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Part I: Problem Setting and Motivation
Topic: Many engineering/physical problems are described by mathematical models in which, however,
the parameters are affected by a considerable amount of uncertainty, due e.g. to measurement errors, lim-
ited data availability or intrinsic variability of the phenomenon itself.
Probabilistic framework: The uncertain input data are described in terms of random variables or
space/time varying random fields in a complete probability space (Ω,A,P), where Ω is the set of out-
comes, A a σ-algebra and P : A → [0, 1] a probability measure.
Mathematical Model: Time dependent PDEs with random parameters:











∂
∂t

u(x, t, ω) = L[u(x, t, ω), ω], x ∈ D, t ∈ T , ω ∈ Ω

u(x, t = 0, ω) = u0(x, ω), x ∈ D, ω ∈ Ω,

u(x, t, ω) = h(x, t), x ∈ ∂D, t ∈ T , ω ∈ Ω

(1)

where L is a general (linear or non-linear) differential operator, x ∈ D ⊂ R
d, 1 ≤ d ≤ 3, is the spatial

coordinate and t is the time variable in T ≡ [0, T ].
Sources of randomness: coefficients in the equations, initial conditions and forcing terms.
Difficulties in the numerical approximation:

• course of dimensionality: the number of random input variables is often large and typically the
computational effort grows exponentially with the dimension of the probability space ⇒ For N
large, numerically solving the system (1) might be unfeasible.

• long-time integration: The probabilistic structure of the solution u in (1) may significantly deviate
in time from that of the input parameters. It follows that the parameters-to-solution map may
become more and more complex to approximate as time evolves ⇒ Approximations that makes
use of fixed (spatial or stochastic) basis functions might require an increasing numbers of terms in
time to keep good accuracy level (deteriorating convergence rate).

Goal: Dynamical low rank approximation.

Analytical results: The best S rank approximation of the solution in norm L2(D) × L2(Ω) is given

by the truncated Karhunen-Lòeve expansion
(

uKL
S

)

of u at any time. In practice the optimal S dimen-
sional approximation subspace is difficult to characterize and evolves in time. However the truncated
Karhunen-Lòeve expansion provides an analytical lower bound for the approximation error of low rank
approximation methods.

Part II: Dynamically Orthogonal Approximation
The Dynamically Orthogonal approximation (DO, proposed e.g. in [2]) consists in a reduced basis ap-
proach with bases that evolve in time. The approximate solution is defined as:

uS(x, t; ω) = ūS(x, t) +
S
∑

i=1

Yi(t; ω)Ui(x, t) (2)

where:

- ūS(x, t) ∼= E[u(x, t; ω)],

- {Ui(x, t)}
S
i=1 are deterministic orthonormal functions in L2(D),

- {Yi(t; ω)}S
i=1 are zero mean stochastic processes in L2(Ω).

The uniqueness of the representation is provided by imposing the so called
Dynamically Orthogonal condition [2]:

<
∂Ui(·, t)

∂t
, Uj(·, t) >= 0 ∀i, j = 1, ...S ∀t ∈ [0, T] (3)

By performing a Galerkin projection of the governing equation (1), one derives dynamic equations for
each term in (2).
DO system

∂ūS(x, t)

∂t
= E[L(uS(·, t; ω); ω)] (4)

S
∑

i=1

∂Ui(x, t)

∂t
Cij(t) = Π

⊥

U
E[L(uS(·, t; ω); ω)Yj(t; ω)] ∀j = 1, ..., S (5)

∂Yi(t; ω)

∂t
=< L

∗
(uS(·, t; ω); ω), Ui(·, t) > ∀i = 1, ..., S (6)

(and similarly the b. c.) where, being U = span < U1(x, t), ..., US(x, t) >, Π⊥

U
is the orthogonal

projection operator in L2(D) to the complement of U , i.e. Π⊥

U
[v] = v −

∑S
i=1 〈v, Ui〉Ui,

C is the covariance matrix of the random variables {Yi}
S
i=1,

L∗(u(x, t, ω), ω) = L(u(x, t, ω), ω) − E [L(u(x, t, ·))].
The initial conditions are imposed to be equal to the best S rank approximation of u0.

