

Uncertainty Quantification in Crack Propagation Simulations

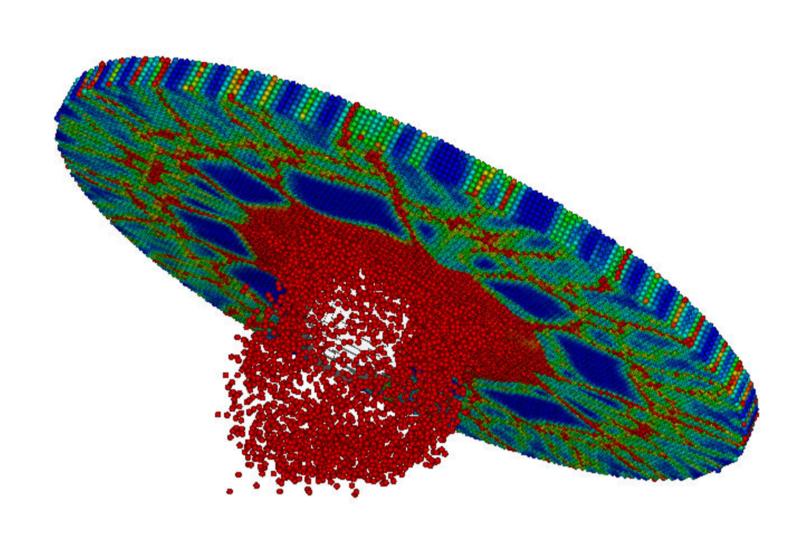
Fabian Franzelin¹, Patrick Diehl², Dirk Pflüger¹, Marc Alexander Schweitzer²

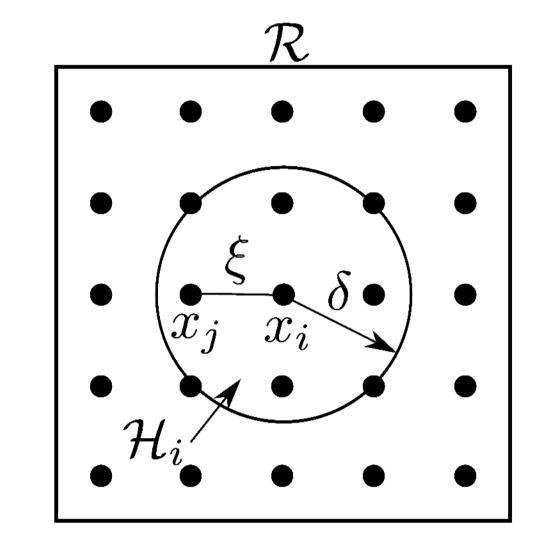
¹ SGS, University of Stuttgart, ² INS, University of Bonn

Motivation

- Crack propagation with Peridynamics in high-velocity impact simulations
- **Properties** of the UQ setting:
- 1. non-intrusive
- 2. expensive samples
- 3. steep transition
- 4. scale to large number of parameters

Crack Propagation and Peridynamics





- Particle-based simulation of cracks
- Equation of motion

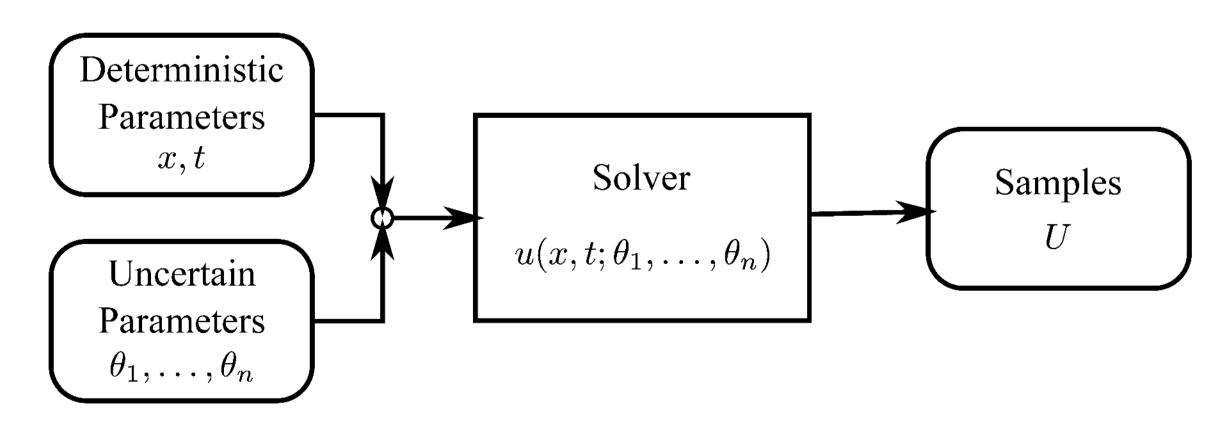
$$\rho(x_i)\ddot{u}(x_i,t) = \int_{\mathcal{H}_i} f(\xi,\eta) dV_{x_i} + b(x_i,t). \tag{1}$$

- f is a pair-wise force function on pseudo-particles within horizon $\mathcal{H}_i := \{x_j : ||x_i x_j|| \le \delta\}$ for $\delta := 3\Delta x$ [3]
- Particles are connected through elastic bonds
- A bond breaks when its stretch exceeds a certain threshold
- Bond breaks represent **local damage** and form **cracks**
- Problem: properties of model parameters are unknown
- **Task:** find sensitivity measures for parameters by describing the lack of knowledge by probability density functions, and propagate it through the peridynamic model

Table: Range and distribution of the most interesting peridynamic model parameters.

