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PROBLEM STATEMENT & CONTEXT

A computational model maps the input vector x € Dy C R" to y € R and is
represented by y = M(x). The input space is modelled by a random vector X
(set of input variables) through probability distributions. The input variables are
assumed statistically independent.

The goal is to approximate the computationally expensive-to-evaluate computa-
tional model by a cheap-to-evaluate function, i.e. a meta-model.

Further, the computational model is interpreted as a black-box model, i.e. only
input/output data is available.
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POLYNOMIAL CHAOS EXPANSIONS

Polynomial-Chaos-Expansions (PCE) surrogate the computational model M (X)
by a sum of orthonormal polynomials (Ghanem and Spanos, 2003):

* Yo(X): multivariate, orthonormal polynomials in coherency with the input
distributions X, indexed by multi-index ««. An orthonormal basis is defined
as (¢, 0j)x = Jp, ¢i(w) ¢j(x) fx,(x)dx = d;; where ¢ are univariate polynomials,
fx,(x) is the marginal PDF in dimension k£ and ¢ is the Kronecker symbol. The
multivariate polynomials are 1/o(X) =[], qﬁgfi)(XZ-) where M is the number of
dimensions.

* a,: coefficients of the polynomials, indexed by «.
* A: index set of the orthonormal polynomials.

The set of candidate polynomials is defined by a maximal polynomial degree and
a truncation scheme, such as hyperbolic index sets. The PCE meta-model is then
calibrated through least-angle regression (LARS) (Blatman and Sudret, 2011).

Kriging (a.k.a. Gaussian process modelling) is a stochastic meta-modelling tech-
nique assuming that the computational model M (x) is the realization of a Gaus-
sian random field (Santner et al., 2003):

MB(x) = B f(z) + 0* Z(z,w)

e 3. f(x): mean value of the Gaussian process (a.k.a. trend).

* Z/(x,w): zero mean, unit variance Gaussian process with autocorrelation func-
tion R(|x’ — x|; @) and its hyper-parameters 6.

e o2 Kriging variance.
Calibration of the model:

 Compute the hyper-parameters @ via cross-validation (CV) or maximum likeli-
hood estimate (MLE) (Bachoc, 2013).

» Compute the Kriging parameters {3, 0°} via generalized least-squares solution.
* Predict new samples and obtain the prediction mean uy(x) and variance og(x).

.

KRIGING

J

PC-KRIGING

Polynomial-Chaos-Kriging (PC-Kriging) is a non-intrusive meta-modelling tech-
nique which combines the traditional methods PCE and Kriging in a universal
Kriging model (Schobi and Sudret, 2014).

® > 0eala Val(x) is the sum of a sparse set of multivariate orthonormal poly-
nomials, representing the trend.

e Sequential PC-Kriging (SPC-Kriging): Determine a set of polynomials A by
LARS and use A as trend of the PC-Kriging model.

e Optimal PC-Kriging (OPC-Kriging): Take A from SPC-Kriging, iteratively add
one-by-one a € A to the trend, pick the meta-model with the lowest leave-
one-out error as the PC-Kriging model.

CONCLUSION

Comparing the three meta-modelling techniques on analytical meta-modelling
benchmark functions led us to the conclusions:

e PC-Kriging combines the advantages of the single approaches: the set of poly-
nomials approximates the global behaviour whereas the correlation part inter-
polates the local variabilities.

* OPC-Kriging is preferable to SPC-Kriging, despite the increased computational
effort.

e PC-Kriging performs better than PCE and Kriging according to the relative gen-
eralization error (L,-error), especially for small experimental designs.

* For large experimental designs, PC-Kriging converges to PCE.

* PC-Kriging is suitable for reliability analysis and design optimization, i.e.
adaptive designs, due to the stochastic nature of the Kriging predictor.
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Behaviour of PC-Kriging illustrated on the Rastrigin function (128 samples):

Exact function Ordinary Kriging PC-Kriging
Validation: Relative generalization error (L,-error) of the Rastrigin function (LHS

design, varying experimental design (DOE), 50 replications (boxplot)):
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