressure transient in a porous media.

the correlated errors ǫy. The correlation structure of the errors will depend on the distance between the
outputs of 1. The new probabilistic model for the second simulator is given by equation (2) where Y(1,x)
is still the gaussian process related to 1.

Y(2,x) = ϕ(Y(1,x)) + ǫy (2)

Once again we will estimate ϕ by using locally linear polynomials. Since we considered a particular
correlation structure for the errors, we use the algorithm described by Fernandez in [2] to correct the bias
in the estimation of the smoothing parameter of the non-parametric regression.

Finally, the two models are tested to illustrate their advantages and shortcomings. First by simulating
the computer codes as gaussian processes we find that assuming that ϕ is linear when it is not can affect
the results of the predictions. By using physical models we notice that the relationship between two
fidelity levels of a computer code can be non-linear - as shown in Figure 1 - and in some cases not even
function-like. Then, we develop briefly a case study related to a diphasic air-water flow in a rectangular
domain.
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Abstract:

In the framework of industrial risk assessment studies, the reliability of a component is evaluated during
accidental conditions. A numerical model provides the thermal-hydraulic (T-H) loading of this component
subjected to highly hypothetical conditions. Then, a numerical model for the mechanical analysis of
components and structures (called hereafter the T-M code), taking as input the T-H loading, calculates
the breaking strength of the component and the thermo-mechanical actual applied load. From these two
elements, a safety criterion is deduced.

Under the hypothesis of accidental conditions, the component behavior depends on many uncertain
parameters, related to the initial plant conditions or to the safety system characteristics. These uncertain
parameters are input variables of the T-H code. They can be of various types: scalar, functional,
categorical... It can be important to assess how these uncertainties can affect the code forecasts. To
deal with all these uncertainties, computer experiment methodologies like uncertainty propagation and
sensitivity analysis are useful. As the T-H code is much more time expensive than the T-M code, the
uncertainties on the results of the T-H code which are of functional type, are directly characterized, so
that uncertainty propagation and sensitivity analysis can be applied on the T-M code.

The uncertainty characterization of functional input variables has already been investigated by a few
authors. A common way to study functional variables is to decompose them on a functional basis. Collin
et al. [1] decompose the functional variable under study thanks to Functional Principal Component
Analysis (FPCA), developed by Ramsay and Silverman [2]. As they consider that the functional random
variable is a Gaussian process, the coefficients of the FPCA basis functions are independent and follow
a centered and standardized Gaussian distribution. However, the Gaussian process hypothesis is quite
restrictive in practice. Hyndman and Shang [3] propose a method close to the previous one. The functional
variable is first decomposed on a FPCA basis. The joint probability density function of the coefficients
on this basis is then estimated thanks to a kernel density estimator (Rosenblatt [4]). However, the kernel
density estimation is inefficient in high dimension, so that the number of functions in the FPCA basis
must be small to apply this method in practice.

In the present work, the problem under consideration is different from the previously studied ones in the
sense that the functional random variables to be characterized are dependent upon one another and are
linked to a scalar (or vectorial) variable, called hereafter a covariable. The considered covariable is here
the output of the second code. This covariable can be, for instance, the output of a computer code which
takes as inputs the functional random variables. The main objective of this work is thus to provide a new
methodology to characterize the uncertainties associated to dependent functional variables linked to a
covariable. These functional variables are discretized in practice. As in the two presented methodologies,
the proposed characterization process is composed of two parts. First, the dimension of the problem is re-
duced by decomposing the functional random variables on a functional basis. In order to take into account
the dependence between the functional random variables, the decomposition is done simultaneously on all
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the studied functional random variables. This means that the decomposition is done on a vector of func-
tional random variables instead of a functional random variable. We propose a simultaneous version of
classical Partial Least Squares (Wold [5]), denoted SPLS. This SPLS method enables to take into account
the link between the functional random variables and the covariable. The functional random variables are
approximated by their coefficients on the SPLS basis. The problem becomes then multivariate instead of
functional. The second step of the characterization procedure consists in estimating the joint probability
density function of the basis coefficients. The distribution of these coefficients is modeled by a Gaussian
mixture, whose parameters are estimated by the Expectation-Maximization algorithm (Dempster et al.
[6]). Thanks to this modeling, the probability density function can be estimated in higher dimension
than with the kernel density estimation, which is usually inefficient above dimension 6, so that a higher
number of SPLS basis functions can be selected. This methodology gives a statistical characterization of
the uncertainties on the studied functional random variables. New realizations of these random variables
can also be simulated: coefficients are sampled from the estimated Gaussian mixture model, and the
corresponding functions are then built by multiplying the new coefficients with the SPLS basis functions.
The presented methodology has been tested and validated on a numerical example with two dependent
functional variables and on a nuclear application with three dependent functional variables.
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Abstract:

Aim of the PhD project is the evaluation of several stochastic methods with respect to their applicability
for the uncertainty quantification of a coupled flow-thermo-mechanical model of a jet engine low pressure
turbine rotor. Stochastic methods to quantify uncertainty are well established in literature, however their
application for the multidisciplinary design of a low pressure turbine rotor is not common. In fact, the
design of a new part is usually based on a deterministic model. The stochastic analysis is comprised of
a sensitivity analysis followed by an uncertainty analysis. The sensitivity analysis is performed to gain a
better understanding of the coupled flow-thermo-mechanical system robustness, to identify the important
variables and to reduce the number of design parameters which will be used in the optimization. The
uncertainty analysis using probability distributions derived from the manufacturing process, allows to
predict the effect of the input uncertainties on the life duration of the rotor. The flow system models
the Secondary Air System of the aircraft engine, which performs essential tasks most of them related
to cooling or sealing applications. It is represented as a succession of chambers, with finite volume,
linked by complex flow passages (holes, ducts, pipes, seals, discs) which possess their own pressure loss
characteristics. The thermal system models the heat conduction, convection phenomena between surface
and fluids, and the radiation phenomena which take place inside the low pressure turbine rotor. The
temperature field is used to compute the stresses due to thermal and dynamic loads, which are then used
to produce an estimate of life expectancy. The flow-thermo-mechanical system inputs, which primarily
consist of geometric characteristics as well as of the performance parameters are varied in a certain range
(±x% from nominal value) on the basis of the manufacturing tolerances. Using some knowledge on the
system, physically meaningful dependencies among the inputs (among performance parameters as well
as among some of the geometric features) has been introduced before the sensitivity analysis starts. In
order to simulate the system the remaining independent input variables are sampled uniformly within
their range of variation. A review of the most common sampling methods is performed. The study shows
that some of the sampling methods cannot be recommended since they produce spurious correlations
between independent input variables.

With regards to the sensitivity analysis, many literature sources state that the Pearson correlation method
is only valid for linear models when assessing the importance of input variables. As the coupled flow-
thermo-mechanical system might behave non-linearly and interactions among the different parameters
should be also determined, non parametric variance based methods are introduced to make up for the
limitations of the correlation method. Following the result of the study, it is recommended to combine
the correlation computation with a non parametric variance based method.

Once the main players have been identified, uncertainty quantification analysis is performed. There are
mainly two kinds of uncertainty: epistemic uncertainty, which is reducible to a lack of knowledge, and
aleatory uncertainty, which is due to random variability inherent in nature. In this work we are interested
in the quantification of aleatory uncertainty. This aim can be fulfilled by using sampling methods, i.e
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by generating sets of samples according to the probability distribution of the uncertain variables and by
mapping them into corresponding sets of response functions. The probability distribution of the input
variables can be determined by using measurement data or by making some assumptions. Due to the lack
of measurements, a normal probability distribution has been assigned to the input variables. The mean
is given by the input parameters’ nominal value and the standard deviation by the parameter variation,
which for the geometric parameters corresponds to the manufacturing tolerances and it amounts to
±3σ. For what concerns the performance parameters, at the beginning of the analysis an estimate of
the variation based on experience was given. However, it resulted to be too inaccurate and it led to
erroneous results. Therefore the estimation has been refined and in the new definition it corresponds to
a ±2σ variation. Additionally, correlations (which were neglected in the first approximation) among the
different performance parameters has been introduced by using the Iman and Conover modification of the
Latin Hypercube sampling technique. Probably a more rigorous definition would be given by the copula
theory, which will be objective of future investigations. The introduction of correlations among some of
the input parameters requires a new investigation of the sensitivity analysis methods. This is due to the
fact that both the EE and the Sobol methods assume the independence of the input parameters.

The objective of the uncertainty analysis is to check the robustness of the system which can be measured
by assessing that the current solution differs from the nominal one, i.e. from the design intent solution,
less than ±3σ. As first, the probability distribution of the output variables is identified through an
Anderson-Darling test. Almost all the responses results to be normally distributed, hence a t-test is
performed to check if the sampled mean is equal to the nominal solution. The confidence level chosen for
the test is 95%. The result of the test, is that the nominal value lies between the first and third quartile,
i.e. inside a ±1σ variation, which proves the robustness of the system.

The next step is the optimization. Life expectancy is one of the objective functions to be optimized. In
addition, the amount of cooling air employed by the SAS should be minimized as well as the temperature
gradient between bore and rim locations in every turbine stage. Additionally, the parameters which
represent the system topology are affected by uncertainties due to manufacturing tolerances, engine-
to-engine variations and ambient conditions. Thus, in order to include the uncertainties, a probability
distribution is assigned to each parameter and the optimization is performed in the frame of robustness,
i.e. it should be assured that the optimized solution remains relatively unchanged when exposed to
uncertain conditions. Therefore, the optimization problem is not only multidisciplinary, but also multi-
objective, since both the mean and variance of the objective function have to be minimized. Since the
simulation of the physical system is computationally quite demanding, Monte Carlo methods for the
computations of robustness measures are not affordable. A faster method, based on sparse polynomial
chaos expansions, is implemented instead to guarantee higher efficiency.