Param.	Min	Max	Unit	Dist.	Description
Δx	0.4	0.6	mm	U(0.4, 0.6)	particle density
α	0	1	-	$\mathcal{U}(0,1)$	elasticity
K	10 ¹²	10 ²⁰	N/m ²	U(12, 20)	projectile's magnitude of force

Non-intrusive Forward Propagation of Uncertainty



- Number of uncertain parameters is problem's dimensionality
- Highly-dimensional parameter space leads to curse of dimensionality
- non-smooth functional dependencies
- Main obstacles for conventional **non-stochastic** methods

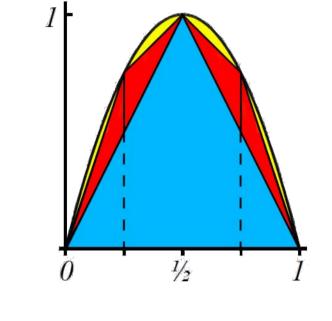
Adaptive Sparse Grid Collocation [2]

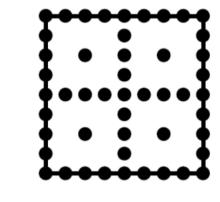
Advantages:

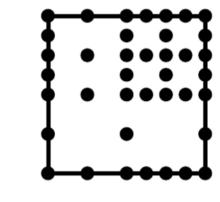
- 1. cope with the curse of dimensionality to a large extent
- 2. **non-intrusive** so easily applicable to many problems
- 3. efficient and flexible analysis due to **explicit** representation
- 4. resolve discontinuities: adaptive refinement and local basis
- Weighted sum of basis functions

$$f_{I_N}(\vec{ heta}) = \sum_{i \in I_N} v_i \phi_i(\vec{ heta})$$
 (2)

- Hierarchical basis and tensor product
- Number of grid points $\mathcal{O}(N \log_2(N)^{d-1})$ [1]
- L₂ convergence $\mathcal{O}(N^{-2}\log_2(N)^{3(d-1)})$ [1]







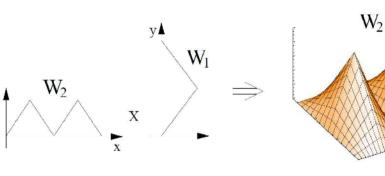


Figure: Sparse grid (left), adaptively refined sparse grid (right).

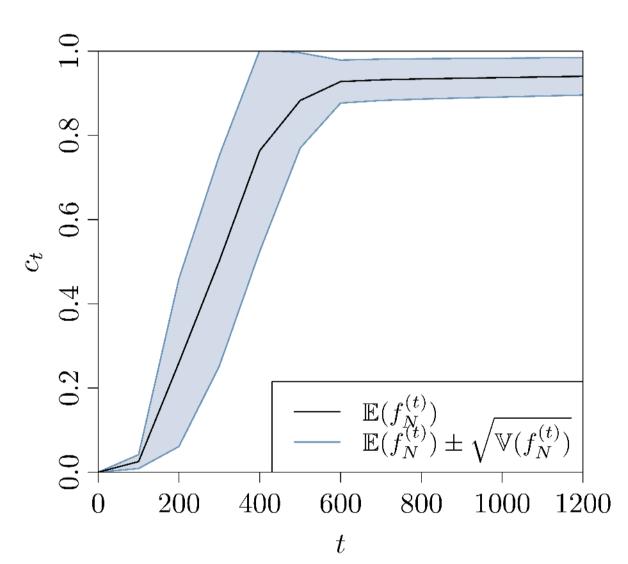
Figure: Tensor product basis example for two dimensions.

