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- Can be used to infer HD structures (CheckViz)
- Can be exploited to get better map of labeled data (ClassiMap)

- Maps even incorrect but not random can be used as a support
o to explore actual local similarities (ProxiVis)

o to navigate HD data (ProxiLens)

o to brush HD data (MD-Brush)

o to classify out-of-sample data (ClassiViz)

o to detect correlation between variables (Component Planes)

• Maps are useless without additional information
- Can generate false pattern
- Can miss actual pattern

• Maps are not an end but a mean to support user decision
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Perspectives

• Formalization needed to go beyond similarity-based distortions

- Interesting patterns all based on similarities
o Outliers 

o Class outliers

o Clusters

o Class structure...

- What is the impact of similarity distortions on specific pattern detection?

- Can we design DR techniques tuned to optimize preservation of specific 

patterns?
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Worth reading

What I presented you



220Thank you !

[CheckViz] Lespinats, Aupetit. CheckViz: Sanity Check and Topological
Clues for Linear and Non-Linear Mappings. Computer Graphics Forum

30(1): 113-125 (2011)

[ClassiMap] Lespinats, Aupetit, Meyer-Baese. ClassiMap: A New Dimension
Reduction Technique for Exploratory Data Analysis of Labeled Data.

IJPRAI 29(6) (2015)

[ProxiViz] Aupetit. Visualizing distortions and recovering topology in
continuous projection techniques. Neurocomputing 70(7-9): 1304-1330

(2007)

[ProxiLens] Heulot, Aupetit, Fekete. ProxiLens: Interactive Exploration of 
High-Dimensional Data using Projections
EuroVis 2013 Workshop on Visual analytics using Multidimensional 

Projections, Leipzig, Germany, June 2013

[HDBrush] Aupetit, Heulot, Fekete. A multidimensional brush for 
scatterplot data analytics Poster at IEEE VIS 2014 conference, Paris, 

France, November 2014

[ClassiViz] Aupetit, Allano, Espagnon, Sannie. Visual Analytics to Check
Marine Containers in the Eritr@c Project EuroVAST (2010)

50



221

Q&A
• How users perceive these maps, how long it takes them to learn how to 

use these techniques. For instance Euritrac ClassiViz -> qualitatively but 

not quantitatively evaluated

• Compare with Nonato connected missed with edge bundle, compare to 

color coding -> yes, all at one glance while proxiviz requires selecting a 

focus point, but proxiviz shows the actual data (1 row of the similarity 

matrix), not a summary (= no free lunch), what is best for users?

• Multi scale topological structure in HD used to enrich map -> yes, could be 

used to enrich and interact with data

• Dual problem between graph drawing drawing all edges, and approach 

here where we only draw missed neighbors -> interesting remark, would 

need more formalism to better understand relations between both 

approaches

maupetit@hbku.edu.qa

https://about.me/michaelaupetit
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