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R. Schöbi, B. Sudret
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PROBLEM STATEMENT & CONTEXT

A computational model maps the input vector x ∈ DX ⊂ R
N to y ∈ R and is

represented by y = M(x). The input space is modelled by a random vector X

(set of input variables) through probability distributions. The input variables are

assumed statistically independent.

The goal is to approximate the computationally expensive-to-evaluate computa-

tional model by a cheap-to-evaluate function, i.e. a meta-model.

Further, the computational model is interpreted as a black-box model, i.e. only

input/output data is available.

POLYNOMIAL CHAOS EXPANSIONS

Polynomial-Chaos-Expansions (PCE) surrogate the computational model M(X)
by a sum of orthonormal polynomials (Ghanem and Spanos, 2003):

M(PCE)(X) =
∑

α∈A

aαψα(X)

•ψα(X): multivariate, orthonormal polynomials in coherency with the input

distributions X, indexed by multi-index α. An orthonormal basis is defined

as 〈φi, φj〉k =
∫
Dk
φi(x)φj(x) fXk

(x)dx = δij where φ are univariate polynomials,

fXk
(x) is the marginal PDF in dimension k and δ is the Kronecker symbol. The

multivariate polynomials are ψα(X) =
∏M

i=1 φ
(i)
αi (Xi) where M is the number of

dimensions.

•aα: coefficients of the polynomials, indexed by α.

•A: index set of the orthonormal polynomials.

The set of candidate polynomials is defined by a maximal polynomial degree and

a truncation scheme, such as hyperbolic index sets. The PCE meta-model is then

calibrated through least-angle regression (LARS) (Blatman and Sudret, 2011).

KRIGING

Kriging (a.k.a. Gaussian process modelling) is a stochastic meta-modelling tech-

nique assuming that the computational model M(x) is the realization of a Gaus-

sian random field (Santner et al., 2003):

M(K)(x) = βT · f (x) + σ2Z(x, ω)

•βT · f (x): mean value of the Gaussian process (a.k.a. trend).

•Z(x, ω): zero mean, unit variance Gaussian process with autocorrelation func-

tion R(|x′ − x|;θ) and its hyper-parameters θ.

• σ2: Kriging variance.

Calibration of the model:

• Compute the hyper-parameters θ via cross-validation (CV) or maximum likeli-

hood estimate (MLE) (Bachoc, 2013).

• Compute the Kriging parameters {β, σ2} via generalized least-squares solution.

• Predict new samples and obtain the prediction mean µ
Ŷ
(x) and variance σ

Ŷ
(x).

PC-KRIGING

Polynomial-Chaos-Kriging (PC-Kriging) is a non-intrusive meta-modelling tech-

nique which combines the traditional methods PCE and Kriging in a universal

Kriging model (Schöbi and Sudret, 2014).

M(x) ≈ M(PCK)(x) =
∑

α∈A

aαψα(x)+σ
2Z(x, ω)

•
∑

α∈A aαψα(x) is the sum of a sparse set of multivariate orthonormal poly-

nomials, representing the trend.

• Sequential PC-Kriging (SPC-Kriging): Determine a set of polynomials A by

LARS and use A as trend of the PC-Kriging model.

• Optimal PC-Kriging (OPC-Kriging): Take A from SPC-Kriging, iteratively add

one-by-one α ∈ A to the trend, pick the meta-model with the lowest leave-

one-out error as the PC-Kriging model.

Behaviour of PC-Kriging illustrated on the Rastrigin function (128 samples):
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Validation: Relative generalization error (L2-error) of the Rastrigin function (LHS

design, varying experimental design (DOE), 50 replications (boxplot)):
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CONCLUSION

Comparing the three meta-modelling techniques on analytical meta-modelling

benchmark functions led us to the conclusions:

• PC-Kriging combines the advantages of the single approaches: the set of poly-

nomials approximates the global behaviour whereas the correlation part inter-

polates the local variabilities.

• OPC-Kriging is preferable to SPC-Kriging, despite the increased computational

effort.

• PC-Kriging performs better than PCE and Kriging according to the relative gen-

eralization error (L2-error), especially for small experimental designs.

• For large experimental designs, PC-Kriging converges to PCE.

• PC-Kriging is suitable for reliability analysis and design optimization, i.e.

adaptive designs, due to the stochastic nature of the Kriging predictor.
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