Short biography – I studied Mathematics at the University of Padua gaining my Bachelor degree in
2009 and my Master degree in 2012. I have been always interested in the application of mathematics to
real life problems. I am currently PhD student at the Technische Universität in Munich and my research
project is the robust design and optimization of a low pressure turbine rotor. The project is part of
the LuFo aeronautics research programme funded by the German Federal Ministry of Economics and
Technology and it is supported by the MTU-Aero Engines and the Technische Universität München.
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Abstract:

We consider a non-parametric density estimation problem with region-censored observations. The study
is motivated by prevention of decompression sickness accidents through prediction of the amount of
nitrogen bubbles produced during deep-sea diving. It relies on measurements of bubble grades – which
reflect the peak gas volume in the diver’s body – on a set of dives made by individuals in the population
under analysis.

It is assumed that the instantaneous volume of gas B(θ, P (·), t) flowing through the right-ventricule of a
diver characterised by a set of biophysical parameters θ when executing dive profile P (·) (a function of
time) is well described by a known mathematical model [1]. Bubble grades, G ∈ {0, . . . , 4}, are a strongly
quantified version of peak gas volume (see Fig. 1):

G(θ, P (.)) = i⇔ τi ≤ max
t

(B(θ, P (·), t)} < τi+1,

where τ0 = 0 < τ1 < · · · < τ4 < τ5 = ∞ is a set of thresholds assumed known.

Figure 1: Left: dive profile P (·). Right: model response (blue) and grade computation (threshold are
shown in red). Observed grade is equal to 3 in this case.

We address determination of π̂θ, θ ∈ Θ, the non-parametric Maximum Likelihood estimate (NPMLE) of
the distribution of θ in the population under study. Observation of grade G = i when executing P (·)
only indicates that θ ∈ Ri(P (·)) = {θ ∈ Θ : τi ≤ max

t
(B(θ, P (·), t)} < τi+1} and thus we face a problem

of density estimation from (region-)censored observations. For interval-censored observations it is known
[3, 4] that π̂θ is affected by several forms of indeterminacy, the major being that only the probability mass
over the (finitely many) elements of a partition P of the parameter space, determined by the set R of
observed regions Ri(P (·)), can be estimated. Moreover, π̂θ is concentrated on a subset of the elements of
P, that can be found from the intersection graph of R, see Fig. 2. These features carry over to censoring
by regions of arbitrary geometry, as in our case, requiring only a slightly more complex determination of
the support of π̂θ.
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R1(P1)

R1(P3)

R2(P2) R3(P1)

Figure 2: Definition of P for the observation of grades 1 and 3 for profile P1, grade 2 for P2 and grade 1
for P3 (θ ∈ Θ ⊂ R2). Left: observed regions and partition P (the support of the π̂θ is indicated in black).
Right: intersection graph of R (support of π̂θ is determined by its cliques).

Central to the determination of the NPMLE is the identification of the regions Ri(P (·)), that must resort
to numerical methods, requiring computation of the model response to P (·) over a dense grid covering
Θ. In our case, we have 444 measures of grades along 48 different decompression profiles, rendering
impractical direct use of the biophysical model. To overcome this problem, we rely on a set of kriged
observation models, that predict the value of maxtB(θ, P (·), t), from the model response over a sparse
(11 × 11) grid. The response surface was estimated by simple kriging for an isotropic Mattern kernel
using the package STK [2].

We present the NPML estimate of the probability mass of πθ over the elements of P, which is based on a
fast multiplicative algorithm [5]. We illustrate the pathological behaviour of this estimator, in particular
its sensitivity to the detailed geometry of P, and propose alternative (regularised) solutions that account
for the entropy of the estimated distribution.

Our ultimate goal is to predict the distribution of grades for an arbitrary profile P (·): p̂P (i) = π̂θ(Ri(P (·))) =
∑

A∈P π̂θ(A ∩Ri(P (·))). These estimates are affected by two distinct uncertainties: (a) we do not know
π̂θ(A ∩ Ri(P (·))) since Ri(P (·)) 6∈ P for new profiles; (b) the identification of Ri(P (·)) relies on kriging
and is thus uncertain. We present upper and lower bounds on each p̂P (i) that take into account (a).
Assessment of uncertainty source (b) concerns the determination of level sets based on kriging, as ap-
proached e.g. in [6] using the notions of Vorob’ev expectation and deviation and will be considered in
the near future.
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Short biography – After obtaining an engineer diploma (2008) and the master degree (2009), Y.
Bennani worked in banking before starting a PhD thesis at Laboratory I3S (2012) on the estimation of
the risk of decompression accidents among deep-sea divers. His thesis is conducted in the framework
of contract DGA-DGCIS SAFE DIVE, a joint partnership between the company BF-Systèmes, Institut
Langevin (ESPCI Paristech), and the laboratory I3S (UNS-CNRS).
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Abstract:

Sensitivity analysis [1] studies the influence of input factors of a computer experiment on a given output.
A computer experiment usually simulates a real-life process which runs for a certain time. Input values
are usually fixed at the beginning of the simulation as single input numbers and are not altered any more
during the process. However, in various contexts, especially in mechanical processes, input values could
indeed be varied during the process. Examples might be speed (e.g. of a car or a robot arm), the dose
of a physical agent or temperature. Varying such factors during the process and analysing the functional
sensitivity can strongly improve the understanding of the process and can lead to much more precise
settings.

Our research is motivated by a sheet metal forming process [2], where two parameters, which were pre-
viously kept constant, can now be varied in time: the blankholder force, which keeps the sheet metal
in place during the forming, and the friction between the tool and the sheet metal. See Fig. 1 (left)
for a representation of a forming press. As output value the forming accuracy is measured in terms of
springback, the amount of deformation of the flange after the forming. Two example runs can be seen in
the table in Fig. 1 on the right. The first column shows the functional path of the parameter friction, the
second the resulting springback value. The blankholder force is kept constant. For both runs, the friction
mean over time is equal to 12.5, but the resulting springback values differ considerably. This emphasizes
the possibilities that lie in a functional exploration.

functional input: friction
scalar output:
springback

0 5 10 15

0.05

0.20

time in seconds

0.75362

0 5 10 15

0.05

0.20

time in seconds

6.01258

Figure 1: Representation of a sheet metal forming press (left). Two example runs with varying friction
and constant blankholder force (right).

In the poster a very economical sequential approach for the sensitivity analysis of time-varying factors
in computer experiments is introduced and developed. It does not only return a single influence value
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per input, but instead gives the influence of each input over the whole time scale. This allows for a clear
graphical representation of the functional influence. The idea is to reduce the dimension of the functional
analysis problem [3] by exploring whole intervals of time and sequentially decreasing the interval size for
interesting time spaces. A sequential design approach making use of ideas from group factor screening [4]
is developed, resulting in very few runs necessary to explore the interesting time regions of the functional
inputs. In addition the analysis and visualization of interactions between time regions is adressed.

In the sheet metal forming application five sequential steps have been performed taking only 40 runs
in total. The size of the bars in Fig. 2 represents the linear influence of the time interval. A stronger
influence of friction compared to blankholder force is noticeable as well as, for both inputs a clear difference
between the first and second half of the punch time: in the first half the influence is mainly positive
whereas in the second half it is strongly negative with the last time points showing the most influence.
The results improved the engineers understanding of the time dependent influence. They have been
validated afterwards in real forming experiments and also led to a better springback reduction.

Figure 2: Graphical representation of the functional sensitivities of the input parameters friction and
blankholder force in a sheet metal forming process.
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Short biography – Jana Fruth did her Master of Statistics at TU Dortmund University in Dortmund,
Germany. In her PhD thesis she works on sensitivity analysis methods for various situations in sheet
metal forming, including interaction analysis, analysis of functional inputs, and derivative-based indices.
The project is a cooperation with the TU Dortmund Engineering Department as part of the collaborative
research centre SFB 708, funded by the Deutsche Forschungsgemeinschaft (DFG).
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Abstract:

Problem statement

Tires involve the vehicles’ most important safety features. Indeed, tires are required to produce the forces
necessary to control the vehicle. Various models have been proposed to describe the behavior of the tire
on the ground. These models depend of numerous parameters. One semi-empirical model commonly
used in vehicle dynamics simulations, was developed by Pacejka [1]. It is widely used to calculate steady-
state tire force and moment characteristics. This model depends on various parameters. An overview of
Pacejka tire model is given in Fig. 1(a) :

macro-
coefficients
calculation

Pacejka model

Fz
µ
α
κ
γ

D
B
C
E
Sv

Sh

Fx

Fy

Mz

(a) (b)

Figure 1: (a) An overview of the structure of Pacejka tire model (b) Graphical representation of lateral
stiffness Ky as a function of vertical load Fz and micro-coefficients pKy1, pKy2 and pKy3

Input variables are the vertical load Fz, the friction factor µ, the slip angle α and the camber angle γ.
The coefficients B, C, D, E, Sh and Sv are the macro-coefficients which depend of the set of parameters
called micro-coefficients. The outputs of the model are the longitudinal tire force Fx, the lateral tire
force Fy and the tire self-aligning moment Mz. In [2], it has been shown that the lateral stiffness Ky

and the slip angle α are the parameters affecting the lateral force variation. However, the lateral stiffness
Ky depends on numerous parameters. In Fig. 1(b) the lateral stiffness Ky is illustrated as a function of
the vertical load Fz and the micro-parameters pKy1, pKy2 and pKy3 in their entire range of variation.
Through Fig. 1(b), one can observe that the lateral stiffness increases when the vertical load increases.
The impact of pKy1, pKy2 and pKy3 on the lateral stiffness cannot be clearly distinguished. Thus, this
work is an extension study of parameters influence of Pacejka tire model [1,2]. The aim is to quantify the
influence of micro-parameters pKy1, pKy2 and pKy3 on the lateral stiffness Ky and, therefore, on Fy.
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Method and result

Polynomial chaos approach (PC) as a global sensitivity analysis method is applied. This method consists
of approximate Ky into a sum of PC as follows [4]:

Ky ≈
∞
∑

j=0

cjψj(pKy1, pKy2, pKy3) (1)

with cj the unknown deterministic coefficients and ψj the multi-variate orthonormale polynomial basis
for (pKy1, pKy2, pKy3) including all cross-terms between different parameters.
Since the lateral stiffness Ky depends on the vertical load Fz, this study has been made during different
situations and for a small value of slip angle α. Depending on the value of Fz, three cases are considered:

• Fz = Fz0 : corresponding to situation without acceleration or braking.