Variational Formulation
Let H be a Hilbert space such that u(t) ∈ H ⊗ L2(Ω), ∀t ∈ T .
Definitions and notations:
S-rank function: any square integrable random field uS = ū + u∗ = ū(x) + U

T (x)Y(ω) with

• ū(x) ∈ H,

• U = (U1, · · ·, US) ∈ [H]S a vector with orthogonal components in L2(D).

• Y = (Y1, · · ·, YS) ∈ [L2(Ω)]S a vector of uncorrelated random components in L2(Ω) with zero
mean and positive variance, such that rank(C) = S

MS ⊂ H ⊗ L2(Ω) is the manifold of all the zero mean S-rank functions.
T

u
∗

S

MS is the tangent space to MS at u∗

S . Orthogonal projection onto T
u
∗

S

MS : ∀v ∈ H⊗L2(Ω),

with v∗ = v − E[v], and u∗

S ∈ MS

Pu∗

S
(v) = Pu∗

S
(v

∗
) = U

T
〈

v
∗
,U

T
〉

+ (Π
⊥

U
{E[v

∗
Y

T
]}C

−1
)
T
Y

Equivalent formulation of the DO approach: The DO approximation corresponds to a Galerkin projec-
tion, namely the DO approximate solution is the S rank random field that minimizes the residual of the
governing equation in T

u
∗

S
(t)MS at any time instant, i.e.:

Weak Formulation. At each t ∈ T , find uS(·, t, ·) = ūS(·, t) + u∗

S(·, t, ·) with (ūS , u∗

S) ∈ H × MS

such that:

E

[〈

∂uS(·, t, ·)

∂t
− L(uS(·, t, ·)), v

〉]

= 0, ∀v : (v̄, v
∗
) ∈ H × Tu∗

S
(t)MS

or equivalently: ∂uS(x, t, ω)

∂t
= E [L(uS(x, t, ·)] + Pu∗

S
(t)(L

∗
(uS(x, t, ω)))

REMARK: The DO variational formulation is the analogue of the Dirac-Frenkel Variational Principle
used e.g. for

• MCTDH approximation of deterministic Schrodinger equations [see e.g. C. Lubich et al.],

• Dynamical Low Rank approximation of evolution tensor equations [see e.g. O. Koch, C. Lubich].

Error Analysis
Let u be the solution of a linear parabolic PDE with stochastic diffusion coefficient. Then, under suitable
assumptions, the DO approximation error can be bounded in terms of best approximation error.

Theorem. [3] Assume that 0 ≤ t ≤ t̄ the best rank S approximation uKL
S (t) ∈

(

H2(D)∩H1
0 (D)

)

⊗L2(Ω)

is continuously differentiable in time and σmin(u
KL
S (t)) ≥ ρ > 0. Then ∃t̂ ∈ (0, t̄] such that:

‖u
DO
S (t) − u(t)‖

2
0 + a

∫

t

0

|u
DO
S (τ) − u

KL
S (τ)|

2
1dτ ≤ 2αe

2β(t)
∫

t

0

‖u
KL
S (τ) − u(τ)‖

2
1dτ, (7)

for all 0 < t ≤ t̂. ‖.‖1, (|.|1) denotes the (semi) norm in H1(D)⊗L2(Ω), ‖.‖0 the norm in L2(D)⊗L2(Ω).

β(t) depends on 1
ρ

and ‖L∗(uKL
S (τ))‖0, ‖L

∗(u(τ))‖0, ‖L
∗(uDO

S (τ))‖0 ‖u̇KL
S (τ)‖0 that are

bounded under mild assumptions on the data (see [3] for further details),
REMARKS: It has been shown by means of simple analytical examples that the continuous time-

differentiability of uKL
S is a strictly necessary condition to get bound (7).