Sobol indices

$$\mathbb{V}(u) = \sum_{i=1}^{d} \mathbb{V}_i(\theta_i) + \sum_{i=1}^{d} \sum_{i < j} \mathbb{V}_{i,j}(\theta_i, \theta_j) + \cdots + \mathbb{V}_{1,\dots,d}(\theta_1, \dots, \theta_d)$$
(3)

- Adaptive refinement: minimize number of samples
 - Idea: hierarchical coefficients \sim local change of the function
 - 1. absolute surplus: $arg \max_{i \in I_N} |v_i|$
 - 2. expectation value: $\arg\max_{i\in I_N}|\mathbb{E}(f_{I_N\setminus\{i\}})-\mathbb{E}(f_{I_N})|\Rightarrow \arg\max_{i\in I_N}|v_i|2^{-|I|_1}$
 - 3. variance: arg max $_{i \in I_N} |w_i|$ where $f_{I_N}^2(\vec{\theta}) = \sum_{i \in I_n} w_i \phi_i(\vec{\theta})$ [2]

Results



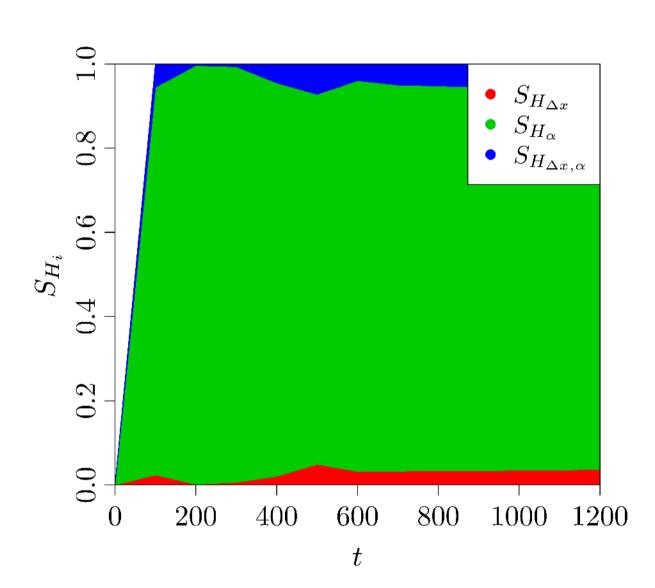
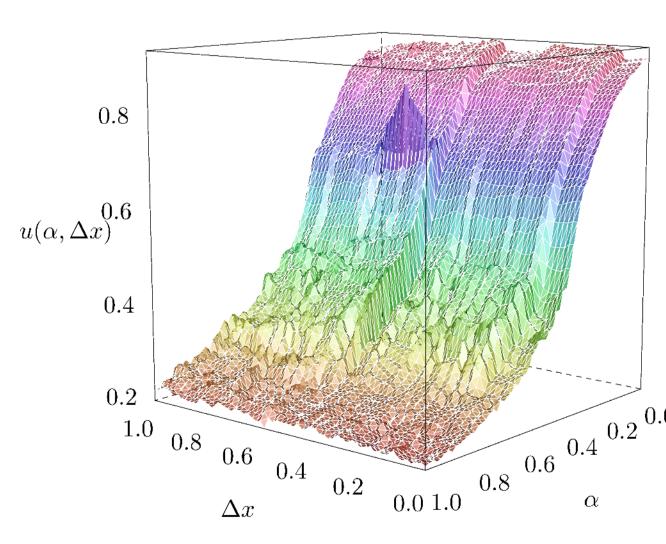


Figure: Expectation value and standard deviation of the total damage in the plate for $t \in \{0, 100, \dots, 1200\}$.

Figure: Sobol indices for Δx and α . Surprisingly large impact of α and rather low impact of Δx ; large second-order interactions.



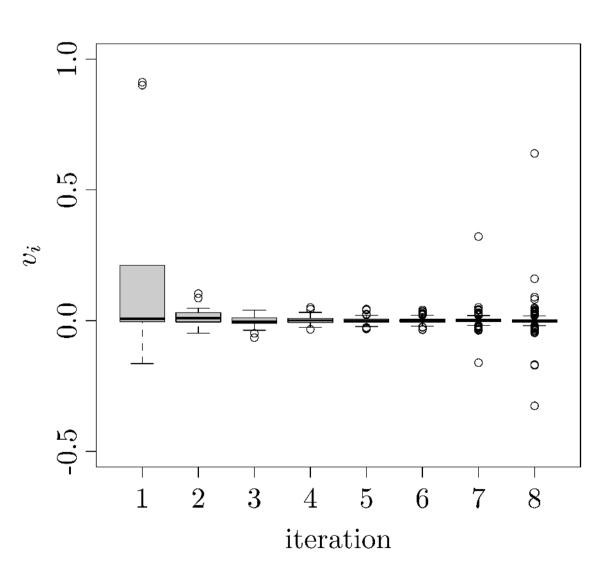


Figure: Sparse grid interpolant for damage at t=300. It shows high oscillations in the lower and upper regime of α , discontinuities in direction of Δx and outliers.

Figure: Box plot of the hierarchical coefficients of the regular sparse grid interpolant per iteration. Outliers and non-smooth regions have been detected.

Future Work

- 1. Add **bulk modulus** and the **critical stress intensity factor** to the simulation to study properties of non-existing materials
- 2. Compare Peridynamics with real physical experiments in the context of speed of sound in materials