• Fz >> Fz0 : corresponding to braking situation for tires of the front axle or acceleration for tires of
the rear axle.

• Fz << Fz0 : corresponding to acceleration situation for tires of the front axle or braking for tires of
the rear axle.

Sensitivity index of micro-parameters for different values of vertical load Fz are given in Fig. 2.
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(b) Fz = Fz0
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(c) Fz << Fz0

Figure 2: Sensitivity index

This result highlights the contribution of parameter pKy1 on the lateral stiffness Ky variation for hight
values of vertical load Fz >> Fz0 and a negligible influence of other parameters. However, the parameter
pKy2 become influent when Fz << Fz0 .
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Short biography – The objective of this thesis is to develop approaches for global sensitivity analysis
for dynamic models. These approaches will be applied in the automobile domain.
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▼❛st❡r✿ ❊❝♦❧❡ ❈❡♥tr❛❧❡ ❞❡ ◆❛♥t❡s

P❤✳❉✳ ✭✷✵✶✷✲✷✵✶✺✮✿ ❖r❛♥❣❡ ▲❛❜s✱ ❲❤✐st ▲❛❜ ❛♥❞ ❯♥✐✈❡rs✐té P❛r✐s✲❊st

❙✉♣❡r✈✐s♦r✭s✮✿ ❉r ❏✳ ❲■❆❘❚ ✭❖r❛♥❣❡ ▲❛❜s✱ ❲❤✐st ▲❛❜✮ ❛♥❞ Pr✳ ❖✳ P■❈❖◆ ✭❯♥✐✈❡rs✐té P❛r✐s✲❊st✮

❆❜str❛❝t✿

■❢ r❡❝❡♥t ❛❞✈❛♥❝❡s ✐♥ t❡r♠s ♦❢ ■❚ r❡s♦✉r❝❡s ❧❡❞ t♦ str♦♥❣❧② r❡❞✉❝❡ ❝♦♠♣✉t❛t✐♦♥❛❧ t✐♠❡ ❢♦r ♥✉♠❡r✐❝❛❧
❞♦s✐♠❡tr②✱ t❤❡ ❝❛❧❝✉❧❛t✐♦♥ ♦❢ t❤❡ ❙♣❡❝✐✜❝ ❆❜s♦r♣t✐♦♥ ❘❛t❡ t❤❛t ❛ss❡ss t❤❡ ❤✉♠❛♥ ❡①♣♦s✉r❡ t♦ ❡❧❡❝tr♦♠❛❣✲
♥❡t✐❝ ✜❡❧❞s ✭❊▼❋✮ r❡♠❛✐♥s ✈❡r② ❝♦st❧② ✭❛ ❢❡✇ ❤♦✉rs ♣❡r ❝❛❧❝✉❧❛t✐♦♥✮✳ ❈♦♥s❡q✉❡♥t❧② ✉s✉❛❧ ♠❡t❤♦❞s ❛s t❤❡
▼♦♥t❡ ❈❛r❧♦ ❝❛♥♥♦t ❜❡ ✉s❡❞ t♦ st✉❞② t❤❡ ✐♥✢✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ✐♥♣✉t ♣❛r❛♠❡t❡rs ✈❛r✐❛❜✐❧✐t② ♦♥ t❤❡ ❙❆❘ ✭
t❤❡ ♦✉t♣✉t ✈❛r✐❛❜❧❡✮✳ ❚❤❡♥✱ ♦♣t✐♠❛❧ ♠❡t❛♠♦❞❡❧✐♥❣ str❛t❡❣✐❡s ❤❛✈❡ t♦ ❜❡ ❡♠♣❧♦②❡❞ t♦ ♠♦❞❡❧ t❤❡ ♦✉t♣✉t
r❡s♣♦♥s❡ ❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡ ✐♥♣✉t ♣❛r❛♠❡t❡rs✳

❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ ❛♥❞ P♦❧②♥♦♠✐❛❧ ❈❤❛♦s ❛r❡ str❛t❡❣✐❡s t❤❛t ❜♦t❤ ❛✐♠ ❛t ♠♦❞❡❧✐♥❣ t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥
❛♥ ♦✉t♣✉t ♣r♦❝❡ss Y ❛♥ s♦♠❡ r❛♥❞♦♠ ✐♥♣✉t ♣❛r❛♠❡t❡rs X = (x1, ..., xM ) ∈ RM ✳

❖♥ ♦♥❡ s✐❞❡✱ ❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ t❤❡♦r② ❬✶❪ ♠♦❞❡❧s t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ♦✉t♣✉t ❛♥❞ t❤❡ ✐♥♣✉t ♣❛r❛♠❡t❡rs
❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ❡①♣r❡ss✐♦♥✿

Y (X) =
P−1
∑

k=0

βkψk(X) + Z(X) ✭✶✮

✇❤❡r❡ ψ = {ψk, k = 0...P − 1} ✐s ❛ ❝♦❧❧❡❝t✐♦♥ ♦❢ r❡❣r❡ss✐♦♥ ❢✉♥❝t✐♦♥s✱ β = {βk, k = 0...P − 1} ❛r❡ t❤❡
r❡❣r❡ss✐♦♥ ❝♦❡✣❝✐❡♥ts ❛♥❞ Z ✐s ❛ ●❛✉ss✐❛♥ ♣r♦❝❡ss ❞❡♣❡♥❞✐♥❣ ♦♥ X✳ ■♥ ♣r❛❝t✐❝❡✱ t❤❡ r❡❣r❡ss✐♦♥ ❢✉♥❝t✐♦♥s
❛r❡ ❝❤♦s❡♥ ✇✐t❤ r❡s♣❡❝t t♦ ❛♥ ❛ ♣r✐♦r✐ ❦♥♦✇❧❡❞❣❡ ❛❜♦✉t t❤❡ ❡✈♦❧✉t✐♦♥ ♦❢ t❤❡ ♦✉t♣✉t ♣r♦❝❡ss✳ ▼♦st ♦❢ t❤❡
t✐♠❡✱ t❤❡r❡ ✐s ♥♦ s✉❝❤ ♦❜✈✐♦✉s ❛ ♣r✐♦r✐ ❦♥♦✇❧❡❞❣❡ ❛♥❞ t❤❡ r❡❣r❡ss✐♦♥ ❢✉♥❝t✐♦♥ ❡♥s❡♠❜❧❡ ✐s r❡❞✉❝❡❞ t♦ t❤❡
✉♥✐t ❢✉♥❝t✐♦♥✳ ❚❤❡ r❡s✉❧t✐♥❣ ♠❡t❛ ♠♦❞❡❧ ✐♥ ❣❡♥❡r❛❧❧② ❝❛❧❧❡❞ ❖r❞✐♥❛r② ❑r✐❣✐♥❣ ♠♦❞❡❧✳

❖♥ t❤❡ ♦t❤❡r s✐❞❡✱ P♦❧②♥♦♠✐❛❧ ❈❤❛♦s ✉s❡s t❤❡ ❲✐❡♥❡r ♣♦❧②♥♦♠✐❛❧ ❡①♣❛♥s✐♦♥ ❬✷❪ t♦ ♠♦❞❡❧ t❤❡ r❡❧❛t✐♦♥
❜❡t✇❡❡♥ t❤❡ ♦✉t♣✉t ✈❛r✐❛❜❧❡ ❛♥❞ t❤❡ ✐♥♣✉t ♣❛r❛♠❡t❡rs✿

Y =
∑

α∈NM

βα(X)ψα(X) ✭✷✮

❲❤❡r❡ α = [α1...αM ] ✐s t❤❡ ♠✉❧t✐✲✐♥❞❡①✱ t❤❡ βα ❛r❡ ❞❡t❡r♠✐♥✐st✐❝ ❝♦❡✣❝✐❡♥ts t♦ ❝♦♠♣✉t❡ ❛♥❞ t❤❡ ψα

❛r❡ ♠✉❧t✐✈❛r✐❛t❡ ♦rt❤♦♥♦r♠❛❧ ♣♦❧②♥♦♠✐❛❧s ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ♣r♦❜❛❜✐❧✐t② ♠❡❛s✉r❡ ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡
r❛♥❞♦♠ ✐♥♣✉t ♣❛r❛♠❡t❡rs X✳

❈♦♥s✐❞❡r✐♥❣ ❛ s♣❛rs❡ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ P♦❧②♥♦♠✐❛❧ ❈❤❛♦s ❡①♣❛♥s✐♦♥ ✉s✐♥❣ ▲❡❛st ❆♥❣❧❡ ❘❡❣r❡ss✐♦♥
t❡❝❤♥✐q✉❡ ❬✸❪ t♦ s❡❧❡❝t t❤❡ ♠♦st ✐♥✢✉❡♥❝✐♥❣ ♣♦❧②♥♦♠✐❛❧s✱ ✇❡ ♣r♦♣♦s❡ t♦ ✉s❡ t❤❡s❡ ♣♦❧②♥♦♠✐❛❧s ❛s r❡❣r❡ss✐♦♥
❢✉♥❝t✐♦♥s ✐♥ t❤❡ ❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ ♠♦❞❡❧✳ ❚❤✐s ❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ ❡♥r✐❝❤❡❞ ✇✐t❤ ❝❤❛♦s ♣♦❧②♥♦♠✐❛❧s ✇✐❧❧
❜❡ ❝❛❧❧❡❞ P❈ ❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣✳

❚❤❡ ❧❡❛✈❡✲♦♥❡✲♦✉t ❝r♦ss ✈❛❧✐❞❛t✐♦♥ ✐s ✉s❡❞ t♦ ❛ss❡ss r❡s♣❡❝t✐✈❡ ❛❝❝✉r❛❝✐❡s ♦❢ s♣❛rs❡ P♦❧②♥♦♠✐❛❧ ❈❤❛♦s✱
❖r❞✐♥❛r② ❑r✐❣✐♥❣ ❛♥❞ P❈ ❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ t❡❝❤♥✐q✉❡s✳
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❚❤✐s ❛♣♣r♦❛❝❤ ✐s ✐❧❧✉str❛t❡❞ ✇✐t❤ s❡✈❡r❛❧ ❜❡♥❝❤♠❛r❦ ❢✉♥❝t✐♦♥s ✉s❡❞ ✐♥ t❤❡ ❧✐t❡r❛t✉r❡ ❛♥❞ ✇✐t❤ ❛ ❞♦s✐♠❡tr②
❡①❛♠♣❧❡ ❛✐♠✐♥❣ ❛t ❛ss❡ss✐♥❣ t❤❡ ❢❡t✉s ❡①♣♦s✉r❡ t♦ ❡❧❡❝tr♦♠❛❣♥❡t✐❝ ✜❡❧❞s✳ ❚❤❡ ♦♣t✐♠❛❧ ♥❛t✉r❡ ♦❢ t❤❡ P❈
❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ ❛♣♣r♦❛❝❤ ✐s ✐❧❧✉str❛t❡❞✳

❆s ❡①❛♠♣❧❡✱ ❢♦r t❤❡ ✇❡❧❧✲❦♥♦✇♥ ■s❤✐❣❛♠✐ ❢✉♥❝t✐♦♥ ❬✹❪✱ ❋✐❣✉r❡ ✶ ♣r❡s❡♥ts t❤❡ ♠❡❛♥ ♦❢ ❡❛❝❤ ♠❡t❛♠♦❞❡❧✐♥❣
t❡❝❤♥✐q✉❡ ❘♦♦t ▼❡❛♥ ❙q✉❛r❡ ❊rr♦rs ✭❘▼❙❊✮ ♦✈❡r ✺✵ ❞✐✛❡r❡♥t ✐♥✐t✐❛❧ ▲❍❙ ❞❡s✐❣♥s ♦❢ ❡①♣❡r✐♠❡♥ts t❤❛t ❛r❡
✐t❡r❛t✐✈❡❧② ✐♥❝r❡❛s❡❞ ❜② t❤❡ ◆▲❍❙ t❡❝❤♥✐q✉❡ ❬✺❪✳ ❘▼❙❊ ✐s ❝♦♠♣✉t❡❞ ✉s✐♥❣ ✶✵✵✵✵✵ ▼♦♥t❡ ❈❛r❧♦ ♣♦✐♥ts
♦❢ t❤❡ ❣❡♥❡r❛t❡❞ ♠❡t❛♠♦❞❡❧s✳ ❋✐❣✉r❡ ✶ s❤♦✇s t❤❛t P❈ ❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ ❜r✐♥❣s ❛❜♦✉t ❜❡tt❡r ❛❝❝✉r❛❝②
✐♥ ❛✈❡r❛❣❡ t❤❛♥ t❤❡ t✇♦ ♦t❤❡r t❡❝❤♥✐q✉❡s ❢♦r t❤❡ ❞✐✛❡r❡♥t ♥✉♠❜❡rs ♦❢ ♣♦✐♥ts ✐♥ t❤❡ ▲❍❙ ❞❡s✐❣♥✿ s❧✐❣❤t❧②
❜❡tt❡r t❤❛♥ s♣❛rs❡ P♦❧②♥♦♠✐❛❧ ❈❤❛♦s ❛♥❞ ♠✉❝❤ ❜❡tt❡r t❤❛♥ ❖r❞✐♥❛r② ❑r✐❣✐♥❣ ❢♦r ✽✵ ❛♥❞ ✶✻✵ ♣♦✐♥ts✳

✱

❋✐❣✉r❡ ✶✿ ❆❝❝✉r❛❝② ❝♦♠♣❛r✐s♦♥ ❜❡t✇❡❡♥ ❙♣❛s❡ P❈✱ ❖r❞✐♥❛r② ❑r✐❣✐♥❣ ❛♥❞ P❈ ❯♥✐✈❡rs❛❧ ❑r✐❣✐♥❣ ❞❡♣❡♥❞✐♥❣
♦♥ t❤❡ ♥✉♠❜❡r ♦❢ ♣♦✐♥ts ✐♥ t❤❡ ▲❍❙ ❢♦r t❤❡ ■s❤✐❣❛♠✐ ❢✉♥❝t✐♦♥

❘❡❢❡r❡♥❝❡s✿

❬✶❪ ●✳ ▼❛t❤❡r♦♥✱ ✏▲❡ ❦r✐❣❡❛❣❡ ✉♥✐✈❡rs❡❧✱✧ ❈❛❤✐❡rs ❞✉ ❝❡♥tr❡ ❞❡ ♠♦r♣❤♦❧♦❣✐❡ ♠❛t❤é♠❛t✐q✉❡ ✶✱ ✶✾✻✾✳

❬✷❪ ❘✳ ●❤❛♥❡♠ ❛♥❞ P✳ ❙♣❛♥♦s✱ ❙t♦❝❤❛st✐❝ ❋✐♥✐t❡ ❊❧❡♠❡♥ts✿ ❆ ❙♣❡❝tr❛❧ ❆♣♣r♦❛❝❤✱ ❈♦✉r✐❡r ❉♦✈❡r P✉❜❧✐❝❛✲
t✐♦♥s✱ ✷✵✵✸✳

❬✸❪ ●✳ ❇❧❛t♠❛♥ ❛♥❞ ❇✳ ❙✉❞r❡t✱ ✏❆❞❛♣t❛t✐✈❡ s♣❛rs❡ P♦❧②♥♦♠✐❛❧ ❈❤❛♦s ❡①♣❛♥s✐♦♥ ❜❛s❡❞ ♦♥ ❧❡❛st ❛♥❣❧❡
r❡❣r❡ss✐♦♥✱✧ ❏♦✉r♥❛❧ ♦❢ ❈♦♠♣✉t❛t✐♦♥❛❧ P❤②s✐❝s ✷✸✵✱ ♥♦✳ ✻✱ ♣♣✳ ✷✸✹✺✕✷✸✻✼✱ ✷✵✶✶✳

❬✹❪ ❆✳ ❙❛❧t❡❧❧✐✱ ❑✳ ❈❤❛♥ ❛♥❞ ❊✳ ▼✳ ❙❝♦tt✱ ❙❡♥s✐t✐✈✐t② ❛♥❛❧②s✐s✱ ❲✐❧❡②✱ ◆❡✇✲❨♦r❦✱ ✷✵✵✵✳

❬✺❪ ●✳ ❇❧❛t♠❛♥ ❛♥❞ ❇✳ ❙✉❞r❡t✱ ✏❆♥ ❛❞❛♣t❛t✐✈❡ ❛❧❣♦r✐t❤♠ t♦ ❜✉✐❧❞ ✉♣ s♣❛rs❡ ♣♦❧②♥♦♠✐❛❧ ❝❤❛♦s ❡①♣❛♥s✐♦♥s
❢♦r st♦❝❤❛st✐❝ ✜♥✐t❡ ❡❧❡♠❡♥t ❛♥❛❧②s✐s✱✧ Pr♦❜❛❜✐❧✐st✐❝ ❊♥❣✐♥❡❡r✐♥❣ ▼❡❝❤❛♥✐❝s ✷✺✱ ♥♦✳ ✷✱ ♣♣✳ ✶✽✸✕✶✾✼✱
✷✵✶✵✳

❙❤♦rt ❜✐♦❣r❛♣❤② ✕ ❋r♦♠ ❛ ♠❛st❡r ✐♥ ❙✐❣♥❛❧ Pr♦❝❡ss✐♥❣✱ ■ ❛♠ ❝✉rr❡♥t❧② ✐♥✈♦❧✈❡❞ ✐♥ t❤❡ P❤❉ t❤❡s✐s✿
✧❙t❛t✐st✐❝❛❧ ❆♥❛❧②s✐s ♦❢ P❡♦♣❧❡ ❊①♣♦s✉r❡ ✈✐❛ t❤❡ ◆✉♠❡r✐❝❛❧ ❉♦s✐♠❡tr② ❛♥❞ t❤❡ ❉❡s✐❣♥ ♦❢ ❊①♣❡r✐♠❡♥ts ✐♥
❖r❛♥❣❡ ▲❛❜s ❛♥❞ ❯♥✐✈❡rs✐té P❛r✐s✲❊st✧✳ ❚❤❡ ♠❛✐♥ ♣✉r♣♦s❡ ♦❢ t❤✐s t❤❡s✐s ✐s t♦ st❛t✐st✐❝❛❧❧② ❝❤❛r❛❝t❡r✐③❡
t❤❡ ❡①♣♦s✉r❡ ✐♥❞✉❝❡❞ ❜② ✇✐r❡❧❡ss ❝♦♠♠✉♥✐❝❛t✐♦♥ s②st❡♠s✳
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Abstract:

Recently, statistical researchers have shown increased interest in Gaussian process modeling with mono-
tonicity constraints (see [1], [2] and [3]). In computer experiments, the true function (scalar output) may
be known to be monotone with respect to some or all input variables. We propose a new methodology
based on the Bayesian Gaussian process metamodeling to sample from posterior distribution including
monotonicity information in the monovariate case.

Let y = f(x) be a monotonic increasing function where the input x is assumed to be scalar and in the
domain [0, 1]. We consider a set of computer experiments {(xi, yi) | i = 1, · · · , n} of size n and assume
that

yi = f(xi), 1 ≤ i ≤ n. (1)

Also suppose that M is the space of increasing functions and (Yx)x∈[0,1] is a zero-mean Gaussian process
(GP) with kernel k(x, x′) given by a priori knowledge about the relationship between the input x and the
output y. The following experimental results (see figures below) are obtained with the classical Gaussian
kernel.