Part III: Numerical aspects
We approximate the deterministic equations (4)-(5) by Finite Elements method and equations (6) by
Stochastic Collocation. The time derivative is discretized by a semi-implicit Euler method while both the
covariance matrix and the projection operator are treated explicitly in order to linearize and decouple the
deterministic equations from the stochastic ones.
Problem: The effective rank of the approximate solution may significantly change in time. This implies
that the covariance matrix which couples the set of deterministic equations (5) may, in general, be singular
or nearly singular as time evolves.
Strategy: Orthogonalize the stochastic coefficients Y at each time step before solving system (5). Namely,

taken (V, Z) such that UT
Y = V

T
Z and E[ZiZj ] = δijλi, only the modes Vi with E[Z2

i ] > ǫ evolve,
the others remain constant.

Numerical examples
EXAMPLE 1: Linear parabolic PDE with stochastic diffusion coefficient and deterministic initial condition

∂u(x, t, ω)

∂t
− div

(

a(x, ω)
∂u(x, t, ω)

∂x

)

= 0, x ∈ [0, 1], t ∈ T , ω ∈ Ω (8)

u(0, t, ω) = u(1, t, ω) = 0, t ∈ T , ω ∈ Ω (9)

u(x, 0, ω) = 10 sin(πx) x ∈ [0, 1], ω ∈ Ω (10)
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Figure 1: Left: Evolution of the first 15 eigenvalues of the covariance matrix of uKL in log scale. Right:

The best approximation error (blue) and the error of the DO approximate solution (red) in L2(D)×L2(Ω)

norm with S = 1 (solid line) and S = 2 (dotted line), in log scale. In green the L2(D) × L2(Ω) norm of

the difference between uDO
S and uKL

S with S = 1 (solid line) and S = 2 (dotted line).
Remark: The DO approximation error with S = 1 is well controlled by the best approximation error

before the crossing between the first two eigenvalues of the covariance matrix of uKL, namely if uKL
1 is

continuously differentiable in time. After the crossing the DO error degenerates. With S = 2, uKL
2 is

continuously time differentiable in the whole time interval and the control on the DO approximation error
is smooth after the crossing as well.
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Figure 2: Left: The first three modes of the DO approximate solution (red markers) with S = 5 and of
the Karhunen-Lòeve expansion (blue, solid line) just after the crossing t∗. Middle: The trajectories of the

eigenvalues of the covariance matrix of the stochastic coefficient of uDO
5 (red markers) and uKL

5 (blue,
solid line), in log scale. The first DO and KL modes and eigenvalues are almost indistinguishable. Right:
The best approximation error (green) and the error of the DO approximate solution (red, dotted line) in

L2(D) × L2(Ω) norm w.r.t. the number of modes at time T = 0.1. The plot shows an exponential
convergence rate with respect to the number of modes.

EXAMPLE 2: PDE with non-linear reaction term. (random coefficient and deterministic initial condition)


















∂u(x, t;ω)

∂t
− ∆u(x, t;ω) = F (u(x, t;ω);ω) x ∈ [0, 1]2, t ∈ T, ω ∈ Ω

∂u

∂n
(x, t, ω) = 0, x ∈ ∂Ω, t ∈ T , ω ∈ Ω

u(x, 0;ω) = u0(x) x ∈ [0, 1]2, ω ∈ Ω

(11)

with F (u) = βu(u − 1)(α(ω) − u).
The initial condition is a step function and the solutions are a traveling wave with stochastic speed.
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Figure 3: Left: the rank evolution. Middle: the first mode at T = 0. Right: the first mode at T = 0, 05.
Remark: The deterministic modes and the stochastic coefficients of the DO solution adapt in time to the
solution. The effective rank of the DO solution evolves in time as well. However this problem is not really
suitable for low rank approximation because of the presence of a traveling front at random speed and the
DO method is also negatively effected by the frequent crossings of the eigenvalues.
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