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Application in rare event probability estimation

◮ Λ(q) = − log p: the number of moves Mt to get into the failure domain is the
number of events before time t = − log p: Mt ∼ P(−N log p)

◮ Estimate a probability through an estimation of a Poisson
parameter λ given K realisations (Mk)k [3]:

λ̂ =
1

K

∑

k

Mk

◮ With λ = −N log p, we look indeed for exp(−λ/N)

p̂ = exp(−1/KN)
∑

Mk −→ p̂ =

(
1 − 1

KN

)∑
Mk

to get an unbiased estimator [4] almost achieving Cramer-Rao bound
◮ E [p̂] = p; CV [p̂] = p−1/KN − 1
◮ Comparison for a given targeted CV δ and number of cores nc

Method Eff. comp. time

Naive MC
1

pncδ2

MS ([1, 2])
T (log p)2

ncδ2

(1 − p0)
2

p0(log p0)2

MP [3]
T (log p)2

ncδ2

Table: Moving particles VS usual strategies
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Figure: Eff. computing time MP VS naive MC

Application in quantiles estimation

◮ Estimate "time" q = Λ−1(p) with the realisation of a point
process

◮ The random counting variable at "time" q: Mq ∼ P(−N log p)

◮ Time is unknown → impossible to get realisations of Mq

◮ Move a total of N particles; m = ⌈−N log p⌉ and calculate [3]:

q̂ =
1

2
(qm−1 + qm)

◮ Central Limit Theorem:
√

N (q̂ − q)
L−→

N→∞
N

(
0,
−p2 log p

f (q)2

)

◮ Bounds on bias on 1/N, centred with exponential tails
◮ Confidence interval available without estimation of the density at
quantile q

◮ Computing times similar to those obtained for probability estimator

Application in getting a first DoE

◮ Number of samples to get one realisation into D ≈ − log p

◮ Metropolis-Hastings increases calls to g to insure convergence but not necessary if
one only intends to move

◮ Learn a meta-model on-the-fly while sampling to the failure domain and use it
instead of g for the conditional sampling

NDoE ≈ d + 1 + Nfailing × log 1/p

Conclusion
◮ Moving Particles point of view leads to the parallelisation of the optimal
Multilevel Splitting method [4], resolving the issue of choosing the
sequence (Di)i or the cut-off probability p0

◮ The estimator is unbiased with lowest variance and 1.5x faster than
usual Subset Simulation [1] with p0 = 0.1

◮ MP point of view also provides an optimal parallel quantile estimator
◮ It allows also for quick/cheap access to the failure domain for
surrogate based algorithms
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Introduction
◮ Let X ∈ X ⊆ R

d be a random vector
◮ Let g : R

d → R be a measurable function defining the
failure domain D = {x ∈ R

d | g(x) < q}
◮ Goal: probability measure of D or find q for a given p:

p = P [X ∈ D] = µX(D) =

∫

D

dµX =

∫

Rd

✶D(x)dµX

◮ Constraints:
◮ g is a "black-box" whose outputs are time consuming
◮ p ≪ 1, typically p < 10−5

State-of-the-art

Multilevel Splitting methods (Subset Simulation) [1, 2]:

◮ Write D as D =
m⋂

i=1
Di =

m⋂
i=1

{g(X) < qi} with (qi)i a

decreasing sequence
◮ p = P[X ∈ D] =

∏
i

P[X ∈ Di+1 | X ∈ Di]

◮ Primary choice of (Di)i or adaptive construction with a
cut-off probability p0
◮ optimal value for p0?
◮ adaptive choice brings bias
◮ only sequential parallelisation and no quantile estimator

Meta-model based algorithms:
◮ Spend the computational budget in fitting a surrogate
model to g

◮ Criticality of the Design of Experiments (DoE)
◮ density-based DoE are unlucky to produce failing samples
◮ uniform DoE depend a lot on the dimension

=⇒both strategies suffer indeed from the
same difficulty: getting into extreme levels
of g

Move of particles

Let F be the cdf of g(X) (assumed to be continuous) and Λ(y) = − log(F (y))

Move of one particle along the levels of g [3]
◮ q0 = +∞
◮ For all m ∈ N:

◮ Sample X ∼ µX ( · | g < qm)
◮ Evaluate g : qm+1 = g(X)

The random variables (Tm)m≥1 = (Λ(qm))m≥1 are distributed as the successive

arrival times of a Poisson Process with parameter 1

Move of N particles along the levels of g [4, 3]

◮ q0 = (q1
0, · · · , qN

0 ) = (+∞, · · · , +∞)
◮ For all m ∈ N

◮ qm+1 = qm

◮ im = argmax
i

(qi

m
)

◮ Sample Xim
∼ µX ( · | g < qim

m
)

◮ Evaluate g : q
im

m+1
= g(Xim

)

The RV (Tm)m≥N = (Λ(qim
m))m≥N are distributed as the successive arrival times of

a marked Poisson Process with parameter N

q

q

q

(a)Three independent moves of one particle

q

(b)Marked times of Poisson Process with parameter 3

Figure: Moves of particles seen as a realisation of

a marked Poisson process
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Figure: Example of a move of a particle to

the failure domain

Main result: it requires only P(log 1/p) samples to get a realisation of X in
a domain of measure p while usual sampling needs ≈ 1/p samples.

Practical implementation
◮ Conditional laws ⇒ Metropolis-Hastings algorithm
◮ Insure independence ⇒ burn-in parameter T

◮ Almost fully parallel: N ≥ 10 enough for conditional sampling