We are interested in the simulation of the conditional (or posterior) distribution of the GP Y given data
and monotonicity information

Yxi
= yi, 1 ≤ i ≤ n,

Y ∈ M.
(2)

The important step is to approximate the GP by a finite-dimensional GP Y N

Y N
x =

N
∑

j=1

ξjφj(x), (3)

in which ξ =







ξ1
...
ξN






is a zero-mean Gaussian random vector with covariance matrix ΓN .

Such a decomposition can be seen as a Karhunen-Loève approximation of the process Y where the
deterministic basis functions φj (1 ≤ j ≤ N) are chosen in the space M of increasing functions and
where random coefficients ξj partially reflect the randomness of the Gaussian process Y .

Due to the special choice of the basis functions φj , the crucial property here is that Y N should be a
monotonic increasing function if and only if the N coefficients ξj are all nonnegative. Now, we are
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mainly interested in the new formulation of the problem : simulate the conditional distribution of the
random Gaussian vector ξ given

∑N
j=1 ξjφj(xi) = yi, 1 ≤ i ≤ n (n interpolation linear equations)

ξj ≥ 0, 1 ≤ j ≤ N (N inequality conditions)
(4)

The advantage of such a methodology is that any posterior sample of the vector ξ leads to a monotone
interpolating function. By a Monte Carlo technique, the conditional mean value of the function could be
computed and be thought as the conditional monotone kriging mean. The conditional monotone kriging
variance and confidence bounds can be calculated as well.
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Abstract:

A common task in structural reliability studies is to use a numerical computer code which simulates the
physical behavior of a component. That computer code depends of inputs which represent some physical
situation, an event is said undesirable if a function of an output is higher than a fixed threshold. The
input parameters of the computer code can be uncertain, thus they are represented by random variables,
so then the output become random. We are interested in the estimation of the probability that the
computer code exceed the threshold. Here, the code is considered as black-box, deterministic (a set of
input gives always the same output), time consuming and can be discontinous, so classical method to
estimate probabilities are not adapted.

The knowledge of the component gives structural informations, here assumes that numerical code is
monotonic. That allows us obtain deterministic bounds of the probability and delimits a set of input
where it is not necessary to make new calls of the numerical code. To accelerate the convergence of these
deterministic bounds, theoretical results shows that standard Monte Carlo method is not efficient. One
propose here a general strategy to construct optimal design of experiment based on a sequential sampling,
and construct a statistical estimator associated to the bounds.

As in the estimation of probability, the monotonic hypothesis provide information for the estimation
of quantile. One propose a geometrical method to get deterministic bounds for quantile. Knowing a
probability, that method is based on the construction of two sets which the volume is respectively lower
and greater than the known probability. These bounds can be obtain from a given design of experiments
or can be construct by a sequantial sampling.

We will compare classical methods dedicated to estimation of probability without monotonic hypothesis
and their adaptation with monotonic assumption.

Short biography – During the previous year of the beginning of my thesis, I have worked on the
development of that new class of method based on monotonic hypothesis for my final year internship.
That thesis is a partnership between EDF and the University Toulouse Paul Sabatier and takes place on
structural reliability of some passive components of an energy production unit.
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Abstract:

Mathematical models, often based on partial differential equations, are widely used to describe and
predict the behaviour of physical and engineering systems. However, in many situations, some parameters
entering the model can not be exactly quantified. This uncertainty on the data may reflect, on the one
side, our ignorance or inability to properly characterize all input parameters of the mathematical model;
on the other side, it may describe an intrinsic variability of the physical system. A convenient framework
to include uncertainty in the mathematical model is offered by probability theory, where all uncertain
input parameters are treated as random variables or random fields. The aim in this case, is to quantify
the effects of the uncertainty on the predicted quantities of interest relevant for the applications at hand.
We focus on possibly non-linear time dependent partial differential equations of diffusion reaction type
with stochastic parameters where the randomness can appear in the initial data, in the coefficients of the
differential operator, in the forcing term, etc.

In the last decades, differential equations with random data received a lot of attention in the field
of scientific computing and numerical analysis. Since the number of the stochastic variables that are
involved in a single phenomenon is often of the order of tens/hundreds or even more, the numerical
approximation of these differential problems remains a challenging task. A great effort has been devoted
to develop methods that are more efficient than classical Monte Carlo approaches. Alternatively to
sampling methods, one could consider generalized Polynomial Chaos (gPC) approximations of the solution
with respect to a finite number of random variables parameterizing the probability space. At this step
practical approximations can be obtained by different numerical techniques such as Galerkin projection
or stochastic collocation method. However this approach could still be affected by the so called ‘curse
of dimensionality’, especially when the solution features a complex dependence on the input parameters.
This can be an issue in evolution problems, as the dependence of the solution on the random parameters
can significantly vary in time . Then the approximation of the solution by means of fixed polynomial
basis functions requires during the evolution an increasing number of terms to maintain a proper level of
accuracy, which possibly implies a too high computational effort.

We propose here a low rank method based on the Dynamically Orthogonal Field (DOF) approach,
according to which the solution is approximated as a linear combination of a small number of deterministic
orthogonal basis functions multiplied by random coefficients, both of them evolving in time in order to
keep the dimensionality of the approximate problem as low as possible. To fix the idea we briefly introduce
the mathematical settings. We consider the following time dependent stochastic PDE:











∂u(x,t,ω)
∂t = L[u(x, t, ω), ω], x ∈ D, t ∈ [0, T ], ω ∈ Ω

B [u(ξ, t, ω)] = h(ξ, t), ξ ∈ ∂D, t ∈ [0, T ],

u(x, t = 0, ω) = u0(x, ω), x ∈ D, ω ∈ Ω,

(1)

where D is the physical domain, ω is a random elementary event in a complete probability space (Ω,A,P)
and L is a general (linear or non-linear) differential operator. Now we look for an approximate solution
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of rank S of the form:

uS(x, t, ω) = ū(x, t) +
S
∑

i=1

ui(x, t)yi(t, ω). (2)

where ū ≃ E[u], u1, ...uS are L2(D)−orthogonal deterministic basis functions and y1, ..., yS are zero mean
stochastic variables. From a variational point of view, if MS denotes the manifold of all the functions of
rank S, the DO approximate solution uS is obtained by projecting the residual of the governing equation
onto the tangent space to MS at uS(t) at each time, i.e.

E

[〈

∂uS(·, t, ω)

∂t
− L(uS(·, t, ω); ω), v(·, ω)

〉]

= 0, ∀v ∈ TuS(t)MS (3)

The approximate solution is therefore forced to belong to a S dimensional manifold but at the same time
the stochastic coefficients and the deterministic basis functions adapt to the structure of the solution at
each time, in order to be as close as possible to the best rank S approximation, which is given by the
truncated S−terms Karhunen-Lòeve expansion.

Our goal is to find a good balance between computational saving and effectiveness of the approximation.
Indeed even if the DO expansion does not necessarily coincide with the Karhunen-Lòeve decomposition,
the DO approach allows us to derive directly from the governing equation a coupled system of S + 1
deterministic and S stochastic equations that completely characterize our approximate solution uS at
each time. An analogous approach in the deterministic framework, based on the Dirac-Frenkel variational
principle, is present in the literature [1]-[3] and it is adopted in the field of the quantum dynamics.

By investigating the nature of the manifold of the solution we analyse the effectiveness of the DO ap-
proximate solution. In particular we provide an error analysis of the DO approximation of stochastic
parabolic equations. We exploit the curvature bounds of the manifold given in [3] to show that, under
suitable assumptions, the DO error can be bounded in terms of the best rank S approximation error.
Moreover, we show that in the case of deterministic linear operator, with an S− dimensional stochastic
initial datum, the DO approximate solution coincides with the exact solution.

Finally we propose a numerical method, able to handle the problem of the over approximation. In that
case the number of modes S is bigger then the effective dimension of the exact solution and the covari-
ance matrix of the stochastic coefficients is singular. This point has a great importance since it might
happen that the exact solution has a rank smaller than the one used in the DO approximation at some
time instant. This is typically the case when starting the algorithm from a deterministic initial condition
or when looking at a system of equations converging asymptotically to a deterministic equilibrium, in
which case the rank tends asymptotically to zero. The strategy we adopt consists in diagonalizing the
covariance matrix, or rather re-orthogonalizing the random coefficients at each time step. Then only the
modes associated to stochastic variables with variance bigger than zero will evolve while the other remain
constant. From the numerical point of view, the DO system is decoupled in deterministic and stochastic
equations, for the former we use Finite Element Methods and for the latter the Stochastic Collocation.
The DO method and its convergence properties are assessed with several numerical examples.
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Abstract:

Introduction
In recent years, various methods have been developed for solving parametric operator equations, focusing
on the estimation of parameters given measurements of the parametric solution, subject to a stochastic
observation error model. The Bayesian approach [1] to such inverse problems for PDEs will be considered
here and solved using adaptive, deterministic sparse tensor Smolyak quadrature schemes from [2, 3].
Multiple solutions of the Bayesian inverse problem based on different measurements are often averaged
using a standard Monte Carlo approach. We develop a multilevel Monte Carlo method achieving an error
of the same order while requiring less work [4, 5, 6].

