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Supervisor(s): Dr. Sébastien Da Veiga (Safran Tech), Dr. Delphine Sinoquet (IFP Energies
Nouvelles) and Prof. Marcel Mongeau (ENAC, Université Paul Sabatier)
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Abstract: Design of experiments (DoE) are used in various contexts such as optimization or
uncertainty quantification based on a time-consuming numerical simulator. It aims to select a
limited number of values to assign to the simulator input variables that give a maximal knowledge
on the simulator outputs of interest. One motivating application is the optimal design of turbine
blades in an helicopter engine [1], which takes as inputs mixed continuous and binary variables.

In this study, we propose two new methods for space-filling designs in mixed continuous and
discrete space defined as

D = {z = (x, y) ∈ R
m × I

n}, (1)

where x ∈ R
m, y ∈ I

n are the continuous and discrete variables, respectively, and I denotes
the discrete space (e.g. integer, binary or categorical variables). Although the literature on
space-filling DoEs is vast in the continuous case, we focus here on a particular setting relying on
kernel-embedding of probability distributions, since it can be more easily generalized to the mixed
variables case, as we will see below. In this framework, several previous works reformulated the
space-filling DoE problem as the minimization of the maximum mean discrepancy (MMD) between
an empirical measure (corresponding to the DoE) and a target distribution. For two probability
distributions P and Q and a Reproducing Kernel Hilbert Space (RKHS) H with positive definite
kernel k, the MMD distance between P and Q is defined as

MMD(P,Q) = ‖µP − µQ‖H (2)

where µP =
∫
k(x, .)dP(x) and µQ =

∫
k(x, .)dQ(x) are the kernel embeddings of P and Q,

respectively, and serve as representations of the probability distributions. The RKHS framework
makes it possible to write the distance with only expectations of kernel functions: MMD2(P,Q) =
Eξ,ξ′∼Pk(ξ, ξ

′) + Eζ,ζ′∼Qk(ζ, ζ
′)− 2Eξ∼P,ζ∼Qk(ξ, ζ).

Coming back to our DoE setting, when P is an empirical measure 1
n

∑n

i=1 δsi of n points si ∈ [a, b]d

in a hypercube and the target measure Q is the uniform distribution on [a, b]d, the squared MMD
actually writes as well-known discrepancy measures, depending on the choice of the kernel k [2].
But the choice of the target Q is not restricted, and the case where it is also given as an empirical
measure 1

N

∑N

i=1 δti with N typically much larger than n is of particular interest. Indeed this
case corresponds to applications where one is given a large sample from a probability distribution
and the goal is to find a small subset of samples which best represents the underlying unknown
distribution [3]. The problem then writes as the optimization problem

min
s1,s2,...,sn

MMD2(
1

n

n∑

i=1

δsi ,
1

N

N∑

i=1

δti). (3)

When the points si are chosen among the points in the large sample ti, [4] proposed kernel herding,
a greedy sequential algorithm for solving this minimization problem. On the contrary when the
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points si are not restricted, it is possible to design efficient optimization strategies as in [3]. In
the following we assume that we are in the first situation.

Unfortunately all the MMD-based approaches proposed so far only consider kernels for continuous
variables only. Our goal is thus to generalize this point of view to mixed continuous / discrete
variables. The starting point is a user-defined distance in the discrete space that characterizes any
prior information available from the type of problem we address: for instance in the turbomachine
blade application mentioned before, the necklace distance introduced by [5] accounts for the cyclic
symmetry of the design problem. Once such a distance is specified, two roads can be taken:

1. The greedy-MDS approach, where we build a continuous encoding of the discrete variables.
This is achieved by first computing all the pairwise distances in the discrete space for the
large sample and then applying Multi-Dimensional Scaling [6]. The original kernel-herding
algorithm with a standard kernel on continuous variables is then used in the space consisting
of the continuous input variables and the encoded discrete variables obtained with MDS.
The final DoE is ultimately retrieved by examining the selected subsamples and find the
MDS association between the discrete variables and their continuous encoding;

2. The adapted-greedy method, which directly integrates a kernel on mixed variables inside
kernel herding. Building a kernel from a distance is not straightforward since one has to
ensure that the kernel must be positive definite. To perform this step we rely on the soft
string kernel recently introduced by [7]. For our particular necklace distance, the mixed
kernel writes

Kmixed(zi, zj) = eλ‖xi−xj‖
2
∑

ω∈Ω

e−γ{dneck(yi,ω)+dneck(yj ,ω)},

where λ, γ > 0 are kernel hyperparameters and Ω is the set that contains all the feasible
discrete elements.

We apply the two proposed methods to three different types of DoE problems (mixed integers,
mixed binaries with cyclic symmetry and time series). The obtained results illustrate the good
performances of the methods and the wide range of applications they can address.
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