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Introduction
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> Let g : RY — R be a measurable function defining the
failure domain D = {x € R?| g(x) < g}
» Goal: probability measure of D or find g for a given p:

p=P[XeD]= :/C/MX:/ ]lD(X)CII,uXQ
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» g is a "black-box" whose outputs are time consuming

» Constraints:
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- p < 1, typically p < 107

State-of-the-art

Multilevel Spllttlng methods (Subset Simulation) [1 2]

» Write D as D = ﬂ D, = ﬂl{g( ) < g;} with (g;); a

decreasing Sequence

»p=DP[X € D] :HP[XG D1 | X € Dj]
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» Primary choice of (D;); or adaptive construction with a
cut-off probability pg

» optimal value for pp?

» adaptive choice brings bias
» only sequential parallelisation and no quantile estimator

Meta-model based algorithms:

» Spend the computational budget in fitting a surrogate

model to g
» Criticality of the Design of Experiments (DoE)

» density-based DoE are unlucky to produce failing samples
» uniform DoE depend a lot on the dimension

—>-both strategies suffer indeed from the

same difficulty: getting into extreme levels |
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Move of particles

Let F be the cdf of g(X) (assumed to be continuous) and A(y) =

—log(F(y))

Move of one particle along the levels of g [3]

> Jop = +0C

» For all me N
» Sample X ~ (- | g < qp)
» Evaluate g1 g1 = g(X)

The random variables (T;)m>1 = (N am))m>1 are distributed as the successive
arrival times of a Poisson Process with parameter 1

Move of N particles along the levels of g [4, 3]
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»Forallme N

»qdm+1 = dm |

> im = argmax(qp,)

> Sample X; ~ (- | g < gr)
» Evaluate g q,'§7”+1 — g(xim)

The RV (T msn = (Nq'))m>n are distributed as the successive arrival times of
a marked Poisson Process with parameter N
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(a) Three independent moves of one particle '
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(b) Marked times of Poisson Process with parameter 3

Figure: Moves of particles seen as a realisation of
a marked Poisson process

Figure: Example of a move of a particle to
the failure domain

Main result: it requires only P(log1/p) samples to get a realisation of X in

a domain of measure p while usual sampling needs & 1/p samples.

Practical implementation

» Conditional laws = Metropolis-Hastings algorithm

» Insure independence = burn-in parameter [
» Almost fully parallel: N > 10 enough for conditional sampling
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Application in rare event probability estimation

— log p: the number of moves M; to get into the failure domain is the

—log p: M; ~ P(—Nlog p)

» Estimate a probability through an estimation of a Poisson
parameter \ given K realisations (M), [3]:

»\(q) =

number of events before time t =

» With A = —Nlog p, we look indeed for exp(—A/N)
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to get an unbiased estimator [4]| almost achieving Cramer-Rao bound
CE[R] = p, CV[F] = p VAV — 1

» Comparison for a given targeted CV ¢ and number of cores n.
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Table: Moving particles VS usual strategies Figure: Eff. computing time MP VS naive MC

Application in quantiles estimation

» Estimate "time" g = A"!(p) with the realisation of a point
process

» The random counting variable at "time" g: M, ~ P(—N log p)

» Time is unknown — impossible to get realisations of M,

» Move a total of N particles; m = [—Nlog p| and calculate |3]:
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» Central Limit Theorem:

i) £ v (5. 7259)
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» Bounds on bias on 1/N, centred with exponential tails

» Confidence interval available without estimation of the density at
quantile ¢

» Computing times similar to those obtained for probability estimator

Application in getting a first DoE

» Number of samples to get one realisation into D &~ — log p

» Metropolis-Hastings increases calls to g to insure convergence but not necessary if
one only intends to move

» Learn a meta-model on-the-fly while sampling to the failure domain and use it
instead of g for the conditional sampling

NDoE d+ 1+ Nfalllng |Og 1/10
Conclusion

» Moving Particles point of view leads to the parallelisation of the optimal
Multilevel Splitting method [4], resolving the issue of choosing the
sequence (D;); or the cut-off probability py

» | he estimator is unbiased with lowest variance and 1.5x faster than
usual Subset Simulation [1] with py=0.1

» MP point of view also provides an optimal parallel quantile estimator

» It allows also for quick /cheap access to the failure domain for
surrogate based algorithms
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