Bayesian Inversion of Parametric Operator Equations
We assume an operator equation depending on a distributed, uncertain parameter u with values in a
separable Banach space X of the form

Given u ∈ X̃ ⊆ X, find q ∈ X : A(u; q) = F (u) in Y ′ (1)

where we denote by X and Y two reflexive Banach spaces over R with (topological) duals X ′ and Y ′,
respectively and A(u; ·) ∈ L(X ,Y ′). Assuming that the forcing function F : X̃ 7→ Y ′ is known, and the
uncertain operator A(u; ·) : X 7→ Y ′ is locally boundedly invertible for uncertain input u in a sufficiently
small neighborhood X̃, we define the uncertainty-to-observation map G : X̃ 7→ RK with the structure

X ⊇ X̃ ∋ u 7→ G(u) := O(G(u;F )) ∈ Y . (2)

Here, X̃ ∋ u 7→ q(u) = G(u;F ) ∈ X denotes the response of the forward problem for a given instance of
u ∈ X̃ and O an observation operator O ∈ L(X ,RK), K <∞. The goal of computation is the low-order
statistics of a quantity of interest (QoI) φ given noisy observational data δ of the form δ = G(u) + η,
where δ represents the observation G(u) perturbed by the normally distributed noise η. We assume u
to be parametrized by u = u(y) := 〈u〉 +

∑

j∈J
yjψj ∈ X for some “nominal” value 〈u〉 and coefficient

sequence y = (yj)j∈J, J = {1, . . . , J} where the yj are uniformly distributed on [−1, 1].

Bayes’ theorem characterizes moments of the QoI as mathematical expectations with respect to the prior
measure µ0 on U , which here is given as the countable product of uniform measures. In particular, we
are interested in φ = G, the response of the system. To this end, we use Bayes’ Theorem to obtain an
expression for y|δ, as in [7, 1]. This yields our desired expectation as an integral over the prior measure
µ0. Defining Zδ :=

∫

U
exp (−Φ(y; δ))µ0(dy) > 0, we obtain

E
µδ

[φ] =

∫

U

φ(y)µδ(dy) =
1

Zδ

∫

U

φ(y) exp

(

−
1

2
‖δ − G(y)‖2Γ

)

µ0(dy) =:
Z ′
δ

Zδ
. (3)

This formulation of the expectation Eµδ

[·] is based on just one measurement δ. For a given model for
the measurement errors η, we would like to additionally compute the expectation over the assumed error
distribution, in this case γKΓ (η), the K-variate Gaussian measure with s.p.d. covariance matrix Γ.
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Here, we assume the observation noise η to be statistically independent from the uncertain param-

eter u in (1). Thus, the total expectation of the QoI φ in terms of Z ′
δ and Zδ is EγK

Γ

[

Eµδ

[φ]
]

=
∫

RK

Z′
δ

Zδ

∣

∣

∣

δ=G(y0)+η
γKΓ (dη), where G(y0) denotes the observation at the unknown, exact parameter y0.

In practice, we are given a set of measurements ∆ := {δi, i = 1, . . . ,M} with which this outer expectation
should be approximated. The measurements can be taken at different positions, i.e. with respect to
different observation maps Oi in (2). We consider the notationally more convenient case where the
measurements are all obtained using the same observation map. We do, however, impose the restriction
that the measurements are homoscedastic, i.e. δi is Gaussian with the same covariance Γ for all δi ∈ ∆.

Approximation of Posterior Expectation

The inner expectation over the posterior distribution µδ is replaced by an approximation Eµδ

τL [φ] with
tolerance parameter τL > 0. We assume the work required to compute this approximation to be bounded
by C(Γ)τ−s

L , with C(Γ) > 0 independent of τL and s > 0. Our method of choice for approximating

Eµδ

[φ] is the adaptive Smolyak quadrature algorithm developed in [2, 3], which adaptively constructs a
sparse tensor quadrature rule that approximates Zδ and Z ′

δ. For forward problems belonging to a certain
sparsity class, analytic regularity of the Bayesian posterior suggests dimension-independent convergence
rates for the adaptive, deterministic Smolyak quadrature fulfilling the work bound C(Γ)τ−s

L , where s
depends on the sparsity class.

Binned Multilevel Monte Carlo
The approach proposed here is based on the multilevel Monte Carlo method originally applied by [6] and

formulated in the current form for PDEs by [4]. Our approximation to EγK
Γ

[

Eµδ

[φ]
]

is given by

E
γK
Γ

ML,L[E
µδ

τL [φ]] :=

L
∑

ℓ=0

E
γK
Γ

Mℓ

[

Eµδ

τℓ
[φ]− Eµδ

τℓ−1
[φ]

]

, (4)

where E
γK
Γ

Mℓ
[·] denotes the sample mean over Mℓ samples and Eµδ

τℓ
[·] denotes the posterior expectation

approximation introduced above. We show that, assuming a certain distribution of samples per level,
one can find a tolerance for each level such that the rate of convergence of the error etot vs. the work

WL
tot fulfills the optimal relationship etot = O

(

(

WL
tot

)− 1
2

)

, which is superior to Monte Carlo depending

on the sparsity class of the underlying problem.

Applications
The proposed approach is applicable for instance for definite and indefinite elliptic and parabolic evolution
problems with scalar and tensoral unknowns. Furthermore, uncertainty in domains and high-dimensional
initial value problems can be treated. Numerical experiments yielding the optimal rate of convergence
when using the binned multilevel Monte Carlo algorithm will be presented and compared to standard
Monte Carlo simulations.
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Short biography – After completing his master’s degree in Computational Science and Engineering
at ETH Zurich, Robert Gantner is now pursuing a PhD in the group of Prof. Schwab at the Seminar for
Applied Mathematics. The main focus is the development and high-performance implementation of novel
algorithms for Bayesian inverse problems, including Multilevel Monte Carlo and Smolyak quadratures.
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Abstract:

Variance based sensitivity analysis methods are a valuable tool for modelers in engineering and other
disciplines to quantitatively determine the strength of the relation between input factors and model
outputs. There is a great variety of variance based sensitivity methods [4]. For some complex simulation
based models (such as for example full vehicle crashworthiness simulation) it can be infeasible to apply
established quantitative variance based sensitivity because the models are too computationally expensive
to perform enough function evaluations that would meet the sample requirements. For such expensive
models qualitative screening methods can be applied instead. In [2] a unified approach was presented for
variable screening using a radial design sampling strategy to estimate the elementary effects, and for an
increasing number of samples the total sensitivity indices based could be estimated.

In this communication a simple and intuitive variance based variable screening method is presented and
applied to test functions and multidisciplinary automotive simulation models. Although provided enough
samples, the approach could approximate the first order sensitivity indices with arbitrary close accuracy;
the main reason to bring this approach under attention is for variable screening purposes, when the
number of samples is too small to apply established quantitative first order index estimation methods
such as EFAST [5], RBD [6] and EASI [7]. Similarly to the previously referenced unified method [2], also
this method enables a seamless extension of the qualitative variable screening to a quantitative sensitivity
analysis, all by itself or more efficient when combined with for example the EASI method.

The general idea of the approach is to estimate for each variable the first order contribution to the output
variance, by approximating conditioned means and their variances, over discrete intervals of finite size
in scatterplot projections. For a high number of intervals the method converges to the definition of the
first order effect sensitivity index or main effect index given in [3]. For a low number of discrete intervals
the resulting indices can be too distantly related to the sensitivity indices to label them sensitivity index
estimates. The theoretical values towards which the resulting indices, for fixed intervals converge when
the number of sample point increases are however extensive properties of the model with respect to the
fixed set of intervals chosen. The approach allows selecting the degree of spatial discretization to which
the first order sensitivities are approximated. For the remaining of this document the converged values
of those (degenerate) indices will be called Discrete Interval based Sensitivity indices (DIS) indices.

For a realistic case with a limited fixed number of samples available, that is insufficient to estimate first
order indices without a large statistical error, a compromise has to be made. Smaller intervals, lead to
theoretical DIS indices that are closer to the sensitivity indices, but since the number of samples per
interval is low the accuracy of the estimation will be low. Whereas few but large intervals contain more
samples per interval and the resulting DIS index estimations are more accurate estimates for those DIS
indices that correspond to the larger intervals. The tradeoff between statistical accuracy and spatial
discretization resolution can be selected.

The approach is extendable for higher order interaction effects, by creating subsequent projections and
divisions in discrete intervals. However, inevitably smaller discrete intervals and subintervals require a
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larger sample density to obtain relevant results, and therefore only interactions of second are considered.
The method is tested to work for data obtained with sampling strategies that result in evenly distributed
sample spacing, with a low correlation such as obtained by pseudo-random and quasi-random sampling
methods, and combinations thereof.

An intuitive overview of the method will be provided, followed by case studies using a high dimensional
instance of the Sobol-G function and vehicle simulation models. Convergence comparisons with quantita-
tive estimation methods for first order sensitivity indices will be provided, and the screening effectiveness
will be compared with the modified elementary effect method and regression methods. Besides presenting
the practical value of coarse discrete interval based variance contribution screening, the intuitive principle
of the method could also lower the threshold to start using variance based sensitivity analysis methods,
for practitioners that are less experienced in the field of sensitivity analysis.
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Abstract:

There is an ongoing trend for replacing real life experiments by computer simulations. The physical be-
haviour is substituted by a computational model which approximates the system response of the physical
system. Advances in research lead to more complex and more accurate computational models which are
at the same time more costly to evaluate, i.e. time-consuming. There is a conflicting situation between
accuracy and speed. Applications such as reliability analysis or optimization algorithms require a large
number of model evaluations, e.g. the computation of a system’s failure probability or the optimal value
of a parameter. These operations are reasonable when the computational model is easy-to-evaluate, i.e.
when a model evaluation is inexpensive and the system response of a large number of input samples is
processed fast.

Metamodelling provides a framework for replacing an expensive-to-evaluate computational model Y =
M(X) by a simple although approximative surrogate model. The surrogate model (also called meta-
model) allows one to predict the system response of a large number of input samples at low cost.
The metamodel is built from a small number N of support points called the experimental design
X = {χ(i), i = 1, . . . , N} for which the original model is evaluated. The input and output values/vectors
are used to determine an appropriate metamodel with a certain metamodelling technique. Two of the
more popular non-intrusive metamodelling techniques are Polynomial Chaos Expansions (PCE) and
Kriging (also called Gaussian process modelling).

