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1. Application

Sheet metal forming: Standard industrial process in the forming of car parts

Blankholder Punch 

Sheet 𝑣𝑝 

𝐹𝐵𝐻 𝐹𝐵𝐻 

Occuring problems

• Springback: elastic recovery after forming,

measured as mean shape deviation

• Tearing

• Wrinkling

Computer experiment analysis by Finite Element simulations, e.g. by LS-DYNA

2. Extension to functional input

New possibility: Variation of two inputs – blankholder force and friction – during the forming

process

→ New insights on functional influence on springback,

sensitivity analysis

→ Improvements in forming, springback optimization

Test runs with different functional behaviour but equal overall mean friction show potential of

functional approach

functional input: friction setting scalar output: springback
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3. Assumptions

• Y ∈ R scalar response,

• gj : Dj 7→ [0, 1], j = 1, . . . , d functional

input variables

• Dj = [0, 1] for each j = 1, . . . , d

• Connected by a black box function

Fd
[0,1]

7→ R, Y = f (g1, . . . , gd)

• All input variables can be controlled

• Scalar inputs can be considered as constant functional inputs

• Function evaluations very time consuming

4. Functional representation

Functional input via space of piecewise constant functions
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5. Sensitivity analysis

Input space transformed from functional to scalar

Y = f (g1, . . . , gd) = f̃a1,...,apd
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Sensitivity analysis method: Regression coefficients, normalized to be independent of the

particular partition

Definition 1. Consider a set of splitting points a1, . . . , apd and assume that gj ∈ Vaj, j = 1, . . . , d :

gj(t) = ∑ Z
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j ✶[ak−1

j ,ak
j [
(t). Denote by β̂k

j and β̂
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regression coefficients, then we define by
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the so-called normalized regression index of Z
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j and the normalized interaction regression

index of Z
(k)
j and Z
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j resp. for j ∈ {1, . . . , d}, 1 ≤ k < k′ ≤ pj.

Theoretical result: When f is an integral of an input g weighted by an integrable function

w : [0, 1] 7→ R the indices return the weights

f (g) = α +
∫ 1

0
w(t)g(t) dt ⇒ Ĥk =

∫ ak

ak−1 w(t) dt

ak − ak−1
, lim

ak−ak−1→0
Ĥk = w(t)

6. Design based on sequential bifurcation

Sequential bifurcation: Very economical screening method that saves runs by grouping factors

Implementation in functional design: Start with one interval and then split interesting intervals

in sequential steps
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Application results: Sensitivity analysis of the functional influence of friction and blankholder force on springback in three sequential steps using 8 evaluation runs each

Step 1: Two intervals for both inputs
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time in seconds

n
o

rm
a

li
z
e

d
 c

o
e

ff
ic

ie
n

t 
H

−
1

0
−

5
0

5

0 3.25 7.5 11.25 15

blankholder force

time in secons

n
o

rm
a

li
z
e

d
 c

o
e

ff
ic

ie
n

t 
H

−
1

0
−

5
0

5

0 3.25 7.5 11.25 15

→ Stronger influence of friction than of blankholder force

→ General: positive influence in first, negative in second half

Step 2: Split all intervals for both inputs

friction

time in seconds

n
o

rm
a

li
z
e

d
 c

o
e

ff
ic

ie
n

t 
H

−
1

0
−

5
0

5

0 3.25 7.5 11.25 15

blankholder force
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→ Last interval has greatest impact

→ First and third intervals have small influence

Step 3: Split each second and fourth interval

friction
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blankholder force
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→ Overall for both factors: clear change after half of the time

→ Magnitude increases towards the end of both halves


