Sequential sensitivity analysis for computer experiments with

functional inputs

technische universität dortmund

Jana Fruth, Olivier Roustant, Sonja Kuhnt

1. Application

Sheet metal forming: Standard industrial process in the forming of car parts

Occuring problems

- Springback: elastic recovery after forming, measured as mean shape deviation
- Tearing
- Wrinkling

Computer experiment analysis by Finite Element simulations, e.g. by LS-DYNA

2. Extension to functional input

New possibility: Variation of two inputs – blankholder force and friction – during the forming process

 \rightarrow New insights on functional influence on springback,

sensitivity analysis

 \rightarrow Improvements in forming, springback optimization

Test runs with different functional behaviour but equal overall mean friction show potential of functional approach

5. Sensitivity analysis

Input space transformed from functional to scalar

$$Y = f(g_1, \dots, g_d) = \tilde{f}_{a_1, \dots, a_{p_d}} \left(Z_1^{(1)}, \dots, Z_1^{(p_1)}, \dots, Z_d^{(1)}, \dots, Z_d^{(p_d)} \right)$$

Perform sensitivity analysis on input space $Z_1^{(1)} \dots, Z_1^{(p_1)}, \dots, Z_d^{(1)}, \dots, Z_d^{(p_d)}$

Sensitivity analysis method: Regression coefficients, normalized to be independent of the particular partition

Definition 1. Consider a set of splitting points $\mathbf{a}_1, \ldots, \mathbf{a}_{p_d}$ and assume that $g_j \in V_{\mathbf{a}_j}, j = 1, \ldots, d$: $g_j(t) = \sum_j Z_j^{(k)} \mathbb{1}_{[a_j^{k-1}, a_j^k[}(t)]$. Denote by $\widehat{\beta}_j^k$ and $\widehat{\beta}_j^{(kk')}$ the estimated first-order and second-order regression coefficients, then we define by

$$\widehat{H}_{j}^{k} = \frac{\widehat{\beta}_{j}^{(k)}}{a_{j}^{k} - a_{j}^{k-1}} \text{ and } \widehat{H}_{j}^{kk'} = \frac{\widehat{\beta}_{j}^{(kk')}}{(a_{j}^{k} - a_{j}^{k-1})(a_{j}^{k'} - a_{j}^{k'-1})}$$

the so-called normalized regression index of $Z_j^{(k)}$ and the normalized interaction regression index of $Z_j^{(k)}$ and $Z_j^{(k')}$ resp. for $j \in \{1, ..., d\}, 1 \le k < k' \le p_j$.

Theoretical result: When *f* is an integral of an input *g* weighted by an integrable function $w : [0,1] \mapsto \mathbb{R}$ the indices return the weights

$$f(g) = \alpha + \int_0^1 w(t)g(t) dt \quad \Rightarrow \quad \widehat{H}^k = \frac{\int_{a^{k-1}}^{a^k} w(t) dt}{a^k - a^{k-1}}, \qquad \lim_{k \to \infty} \widehat{H}^k = w(t)$$

3. Assumptions

- $Y \in \mathbb{R}$ scalar response,
- $g_j : D_j \mapsto [0,1], j = 1, \dots, d$ functional input variables
- Connected by a black box function $\mathcal{F}^{d}_{[0,1]} \mapsto \mathbb{R}, \ Y = f(g_1, \dots, g_d)$
- $D_j = [0, 1]$ for each j = 1, ..., d
- All input variables can be controlled
- Scalar inputs can be considered as constant functional inputs
- Function evaluations very time consuming

4. Functional representation

Functional input via space of **piecewise constant functions**

$$V_0^{\mathbf{a}_j} = \left\{ Z_j^{(1)} \mathbb{1}_{\left[0, a_j^1\right[}(t) + \dots + Z_j^{(p_j)} \mathbb{1}_{\left[a_j^{p_j - 1}, 1\right]}(t), \text{ with } Z_j^{(k)} \in [0, 1], 1 \le k \le p_j \right\}$$

 $J0 \qquad \qquad a^{\kappa} - a^{\kappa-1} \qquad a^{k} - a^{k-1} \rightarrow 0$

6. Design based on sequential bifurcation

Sequential bifurcation: Very economical screening method that saves runs by grouping factors Implementation in functional design: Start with one interval and then split interesting intervals in sequential steps

Literature

- [1] Bettonvil, B. (1995): Factor screening by sequential bifurcation. Communications in Statistics-Simulation and Computation 24 (1), S. 165–185.
- [2] Fruth, J.; Roustant, O.; Kuhnt, S. (2014): Sequential designs for sensitivity analysis of functional inputs in computer experiments. Online on HAL: http://hal.archives-ouvertes.fr/hal-00943509.
- [3] Ramsay, J. O.; Silverman, B. W. (2005): Functional data analysis. 2nd ed. New York: Springer.
- [4] Saltelli, A.; Chan, K.; Scott, E. M. (Eds.) (2000): Sensitivity analysis. Chichester: Wiley.

Application results: Sensitivity analysis of the functional influence of friction and blankholder force on springback in three sequential steps using 8 evaluation runs each

Step 2: Split all intervals for both inputs

Step 1: Two intervals for both inputs

 \rightarrow Stronger influence of friction than of blankholder force \rightarrow General: positive influence in first, negative in second half

ightarrow Last interval has greatest impact

 \rightarrow First and third intervals have small influence

 \rightarrow Overall for both factors: clear change after half of the time \rightarrow Magnitude increases towards the end of both halves

Step 3: Split each second and fourth interval