PCE surrogates the computational model M by a finite set of orthonormal polynomials in the input
variables [1]. In the context of uncertainty quantification, the latter are defined in coherency with the
probability distribution functions of those input variables. The coefficients of a PC expansion may be
computed using e.g. least-square minimization algorithms. PCE assumes that the computational model
is a black-box model, i.e. only information about the input values and model response are available
(the inner structure and features of the model (nonlinearity, interaction between parameters, etc.) are
assumed unknown).

Kriging is called a stochastic metamodelling technique which assumes that the computational model is
a realization of a Gaussian random field whose properties are inferred from the experimental design and
the associated model output [2]. The experimental design points provide the information to compute the
optimal correlation parameters by e.g. maximum likelihood method. The prediction of the surrogate at a
new point results in a Gaussian variable represented by its mean value and variance value called Kriging
mean prediction and prediction variance.

Although these two techniques have become popular for solving uncertainties propagation, optimization or
sensitivity problems, their combination has not been considered yet. In this paper, the new metamodelling
technique Polynomial-Chaos-Kriging (PC-Kriging) is proposed. This metamodel is based on the classical
universal Kriging approach where the trend (regression part) is a sum of functions in the general case. In
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PC-Kriging a sparse set of orthonormal polynomials serves as the trend of the universal Kriging model.
The general formulation of the metamodel is then:

M(X) ≈ M(PCK)(x) =
P
∑

k=1

βk fk(x) + σ2 Z(x, ω) (1)

where
∑P

k=1 βk fk(x) is the mean value of the Gaussian process (so-called trend) and Z(x, ω) is a zero
mean, unit variance Gaussian process described by a set of hyper-parameters ω = {θ, R}. The auto-
correlation function R(x,x′;θ) describes the correlation between two samples given its parameters θ.
f(x) = {fk(x), k = 1, . . . , P} are the multidimensional orthonormal polynomials, its coefficients are βk,
x are realizations of the input variables X, σ2 is the Kriging variance. The sparse set of P polynomials
is determined by using hyperbolic index sets and least angle regression based of the experimental design
{χ(i)} [3]. In an iterative manner and one-by-one, a polynomial out of the determined sparse set is
added to the Kriging model. The iteration starts with the polynomial which is the most correlated to
the system response. Then the classical equations to fit the Kriging model are used to determine the
correlation parameters, the Kriging variance and the trend coefficients [4]. The P PC-Kriging models
are then compared by means of the leave-one-out error and the optimal PC-Kriging metamodel (with
minimal leave-one-out error) is chosen.

The performance of PC-Kriging is compared to ordinary Kriging (constant trend β0) and pure PCE on
six easy-to-evaluate benchmark problems in the field of optimization and metamodelling. The results
show that PC-Kriging performs better or at least as good as PCE and/or Kriging. Especially, for
small experimental designs PC-Kriging is preferable to the two distinct approaches. From the numerical
experiments is appears that some problems are better suited for PCE whereas some problems are better
handled by Kriging. PC-Kriging converges to the best of the two simple approaches and leads to a smaller
squared residual error. For large sample sizes, PC-Kriging performs similar to PCE, so that the added
value of PC-Kriging is questionable in that case.

Heuristically, the behaviour of PC-Kriging can be explained as follows: the set of polynomials approxi-
mates the global behaviour whereas the correlation part models the local variabilities between the support
points. The combination of these two effects leads to a higher accuracy and thus to a better metamodel.
The validation of PC-Kriging is shown on numerous analytical benchmark functions which are easy-to-
evaluate.
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engineering where his Master’s Thesis was entitled “Subset Simulation in Engineering Problems.” Since
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Zürich under the supervision of Prof. B. Sudret. His research topics include the quantification and
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Abstract:

The ground model is central to computational tunneling, where, a realistic ground model is crucial
for predicting the distributions and magnitudes of the strains and, consequently, reducing the surface
settlements caused by the Tunnel Boring Machine (TBM) propagation. However, due to the complex
interactions between the ground, the driving machine, the lining tube and the built environment, the
accurate assignment of in-situ system parameters for numerical simulation in mechanized tunneling is
always bounded with tremendous difficulties. Furthermore, the more accurate these parameters are, the
more applicable the responses gained from computations will be. In particular, if the entire length of
the tunnel lining is considered, then the appropriate selection of various kinds of ground parameters is
accountable for the success of a tunnel project and, more importantly, will prevent serious casualties.
As a consequence, only the realization of the system identification approach can result in improved and
more sophisticated numerical predictions of the spatio-temporal ground behavior induced by driving the
tunnel. In this context, methods of system identification for the adaptation of numerical simulation
ground models are presented. These methods consider both deterministic and probabilistic approaches
for typical scenarios for variations or changes in the ground model.

In the deterministic approach, measurements of system responses obtained during the tunneling process
(e.g. surface subsidence) are compared to their numerical counterparts computed from the numeri-
cal simulation (forward calculation). If there is no match, the serious deviations (defects or residuals)
are iteratively minimized by applying a different derivative-free optimization algorithm and taking the
parameters of the ground model, used in the numerical simulation, as minimizing parameters for the min-
imization problem (inverse problem). Hereby, the underlying optimization problem constitutes a highly
nonlinear as well as non-smooth optimization problem associated with multiple optima (nonstandard
optimization problem), due to the ground model that represents a complex, mechanically-hydraulically
coupled and a three dimensional boundary value problem.

Customarily, the geotechnical applications are associated with uncertainties, where, the significantly
scattered material properties (e.g. stiffness, strength, permeability) of the soil, due to the inherent
randomness of its nature, yields aleatoric (objective) uncertainty. In addition to that, lack of data, of
information about events and processes and of understanding the physical laws results in Knowledge
(epistemic/subjective) uncertainty. In order to obtain realistic results and to quantify the underlying
uncertainties in the parameter estimation process, a Bayesian probabilistic approach for the inverse
problem is introduced. This approach is able to include the prior information about the parameters,
which may be captured from bore holes sunken in the target area of the tunnel alignment. To this end,
a numerical approximation of the probabilistic solution using Markov chain Monte Carlo is carried out.

In order to make the identification process as efficient and robust as possible, it is favorable to reduce the
number of the parameters to be identified (consequently, the number of numerical simulation runs) by
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performing an effective sensitivity analysis. With this analysis, the importance of each unknown model
parameter with respect to the system response is evaluated such that an effective selection of the domi-
nating model parameters is achieved. For this purpose, two global sensitivity analysis approaches, namely
elementary effect and variance-based analyses, have been adopted and validated. In the elementary effect
approach a strategy for considering the dependencies, which result from a set of constraints between
different parameters, is proposed. As a result, the propagating sensitivities of subsoil parameters during
the excavation process of the mechanized tunnel are achieved. On the basis of this, an efficient choice of
the parameters that have to be identified is enabled.

The computationally expensive finite element tunnel simulation has been replaced by an accurate meta-
model. In this regard, and in order to construct robust and reliable meta-models, three meta-modeling
approaches have been implemented and tested. These approaches are quadratic polynomial regression
QPR, moving least squares MLS, and proper orthogonal decomposition with radial basis functions PO-
DRBF. Furthermore, an extended version of the latest approach is proposed and implemented. This
version constitutes a combination of proper orthogonal decomposition with extended radial basis func-
tions and is abbreviated as POD-ERBF. Its performance has been systematically compared with the
three aforementioned methods through a comparative study utilizing pure mathematical test functions.
With this study the best performing meta-model, which is the extended version of POD-RBF, is selected
to replace the tunneling simulation model in the system identification and global sensitivity analysis.

For the evaluation of influences of subsoil parameter uncertainties on the mechanized tunnel safety and
stability, a probabilistic analysis has been performed. In this analysis, the input parameter uncertainties
are mathematically represented by adequately chosen probability density functions, consequently, the
propagation of these uncertainties are evaluated by performing a Monte Carlo-based simulation of the
computationally cheap surrogate model that is developed to replace the computationally expensive finite
element tunnel simulation. In addition to that, a global sensitivity analysis is conducted for quantifying
the impact of each uncertain parameter on different system responses that are considered in this study.
The variations of system responses, which result from input parameters propagating uncertainties, are
compared with predetermined threshold values, and based on that, reliability-based failure criteria of
the tunneling system are defined and probabilistically quantified. As a result, the influence of subsoil
parameter uncertainty representation on failure probabilities is addressed and evaluated.

Short biography – After obtaining a M.Sc. degree in Computational Engineering at Ruhr-Universität
Bochum in Germany in October 2010, I started my PhD study in November 2010. My research work
is part of the Collaborative Research Center SFB 837 ”Interaction Modeling in Mechanized Tunneling”,
funded by the German Research Foundation DFG. I work within sub-project C2 ”System identification
methods for the adaptation of numerical simulation models”. My research focuses are: System identi-
fication considering uncertainties, Bayesian inverse analysis, global sensitivity analysis, meta-modeling,
and failure analysis of the mechanized tunnel due to subsoil parameter uncertainties. After obtaining a
M.Sc. degree in Computational Engineering at Ruhr-Universität Bochum in Germany in October 2010, I
started my PhD study in November 2010. My research work is part of the Collaborative Research Center
SFB 837 ”Interaction Modeling in Mechanized Tunneling”, funded by the German Research Founda-
tion DFG. I work within sub-project C2 ”System identification methods for the adaptation of numerical
simulation models”. My research focuses are: System identification considering uncertainties, Bayesian
inverse analysis, global sensitivity analysis, meta-modeling, and failure analysis of the mechanized tunnel
due to subsoil parameter uncertainties.
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Abstract:

We consider the numerical approximation of a partial differential equation (PDE) with random coeffi-
cients. These type of problems can be found in many applications in which the lack of available mea-
surements makes an accurate reconstruction of the coefficients appearing in the mathematical model
unfeasible. In particular we focus on the model problem of an elliptic partial differential equation with
random diffusion coefficient, modeled as a random field with limited spatial regularity. This approach is
inspired by the groundwater flow problem which has a great importance in hydrology: in this context the
diffusion coefficient describes the permeability of the subsoil and is often modeled as a lognormal random
field.

More precisely, we consider the problem defined on a physical domain D ∈ Rd and on the set of all
possible events Ω:



















−div(a(x, ω)∇u(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u(x, ω) = g(x) x ∈ ΓD ⊂ ∂D, ω ∈ Ω,

a(x, ω)∇u(x, ω) · n = 0 x ∈ ΓN ⊂ ∂D, ω ∈ Ω.

where a(x, ω) = eγ(x,ω) and γ(x, ω) is a Gaussian random field. Several models have been proposed
in the literature for the covariance function of the log-permeability γ leading to realizations having
varying spatial smoothness. In particular, a widely used covariance function is the exponential one,

covγ(x1, x2) = σ2e−
‖x1−x2‖

lc , that has realizations with Hölder continuity C0,α with α < 1
2 . In this work

we focus on covariance functions belonging to the so called Matérn family. These covariance functions
depend on a parameter ν that defines the spatial smoothness of the field, ranging from very low spatial
regularity as in the exponential covariance case (ν = 0.5) to very high spatial regularity as in the gaussian
covariance case (ν → ∞).

Models with limited spatial smoothness pose great numerical challenges. The first step of their numerical
approximation consists in building a series expansion of the input coefficient; here we use a Fourier
expansion. Whenever the random field has low regularity, such expansions converge very slowly and this
makes the use of deterministic methods such as Stochastic Collocation on sparse grids highly problematic
since it is not possible to parametrize the problem with a relatively small number of random variables
without a significant loss of accuracy. A natural choice is to try to solve such problems with a Monte
Carlo (MC) type method. In formulas, let Q(u) be the quantity of interest (QoI) related to the solution
u of the elliptic stochastic PDE. The MC estimator of the QoI and its corresponding mean square error
(MSE) are given by:

Q̂MC
h,M =

1

M

M
∑

i=1

(

Qi
h

)

, e(Q̂MC
h,M )2 =

Var(Qh)

M
+ E[Qh −Q]2,
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where Qh denotes the approximate evaluation of Q computed from the finite element solution uh of
the PDE with mesh size h and Qi

h are i.i.d. replica of Qh corresponding to i.i.d. realizations of the
log-permeability field γ. On the other hand it is well known that the convergence rate of the standard
Monte Carlo method is quite slow, making it impractical to obtain an accurate solution. Indeed, the
computational cost of a Monte Carlo simulation is given by the number of samples of the random field
multiplied by the cost needed to solve a single deterministic PDE, which requires a very fine mesh due to
the roughness of the coefficient. Multilevel Monte Carlo methods (MLMC) have already been proposed
in the literature in order to reduce the variance of the Monte Carlo estimator, and consequently reduce
the number of solves on the fine grid. These methods introduce a sequence of increasingly fine grids
Th0

, ..., ThL
and, thanks to the linearity of the expectation operator, they split the total work on different

levels in order to get a cheaper estimator Q̂MLMC
h,{Ml}

in terms of computational cost.

In this work we propose to use a MLMC approach combined with an additional control variate variance
reduction technique on each level in order to solve the elliptic SPDE for different choices of the covariance
function of the input field, within the Matérn family. The control variate is obtained as the solution of
the PDE with a regularized version of the lognormal random field γǫ(x, ω) = γ(x, ω) ∗φǫ(x) with φǫ(x) a
smooth convolution kernel. Since γǫ is smooth, the mean of the correspondent QoI Qǫ

h can be successfully
computed with a Stochastic Collocation method on each level. The solution of this regularized problem
turns out to be highly positively correlated with the solution of the original problem on each level, which
makes the control variate technique very effective.
Within this Monte Carlo framework the choice of a suitable regularized version of the input random
field is the key element of the method; we propose to regularize the random field by convolving the
log-permeability with a centered Gaussian kernel having ǫ2 variance. We analyze the mean square error
of the estimator and the overall complexity of the algorithm. The MLCV estimator of the QoI and its
corresponding MSE bound are given by:

Q̂MLCV
h,{Ml}

=
L
∑

l=0

1

Ml

Ml
∑

i=1

(

Qi
hl

−Qi
hl−1

− (Qǫ,i
hl

−Qǫ,i
hl−1

)
)

+ E[Qǫ,SC
hL

],

e(Q̂MLCV
hL,{Ml}

)2 6

L
∑

l=0

Var(Y CV
hl

)

Ml
+ 2E[Qǫ

hL
−Qǫ,SC

hL
]2 + 2E[QhL

−Q]2.

We also propose possible choices of the regularization parameter and of the number of samples per grid
so as to equilibrate the space discretization error, the statistical error and the error in the computation
of the expected value of the control variate by Stochastic Collocation. Numerical examples demonstrate
the effectiveness of the method. A comparison with the standard Multi Level Monte Carlo method is
also presented for different choices of the covariance function of the input field.
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Abstract:

In the context of reliability analysis, complex models representing physical situations are used to de-
termine failure domain via a given threshold not to be overpassed. These models are often very time
consuming and no analytical expression is available. Thus, the evaluation of a failure probability given
a threshold or the estimation of a quantile given a targeted probability cannot be done by usual compu-
tation tools. Some developments have been done in two different directions : first the use of sequential
Monte-Carlo methods allows to decrease the number of necessary calls to the model ([1], [2]) ; in this
mood Guyader et al. [3] have shown that the optimal algorithm works with limit subsets, ie. fixing
the current threshold at the minimum of the working population. Another approach is to use the given
computational budget to fit a surrogate model and then to use it instead of the real model to evaluate
quantities of interest (see [4], [5] or [6] for examples). Both approaches suffer from several limitations.

Sequential Monte-Carlo would still require quite a lot of calls to the limit-state function, while fitted
surrogate models can be very far from the original ones without any possibility to control precision.
However, in the context of probability or quantile estimation, only the boundary delimiting failure and
safety domains is to be well approximated ; especially, no good approximation of the model in both
domains is necessary if data points are well classified.

The novelty of our work comes from our understanding of these two approaches in the rare event simulation
context as a run to the failure domain. This means that sequential Monte-Carlo appears indeed like a
move of particles from an initial random state to the failure domain and that meta-modelling needs only
pairs of points on each side of the boundary. The basic result is that with a sequential sampling strategy,
the theoretical number of samples needed to get into a failure domain of probability measure p follows
a Poisson law with parameter log(1/p). This number is to be compared with a classical Monte-Carlo
sampling with a theoretical 1/p number of samples needed.

A consequence for sequential Monte-Carlo algorithms is the theoretically full parallelisation of Guyader
et al. ([3]) optimal algorithm for rare event probability estimation with the limit case of algorithms
with only 1 particle. On the other hand quantile estimation requires a small adaptation and we thus
present a modified algorithm which enables full parallelisation. This modification is of very little effect
as in the test cases it increases the total number of calls by approximately 10% while parallelisation
can reduce computational budget by a factor up to population size (eg. 100, 1000...). However because
of robustness issue in the Metropolis-Hastings generation step, it appears that population size for one
algorithm shouldn’t be smaller than 10 to 20.

On the other hand we use this run to the failure domain approach to derive a new strategy for first
Design of Experiment (DoE) in the case of meta-modelling. In fact, it is well noticed that surrogate
models require failing data points in their learning database to perform well ([5]). Unlike Space-filling
strategies which aim at giving an overall knowledge of the model or Gaussian sampling techniques which
”overlearn” the model in the safety domain, we propose to use a sequential strategy to get into the failure

MascotNum 2014 - Computer Experiments and Metamodels for Uncertainty Quantification

April 23-25, 2014 75



domain quickly. More precisely, by replacing the expensive-to-evaluate model by the cheap surrogate in
the Metropolis-Hastings step, we get similar results in terms of number of calls before the failure domain
while limiting drastically the total number of calls usually driven by a burn-in parameter. Finally, we
get a new relation for the size of the first DoE, it is : NDoE ≈ d + 1 + N log(1/p) with N the number
of willing failing points in the DoE and d the dimension of the input space. Practically, it appears that
given N and d, total number of calls is indeed lower than this theoretical value.
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Abstract:

Due to the need of more realistic numerical simulations, models presenting uncertainties are receiving
a growing interest. Various numerical methods attempt to quantify the probabilistic response of some
physical phenomena, often modeled by partial differential equations with random coefficients. Here we
adopt a functional point of view of the uncertainty, meaning that we look for an approximation of the
solution that is a function of the random coefficients (seen as new variables). Low-rank tensor methods
appear as an efficient way to solve the resulting high dimensional problems, and can also be interpreted
as model reduction (see recent surveys [2, 6, 5]).

Different strategies have been proposed for the solution of equations in tensor format. One can obtain an
approximation of the solution in low-rank tensor subsets through the direct minimization of some residual
norm. Using this approximation, estimation of quantities of interest (expectation, variance or sensitivity
indices) can be computed. However, there is no guaranty that classical minimal residual formulations
provide accurate reduced order models for the estimation of quantities of interest.

The basic idea of the present work (inspired from [3, 4]) is to introduce an ideal minimal residual for-
mulation such that the optimality of the approximation is achieved with respect to a specified norm.
We propose and analyze in [1] an algorithm that provide a quasi-optimal low-rank approximation of the
solution defined by the ideal formulation.

This new approach offers the possibility to choose a norm so that the optimality of the approximation is
achieved with respect to some quantity of interest. We investigate different constructions of such ”goal-
oriented norm” in the case of linear and quadratic quantities of interest. The resulting method can be
seen as an optimal goal-oriented model reduction method.
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the École Normale Supérieure de Cachan, I started my PhD in 2011 in the GeM laboratory at the
École Centrale de Nantes (http://gem.ec-nantes.fr/). I am also a teaching assistant for a course of
applied mathematics at the third-year Bachelor level (numerical analysis, optimization, probability and
statistics). My PhD is funded by the French ministry of research.
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